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Abstract. We extend the recent rigorous convergence result of Abels and
the second author (arXiv preprint 2105.08434) concerning convergence rates

for solutions of the Allen–Cahn equation with a nonlinear Robin boundary

condition towards evolution by mean curvature flow with constant contact an-
gle. More precisely, in the present work we manage to remove the perturbative

assumption on the contact angle being close to ninety degree. We establish un-

der usual double-well type assumptions on the potential and for a certain class
of boundary energy densities the sub-optimal convergence rate of order ε

1
2 for

general contact angles α ∈ (0, π). For a very specific form of the boundary

energy density, we even obtain from our methods a sharp convergence rate of
order ε; again for general contact angles α ∈ (0, π).

Our proof deviates from the popular strategy based on rigorous asymptotic
expansions and stability estimates for the linearized Allen–Cahn operator. In-

stead, we follow the recent approach by Fischer, Laux and Simon (SIAM J.

Math. Anal. 52, 2020), thus relying on a relative entropy technique. We de-
velop a careful adaptation of their approach in order to encode the constant

contact angle condition. In fact, we perform this task at the level of the notion

of gradient flow calibrations. This concept was recently introduced in the con-
text of weak-strong uniqueness for multiphase mean curvature flow by Fischer,

Laux, Simon and the first author (arXiv preprint 2003.05478).
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1. Introduction

1.1. Context. Curvature driven interface evolution arises in a broad range of ap-
plications, including for instance liquid-solid interface evolution in solidification
processes (e.g., [23]), noise removal and feature enhancement in image processing
(e.g., [33]), flame front propagation in combustion processes (e.g., [26]), or grain
coarsening in an annealing polycrystal (e.g., [31]). The present work is concerned
with the most basic mathematical model representing the evolution of an interface
(i.e., the common boundary of a binary system) driven by an extrinsic curvature
quantity, namely evolution by mean curvature flow (MCF). Of course, this is a clas-
sical subject in the literature, see, e.g., the seminal works by Gage and Hamilton [11]
and Grayson [13] for the flow of a smooth and simple closed curve in R2.

The main focus of the present work is related to the rigorous treatment of a
certain class of nontrivial boundary effects. More precisely, we are concerned with
the mean curvature flow of an interface within a physical domain Ω ⊂ Rd (e.g.,
a container holding a binary alloy with a moving internal interface), so that the
interface intersects the domain boundary ∂Ω at a constant contact angle α ∈ (0, π);
see Figure 1 for an illustration of the geometry. The inclusion of such a boundary
condition poses an interesting and nontrivial mathematical problem because the
evolving geometry is necessarily singular due to the contact set.

Mean curvature flow of an interface with constant contact angle can be generated
as the L2-gradient flow of a suitable energy functional. The total energy consists
of two contributions: i) interfacial energy in the interior of the container, and ii)
surface energy along the boundary of the container. Given a disjoint partition of the
container into two phases represented by an open subdomain A ⊂ Ω and its open
complement Ω \ A , denote with I the associated interface given by the common
boundary of these two sets (cf. again Figure 1). Expressing the associated surface
tension constants by c0, σ+ and σ−, respectively, the total energy is then given by

E[A ] := c0

ˆ
I

1 dHd−1 + σ+

ˆ
∂A ∩∂Ω

1 dHd−1 + σ−

ˆ
∂(Ω\A )∩∂Ω

1 dHd−1,
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Figure 1. Illustration of a prototypical geometry for interface
evolution with constant contact angle.

or alternatively by subtracting the constant σ−
´
∂Ω

1 dHd−1

E[A ] := c0

ˆ
I

1 dHd−1 + (σ+−σ−)
ˆ
∂A ∩∂Ω

1 dHd−1. (1.1)

The surface tension constants are assumed to satisfy Young’s relation, i.e.,

|σ+−σ−| < c0,

so that in particular there exists an angle α ∈ (0, π) such that

σ+−σ− = c0 cosα.

Switching the roles of A and Ω \ A , we may of course assume without loss of
generality that α ∈ (0, π2 ]. The geometric interpretation of α is that it represents
the angle formally formed by the intersection of the interface I with the boundary
of the container ∂Ω through the domain Ω \ A (cf. again Figure 1).

As usual in the context of geometric evolution equations, the corresponding
flow in general can not avoid the occurrence of topology changes and geometric
singularities. For an example specific to the framework of contact angle problems,
one may imagine an initially interior point of the interface to touch the boundary of
the container at a later time; see [22, Figure 2] for an illustration of this scenario. It
is for this reason that a global-in-time representation of the dynamics is in general
only possible in a weaker form than the one provided by solution concepts relying
on parametrized surfaces with boundary.

One popular approach in this direction consists of phase-field models which are
based on the introduction of a time-dependent order parameter taking values in the
continuum [−1, 1]. Roughly speaking, the regions within the container Ω in which
the order parameter takes values close to +1 or −1 represent the two underlying
evolving phases. The associated evolving interface is in turn represented by the re-
gion in which the order parameter undergoes a transition between these two values.
The relevant dynamics for the order parameter are again induced by studying the
(in our case L2) gradient flow of an associated energy functional.

Following the modeling in the sharp-interface regime, this energy also consists
of two contributions. Within the container Ω, we consider the standard Cahn–
Hilliard energy associated with a double-well type potential W . For the boundary
contribution, we rely on the proposal of Cahn [4] and include a boundary contact
energy in terms of a boundary energy density σ. Both contributions together then



4 SEBASTIAN HENSEL AND MAXIMILIAN MOSER

result in the following ansatz for the total energy functional of the order parameter:

Eε[u] :=

ˆ
Ω

ε

2
|∇u|2 + 1

ε
W (u) dx+

ˆ
∂Ω

σ(u) dHd−1. (1.2)

The associated ( 1ε -accelerated) L
2-gradient flow leads to the standard Allen–Cahn

equation within the container Ω. Boundary effects along ∂Ω are captured by a non-
linear Robin boundary condition; cf. (AC1)–(AC3) below for the full PDE problem.

Concerning the static case, Modica [28] shows that phase-field energies of the
form (1.2) Γ-converge to sharp-interface energies of the form (1.1), and thus relates
the associated minimizers of these energy functionals in the limit ε↘ 0. The main
goal of the present work is instead concerned with the corresponding dynamics. It
consists of a rigorous justification of the relation of the L2-gradient flows associated
with the energies (1.1) and (1.2) in the limit ε↘ 0. Computations based on formal
asymptotic expansions by Owen and Sternberg [32] suggest that solutions of the
phase-field model based on (1.2) converge to solutions of the sharp-interface model
related with (1.1), i.e., mean curvature flow with constant contact angle. The main
result of the present work establishes this connection in a rigorous fashion for a
certain class of double-well type potentials W and boundary energy densities σ; cf.
Subsection 1.2 below for precise assumptions. To the best of our knowledge, our
result is the first for which this is achieved without any restriction on the value
of the contact angle α. Apart from the qualitative statement of convergence, we
also establish convergence rates as a consequence of a general quantitative stability
estimate between solutions of the phase-field model and solutions of its sharp-
interface limit. Within the full generality of our assumptions, these are suboptimal
with respect to the scaling in the parameter ε. However, for a specific choice of the
boundary energy density σ, we even obtain optimal convergence rates. We finally
remark that our results hold true on a time horizon on which a sufficiently regular
solution to mean curvature flow with constant contact angle exists, i.e., prior to the
occurrence of geometric singularities. We refer to Theorem 1 below for a complete
mathematical statement.

Before we proceed in Subsection 1.2 with a precise description of the mathemat-
ical setting and assumptions, let us first put our main result into the context of
the existing literature. In the most basic setting of the full-space problem Ω = Rd,
rigorous proofs for the convergence of solutions of the Allen–Cahn equation towards
solutions of MCF were already established several decades ago. Evans, Soner and
Souganidis [7] provide a global-in-time convergence result based on the notion of
viscosity solutions for MCF, thus relying in an essential way on the comparison prin-
ciple. The global-in-time convergence result of Ilmanen [19] instead makes use of the
notion of Brakke flows. Only recently, Laux and Simon [24] succeeded in deriving a
conditional convergence result for the vectorial Allen–Cahn problem whose sharp-
interface limit is represented by multiphase MCF. Their result is phrased in terms
of so-called BV solutions and is conditional due to a required energy convergence
assumption in the spirit of the seminal work by Luckhaus and Sturzenhecker [25].
Based on a natural varifold generalization of BV solutions, even an unconditional
convergence result holds true at least in the two-phase regime as shown by Laux and
the first author [16]. Finally, local-in-time convergence of solutions of the Allen–
Cahn equation towards classical solutions of MCF in the full-space setting Ω = Rd

goes back to the seminal work of De Mottoni and Schatzman [6]. Their method
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is based on rigorous asymptotic expansions as well as stability estimates for the
linearized Allen–Cahn operator.

When including boundary effects in form of constant contact angles, the major-
ity of the results in the existing literature treats the case of vanishing boundary
energy density σ = 0. In other words, a fixed-in-time ninety degree angle condition
is prescribed for the intersection of the interface with the boundary of the container.
In terms of the phase-field approximation, this modeling assumption leads to a ho-
mogeneous Neumann boundary condition for the order parameter. Global-in-time
convergence in this setting towards weak solutions of MCF interpreted in a viscos-
ity sense is due to Katsoulakis, Kossioris and Reitich [22]. A corresponding result
with respect to a suitably generalized notion of Brakke flows is derived by Mizuno
and Tonegawa [27] (for strictly convex and smooth containers) and Kagaya [21] (for
general smooth containers).

Local-in-time convergence results in terms of smooth solutions to MCF with con-
stant ninety degree angle condition were in turn established in a work of Chen [5]
and a recent work of Abels and the second author [1]. The former relies on the
construction of super- and subsolutions of the Allen–Cahn equation as well as com-
parison principle arguments, whereas the latter extends the method of De Mottoni
and Schatzman [6] to the ninety degree contact angle setting; see in this context
also the work of the second author [30] for extensions of [1] in several directions.

We next comment on the literature in the regime of general boundary energy
densities σ modeling the case of general contact angles α ∈ (0, π2 ] in the sharp-
interface limit. To the best of our knowledge, up to the present work no rigorous
convergence result allowing for arbitrary values of the contact angle has been estab-
lished. The only two results we are aware of consist of the non-rigorous derivation
of the sharp-interface limit by Owen and Sternberg [32] as well as the recent work
by Abels and the second author [2], which constitutes the first rigorous version
of the formal arguments given by Owen and Sternberg [32]. However, the results
of [2] are restricted to a perturbative regime in the sense that the contact angle
is assumed to be close to ninety degrees. The present work does not rely on this
requirement and therefore establishes for the first time a local-in-time convergence
proof for general contact angles α ∈ (0, π2 ], which, similar to [2], even provides
convergence rates. Note that in a companion article, Laux and the first author [15]
also prove a (purely qualitative) global-in-time convergence result towards a novel
notion of BV solutions to MCF with general constant contact angle α ∈ (0, π2 ].

We conclude the discussion with some context on our methods. In contrast to
the work of Abels and the second author [2], which makes use of rigorous asymp-
totic expansions and stability of the linearized Allen–Cahn operator in the spirit of
De Mottoni and Schatzman [6], our proof is directly inspired by the recent approach
of Fischer, Laux and Simon [10]. They employ a novel relative entropy technique to
prove, even in an optimally quantified way, local-in-time convergence of solutions of
the full-space Allen–Cahn equation towards smooth solutions of MCF. Their tech-
nique is based on a natural phase-field analogue of an error functional which has
been extensively used throughout recent years to study stability and weak-strong
uniqueness properties of weak solution concepts in interface evolution problems on
the sharp interface level.

One version of this error functional, which is supposed to measure the difference
between two solutions in a sufficiently strong sense, appeared for the first time
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in the work of Jerrard and Smets [20] dealing with binormal curvature flow of
curves in R3. In a structurally analogous but slightly adapted form more suited
for interface evolution, it was used by Fischer and the first author [8] to establish
weak-strong uniqueness for a two-phase Navier–Stokes system with surface tension.
It was afterwards extended by Fischer, Laux, Simon and the first author [9] to treat
the case of planar multiphase MCF (see also [17] and [16]). In the present work,
we develop a careful adaptation of the approach by Fischer, Laux and Simon [10]
to incorporate the contact angle condition. This is a nontrivial task due to the
necessarily singular nature of the geometry associated with a solution of MCF with
constant contact angle. For a more detailed description of our strategy, we refer to
the discussion in Subsections 2.1 and 2.2 below.

1.2. Assumptions and setting. In the present work, we study the convergence of
solutions to the Allen–Cahn equation with a nonlinear Robin boundary condition.
In its strong PDE formulation, the problem is given as follows:

∂tuε = ∆uε −
1

ε2
W ′(uε) in Ω×(0, T ), (AC1)

(n∂Ω · ∇)uε =
1

ε
σ′(uε) on ∂Ω×(0, T ), (AC2)

uε|t=0 = uε,0 in Ω. (AC3)

Here, Ω ⊂ Rd denotes a bounded (not necessarily convex) domain with orientable
and sufficiently regular boundary ∂Ω, the vector field n∂Ω denotes the associated in-
ward pointing unit normal, T ∈ (0,∞) is a finite time horizon, and W : R → [0,∞)
is a standard free energy density (per unit volume) of double-well type whereas
σ : R → [0,∞) denotes a boundary contact energy density (per unit surface area).
The latter two are assumed to be at least differentiable; more assumptions on W
and σ will be imposed below.

As already mentioned previously, the Allen–Cahn problem (AC1)–(AC3) can
in fact be derived as the ( 1ε -accelerated) L

2-gradient flow of the free energy func-
tional (1.2). In particular, sufficiently regular solutions to (AC1)–(AC3) satisfy an
energy dissipation equality of the form

Eε[uε(·, T ′)] = Eε[uε,0]−
ˆ T ′

0

ˆ
Ω

1

ε
H2

ε dx dt (1.4)

for all T ′ ∈ [0, T ], where the map Hε is defined by

Hε := −ε∆uε +
1

ε
W ′(uε). (1.5)

We now specify our assumptions with respect to the nonlinearitiesW and σ. For
the potential W , we impose W ∈ C2(R) and the following conditions:

1. W has a double-well shape in the following sense:

W (±1) = 0, W ′(±1) = 0, W ′′(±1) > 0, W > 0 in R \ {±1}. (1.6a)

2. There exist p ∈ [2,∞) and constants c, C,R > 0 such that

c|u|p ≤W (u) ≤ C|u|p and |W ′(u)| ≤ C|u|p−1 for all |u| ≥ R. (1.6b)

3. The decomposition W =W1 +W2 holds with W1,W2 ∈ C2(R),

W1 ≥ 0 convex and |W ′′
2 | ≤ C. (1.6c)
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Note that (1.6b) and (1.6c) represent analogous assumptions as in [24], where the
vector-valued Allen-Cahn equation was considered (see [24, Lemma 2.3] for the
existence of weak solutions in this case). The standard choice satisfying the condi-
tions (1.6a)–(1.6c) consists of course of W (u) ∼ (1− u2)2.

We next define

ψ(r) :=

ˆ r

−1

√
2W (s) ds, r ∈ R, (1.7)

as well as the interfacial surface tension constant

c0 :=

ˆ 1

−1

√
2W (s) ds. (1.8)

In view of the Modica–Mortola [29]/Bogomol’nyi [3] trick, the motivation behind
this definition is that the map ψε := ψ(uε) represents an approximation for (a
suitable multiple of) the indicator function of a phase with sharp interface evolving
by mean curvature flow. The boundary energy density is then assumed to satisfy

σ ∈ C1,1(R; [0,∞)), σ′ ≥ 0 in R, suppσ′ ⊂ [−1, 1], (1.9a)

as well as

σ(−1) = 0, σ ≥ ψ cosα on [−1, 1], σ(1) = ψ(1) cosα = c0 cosα. (1.9b)

Due to σ(−1) = 0, the third item of (1.9b) in fact reads σ(1) − σ(−1) = c0 cosα
and thus may be identified with Young’s law.

Under these assumptions on the potentialW and the boundary energy density σ,
we derive in the present work suboptimal convergence rates for solutions of the
Allen–Cahn problem (AC1)–(AC3) towards smooth solutions of mean curvature
flow with constant contact angle α (cf. Theorem 1 below for a precise statement).
In order to achieve an optimal rate of convergence, our approach relies on a more
restrictive assumption on the boundary energy density:

σ(r) :=


0 r ∈ (−∞,−1),

ψ(r) cosα r ∈ [−1, 1],

c0 cosα r ∈ (1,∞).

(1.10)

Note that (1.10) is obviously consistent with (1.9a) and (1.9b).

2. Main results & definitions

As already announced in the introduction, our main result concerns the rigorous
derivation of convergence rates for the Allen–Cahn problem (AC1)–(AC3) with well-
prepared initial data towards the sharp interface limit given by evolution by mean
curvature flow with a constant contact angle α ∈ (0, π2 ]. The precise statement
reads as follows.

Theorem 1 (Convergence rates for the Allen–Cahn problem (AC1)–(AC3) towards
strong solutions of mean curvature flow with constant contact angle 0 < α ≤ π

2 ).
Consider a finite time horizon T ∈ (0,∞) and a bounded C3-domain Ω ⊂ R2, and
let A =

⋃
t∈[0,T ] A (t)×{t} be a strong solution to evolution by mean curvature flow

in Ω with constant contact angle α ∈ (0, π2 ] in the sense of Definition 10. Denote
for every t ∈ [0, T ] by χA (t) the characteristic function associated with A (t).
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Moreover, let a potential W and boundary energy density σ be given such that the
assumptions (1.6a)–(1.6c) and (1.9a)–(1.9b) are satisfied, respectively, and consider
an initial phase field uε,0 with finite energy Eε[uε,0] <∞ which moreover satisfies

uε,0 ∈ [−1, 1] almost everywhere in Ω. (2.1)

Denote by uε the associated weak solution of the Allen–Cahn problem (AC1)–(AC3)
in the sense of Definition 5 (on a time horizon > T ).

Then, there exists a constant C = C(A , T ) > 0 such that it holds∥∥ψ(uε(·, T ′)
)
−c0χA (T ′)

∥∥
L1(Ω)

≤ eCT ′
√
ErelEn

[
uε,0|A (0)

]
+Ebulk[uε,0|A (0)] (2.2)

for all T ′ ∈ [0, T ], where we recall from (1.7) and (1.8) the definition of ψ and c0,
respectively. For the definition of the relative energy functional ErelEn and the bulk
error functional Ebulk, we refer to (3.4) and (4.1) below, respectively.

Furthermore, the class of finite energy initial phase fields satisfying (2.1) and

ErelEn

[
uε,0|A (0)

]
+ Ebulk[uε,0|A (0)] ≲ ε (2.3)

is non-empty. In particular, for such well-prepared initial data one obtains from
the quantitative stability estimate (2.2) a suboptimal convergence rate of order ε

1
2 .

Finally, in case of the specific choice (1.10), one may upgrade the requirement (2.3)

from ε to ε2, and thus as a consequence the suboptimal convergence rate ε
1
2 to an

optimal convergence rate of order ε.

Proof. First note that due to Theorem 4 there exists a boundary adapted gradient
flow calibration (ξ,B, ϑ) with respect to a strong solution A evolving by mean
curvature flow in Ω with constant contact angle α ∈ (0, π2 ] in the sense of Def-
inition 10. Hence the estimate (2.2) follows directly from a combination of the
quantitative stability estimates relative to a calibrated evolution, see Theorem 3, a
post-processing of the latter based on Lemma 13, and Gronwall’s inequality.

The assertions with respect to the existence of well-prepared initial phase fields
are part of Lemma 9. □

2.1. Quantitative stability with respect to calibrated evolutions in d ≥ 2.
Our approach to the proof of Theorem 1 is directly inspired by the recent work [10]
of Fischer, Laux and Simon, who establish the same result in a full space setting.
In contrast to other approaches (cf. Section 1), they capitalize on a novel relative
entropy technique. Their strategy can be interpreted as a diffuse interface analogue
of the relative entropy approach to weak-strong uniqueness for certain mean curva-
ture driven sharp interface evolution problems as introduced in [8] by Fischer and
the first author (cf. also the earlier work [20] of Jerrard and Smets for a similar
approach in the setting of a codimension two evolution problem).

However, in comparison to the work [10] of Fischer, Laux and Simon, we will em-
ploy a conceptually more general viewpoint by splitting the task into two separate
steps. This two-step procedure is directly inspired by the recent work [9] of Fischer,
Laux, Simon and the first author on weak-strong uniqueness for planar multiphase
mean curvature flow (cf. also the work [17] of Laux and the first author). The first
step concerns the notion of a calibrated evolution along the gradient flow of an
interfacial energy, which in a sense generalizes the classical notion of calibrations
from minimal surface theory to an evolutionary setting, and to prove quantitative
stability of solutions to (AC1)–(AC3) with respect to such calibrated evolutions.
The second step then consists of showing that sufficiently regular solutions to mean
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curvature flow with constant contact angle are in fact calibrated, so that the sta-
bility estimates from the first step can be used to yield the asserted convergence
rate.

The following definition represents a generalization of the two-phase versions
of [9, Definition 2 and Definition 4] in order to encode the correct constant contact
angle condition for the intersection of the evolving interface with the boundary of
the container.

Definition 2 (Calibrated evolutions and boundary adapted gradient flow calibra-
tions). Let T ∈ (0,∞) be a finite time horizon and let Ω be a bounded C2-domain
in Rd. Consider A =

⋃
t∈[0,T ] A (t)×{t} such that for each t ∈ [0, T ] the set A (t)

is an open subset of Ω with finite perimeter in Rd and the closure of ∂∗A (t) ⊂ Ω is
given by ∂A (t). Denote for all t ∈ [0, T ] by n∂∗A (t) the measure-theoretic unit nor-
mal along ∂∗A (t) pointing inside A (t). Writing χ(·, t) for the characteristic func-
tion associated with A (t), we assume that χ ∈ BV (Rd×(0, T )) ∩C([0, T ];L1(Rd))
and that the measure ∂tχ is absolutely continuous with respect to the measure |∇χ|
restricted to

⋃
t∈(0,T )(∂

∗A (t) ∩ Ω)×{t} (i.e., the associated Radon–Nikodým deriv-
ative yields a normal speed). Let α ∈ (0, π2 ] and c0 > 0 be two constants.

We then call A =
⋃

t∈[0,T ] A (t)×{t} a calibrated evolution for the L2-gradient
flow of the sharp interface energy functional

E[A (t)] := c0

ˆ
∂∗A (t)∩Ω

1 dHd−1 + c0

ˆ
∂∗A (t)∩∂Ω

cosα dHd−1 (2.4)

if there exists a triple (ξ,B, ϑ) of maps as well as constants c ∈ (0, 1) and C > 0
subject to the following conditions. First, concerning regularity it is required that

ξ ∈ C1
(
Ω×[0, T ];Rd

)
∩ C

(
[0, T ];C2

b(Ω;Rd)
)
, (2.5a)

B ∈ C
(
[0, T ];C1(Ω;Rd) ∩ C2

b(Ω;Rd)
)
, (2.5b)

ϑ ∈ C1
b

(
Ω×[0, T ]

)
∩ C

(
Ω×[0, T ]; [−1, 1]

)
. (2.5c)

Second, for each t ∈ [0, T ] the vector field ξ(·, t) models an extension of the unit
normal of ∂∗A (t)∩Ω and the vector field B(·, t) models an extension of a velocity
vector field of ∂∗A (t) ∩ Ω in the precise sense of the conditions

ξ(·, t) = n∂∗A (t) and
(
∇ξ(·, t)

)T
n∂∗A (t) = 0 along ∂∗A (t) ∩ Ω, (2.6a)

|ξ|(·, t) ≤ 1−cmin
{
1,dist2

(
·, ∂∗A (t) ∩ Ω

)}
in Ω, (2.6b)

as well as

|∂tξ + (B · ∇)ξ + (∇B)Tξ|(·, t) ≤ Cmin
{
1,dist

(
·, ∂∗A (t) ∩ Ω

)}
in Ω, (2.6c)

|ξ · (∂tξ + (B · ∇)ξ)|(·, t) ≤ Cmin
{
1,dist2

(
·, ∂∗A (t) ∩ Ω

)}
in Ω, (2.6d)

|ξ ·B +∇ · ξ|(·, t) ≤ Cmin
{
1,dist

(
·, ∂∗A (t) ∩ Ω

)}
in Ω, (2.6e)

|ξ · (ξ · ∇)B|(·, t) ≤ Cmin
{
1,dist

(
·, ∂∗A (t) ∩ Ω

)}
in Ω, (2.6f)

which are accompanied by the (natural) boundary conditions

ξ(·, t) · n∂Ω(·) = cosα along ∂Ω, (2.6g)

B(·, t) · n∂Ω(·) = 0 along ∂Ω. (2.6h)
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Third, for all t ∈ [0, T ] the weight ϑ(·, t) models a truncated and sufficiently regular
“signed distance” of ∂∗A (t) ∩ Ω in the sense that

ϑ(·, t) < 0 in the essential interior of A (t) within Ω, (2.7a)

ϑ(·, t) > 0 in the essential exterior of A (t), (2.7b)

ϑ(·, t) = 0 along ∂∗A (t) ∩ Ω, (2.7c)

as well as

min{dist(·, ∂Ω),dist
(
·, ∂∗A (t) ∩ Ω

)
, 1
}
≤ C|ϑ|(·, t) in Ω, (2.7d)

|∂tϑ+ (B · ∇)ϑ|(·, t) ≤ C|ϑ|(·, t) in Ω. (2.7e)

Given a calibrated evolution A =
⋃

t∈[0,T ] A (t)×{t}, an associated triple (ξ,B, ϑ)
subject to these requirements is called a boundary adapted gradient flow calibration.

We remark that the second property in (2.6a) only enters the proof of Lemma 9
on the existence of well-prepared initial data in the sense of Theorem 1, and thus
is in principle only needed at the initial time t = 0. Note also that for sufficiently
small c in (2.6b) there is no contradiction with (2.6g).

Keeping in mind that the vector field ξ models an extension of the unit normal
vector field of the evolving interface whereas B models an extension of an associated
velocity vector field, the boundary conditions (2.6g) and (2.6h) are natural. Indeed,
the former simply encodes the constant contact angle condition along the evolving
contact set whereas the latter is directly motivated by the fact that the evolution of
the contact set occurs within the domain boundary. Note also that condition (2.6e)
is then the only requirement in the previous definition which formally makes a
connection to evolution by mean curvature flow.

The merit of Definition 2 consists of the fact that it already implies a rigorous
justification of the heuristic that solutions to the Allen–Cahn problem (AC1)–(AC3)
with well-prepared initial data represent an approximation to evolution by mean
curvature flow with constant contact angle (for a non-rigorous derivation based
on formally matched asymptotic expansions, see Owen and Sternberg [32]). More
precisely, we show that solutions to the Allen–Cahn problem (AC1)–(AC3) can in
a way be interpreted as stable perturbations of a calibrated evolution (as measured
in the sense of a relative energy).

Theorem 3 (Quantitative stability for the Allen–Cahn problem (AC1)–(AC3)
with respect to a calibrated evolution). Consider a finite time horizon T ∈ (0,∞)
and a bounded C2-domain Ω ⊂ Rd, fix a contact angle α ∈ (0, π2 ], and let A =⋃

t∈[0,T ] A (t)×{t} be a calibrated evolution with respect to this data in the sense
of Definition 2. Furthermore, let a potential W as well as a boundary energy den-
sity σ be given such that the assumptions (1.6a)–(1.6c) and (1.9a)–(1.9b) are sat-
isfied, respectively. Consider finally an initial phase field uε,0 ∈ H1(Ω) with finite
energy Eε[uε,0] <∞ such that uε,0 ∈ [−1, 1] almost everywhere in Ω.

Then, denoting by uε the associated weak solution of the Allen–Cahn prob-
lem (AC1)–(AC3) in the sense of Definition 5, by χ the time-dependent charac-
teristic function associated with A , as well as by ErelEn[uε|A ] and Ebulk[uε|A ]
the relative energy functional and bulk error functional defined by (3.4) and (4.1),
respectively, there exists a constant C = C(A , T ) > 0 such that for all T ′ ∈ [0, T ]

ErelEn[uε|A ](T ′) ≤ ErelEn[uε|A ](0) + C

ˆ T ′

0

ErelEn[uε|A ](t) dt,
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Ebulk[uε|A ](T ′) ≤ (ErelEn+Ebulk)[uε|A ](0) + C

ˆ T ′

0

(ErelEn+Ebulk)[uε|A ](t) dt.

Apart from the above quantitative stability result in terms of the phase-field
approximation, we remark that a calibrated evolution in the sense of Definition 2
also gives rise to a weak-strong uniqueness principle for a notion of BV solutions to
evolution by mean curvature flow with constant contact angle. This is made precise
in a paper by Laux and the first author [15] (for a major part of the argument, one
may already consult Subsection 2.3.3 of the PhD thesis [14] of the first author).

2.2. Existence of boundary adapted gradient flow calibrations in d = 2. In
view of Theorem 3, it essentially remains to show in a second step that sufficiently
regular solutions to evolution by mean curvature flow with constant contact angle
admit a boundary adapted gradient flow calibration. This is the content of the fol-
lowing result, which is stated in the planar setting for simplicity only. We expect an
extension to the d = 3 case (i.e., an evolving contact line) to be rather straightfor-
ward; definitely less involved than the triple line construction in the recent work [17]
of Laux and the first author. For a related (yet again planar) construction in the
case of two-phase Navier–Stokes flow with constant ninety degree contact angle, we
refer to the recent work [18] of Marveggio and the first author.

Theorem 4 (Strong solutions of planar mean curvature flow with constant contact
angle 0 < α ≤ π

2 are calibrated). Fix a finite time horizon T ∈ (0,∞) and a
bounded C3-domain Ω ⊂ R2, and let A =

⋃
t∈[0,T ] A (t)×{t} be a strong solution

to evolution by mean curvature flow in Ω with constant contact angle α ∈ (0, π2 ]
in the sense of Definition 10. Then, the evolution given by A is calibrated in the
sense of Definition 2.

Even though not needed for the goals of the present work, we remark that our
construction of the pair of vector fields (ξ,B) satisfies the following additional
conditions, which may become handy for potential future purposes:

(ξ · ∇symB)(·, t) = 0 along ∂Ω, (2.8)

(n∂Ω · ∇symB)(·, t) = 0 along ∂Ω, (2.9)

|ξ · ∇symB|(·, t) ≤ Cmin
{
1,dist

(
·, ∂∗A (t) ∩ Ω

)}
in Ω (2.10)

for all t ∈ [0, T ]. A proof of these three conditions is contained in the proof of
Theorem 4.

2.3. Weak solutions to the Allen–Cahn problem (AC1)–(AC3). In this sub-
section, we introduce the definition of a weak solution concept for the Allen–Cahn
problem (AC1)–(AC3).

Definition 5 (Weak solutions of the Allen–Cahn problem (AC1)–(AC3)). We con-
sider a finite time horizon T ∈ (0,∞), a potential W that satisfies (1.6b)–(1.6c),
a boundary energy density σ subject to the properties (1.9a), and an initial phase
field uε,0 ∈ H1(Ω) with finite energy Eε[uε,0] <∞.

We call a measurable map uε : Ω×[0, T ] → R an associated weak solution of the
Allen–Cahn problem (AC1)–(AC3) if it satisfies the following conditions. First, in
terms of regularity we require that

uε ∈ H1
(
0, T ;L2(Ω)

)
∩ L∞(

0, T ;H1(Ω) ∩ Lp(Ω)
)
. (2.11a)
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Second, the evolution problem (AC1)–(AC2) is satisfied in weak form of
ˆ T ′

0

ˆ
Ω

ζ∂tuε dxdt+

ˆ T ′

0

ˆ
Ω

∇ζ · ∇uε dx dt (2.11b)

= −
ˆ T ′

0

ˆ
∂Ω

ζ
1

ε
σ′(uε) dHd−1 dt−

ˆ T ′

0

ˆ
Ω

ζ
1

ε2
W ′(uε) dxdt

for all T ′ ∈ (0, T ) and all ζ ∈ C∞
cpt

(
[0, T );C∞(Ω)

)
, whereas the initial condi-

tion (AC3) is achieved in form of

uε(·, 0) = uε,0 almost everywhere in Ω. (2.11c)

Existence of weak solutions in the sense of the previous definition will be estab-
lished by means of a minimizing movements scheme. More precisely, we obtain

Lemma 6 (Existence of weak solutions). Let T ∈ (0,∞) be a finite time horizon,
let W be a potential with (1.6b)–(1.6c), let σ be a boundary energy density with
the properties (1.9a), and let uε,0 ∈ H1(Ω) be an initial phase field with finite
energy Eε[uε,0] < ∞. Then there exists an associated unique weak solution of the
Allen–Cahn problem (AC1)–(AC3) in the sense of Definition 5.

If the initial phase field in addition satisfies uε,0 ∈ [−1, 1] a.e. in Ω, then the
associated weak solution uε of the Allen–Cahn problem (AC1)–(AC3) is subject to

uε(·, T ′) ∈ [−1, 1] a.e. in Ω (2.12)

for all T ′ ∈ [0, T ].

As usual in the context of a minimizing movements scheme, the associated energy
estimate is short by a factor of 2 with respect to the sharp energy dissipation
principle, which is crucial for our purposes. If one does not want to make use of
De Giorgi’s variational interpolation and the concept of metric slope, an alternative
way to proceed is by means of higher regularity of weak solutions (which we anyway
rely on in the derivation of the estimate of the time evolution of the relative energy).
For our purposes, it suffices to prove the following result.

Lemma 7 (Higher regularity for bounded weak solutions). In the situation of
Lemma 6, assume in addition that the initial phase field satisfies uε,0 ∈ [−1, 1]
almost everywhere in Ω. Then, the associated weak solution uε of the Allen–Cahn
problem (AC1)–(AC3) satisfies the higher regularity

uε ∈ L2
(
0, T ;H2(Ω)

)
∩ C([0, T ];H1(Ω)), ∇∂tuε ∈ L2

loc

(
0, T ;L2(Ω)

)
. (2.13)

In particular, it holds

∂tuε = ∆uε −
1

ε2
W ′(uε) almost everywhere in Ω×(0, T ), (2.14)

as well asˆ
Ω

ζ∆uε(·, T ′) dx = −
ˆ
Ω

∇ζ · ∇uε(·, T ′) dx−
ˆ
∂Ω

ζ
1

ε
σ′(uε(·, T ′)

)
dHd−1 (2.15)

for all ζ ∈ C∞(Ω) and almost every T ′ ∈ (0, T ).

With the previous regularity statement in place, we may then establish the
required sharp energy dissipation principle which, as a consequence of the higher
regularity, even occurs as an identity.
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Lemma 8 (Energy dissipation equality for bounded weak solutions). In the situ-
ation of Lemma 6, assume in addition that uε,0 ∈ [−1, 1] almost everywhere in Ω.
Then, for the associated weak solution uε of the Allen–Cahn problem (AC1)–(AC3),
the energy dissipation principle (1.4) holds true in form of the following equality

Eε[uε(·, T ′)] +

ˆ T ′

0

ˆ
Ω

ε
∣∣∂tuε∣∣2 dxdt = Eε[uε,0] (2.16)

for all T ′ ∈ (0, T ).

Proofs for the previous three results can be found in Appendix A. We conclude
this subsection on weak solutions for the Allen–Cahn problem (AC1)–(AC3) by
mentioning that the set of well-prepared initial data as formalized in the statement
of Theorem 1 is indeed non-empty. The construction of a well-prepared initial phase
field is deferred until Appendix B.

Lemma 9 (Existence of well-prepared initial data). Consider a finite time hori-
zon T ∈ (0,∞) and a bounded C2-domain Ω ⊂ R2, and let A =

⋃
t∈[0,T ] A (t)×{t}

be a strong solution to evolution by mean curvature flow in Ω with constant contact
angle α ∈ (0, π2 ] in the sense of Definition 10. Let a boundary energy density σ be
given such that (1.9a)–(1.9b) hold true.

Then there exists an initial phase field uε,0 with finite energy Eε[uε,0] <∞ which
is well-prepared with respect to A (0) in the precise sense of (2.1) and (2.3). In case
of the specific choice (1.10), one may upgrade the requirement (2.3) to ε2.

2.4. Definition of strong solutions to planar MCF with contact angle.
For completeness, we make precise what we mean by a sufficiently regular so-
lution to evolution by mean curvature flow with a constant contact angle. We
model the evolving geometry by the space-time track A =

⋃
t∈[0,T ] A (t) × {t} of

a time-dependent family (A (t))t∈[0,T ] of sufficiently regular open sets in Ω. For
simplicity only, we will reduce ourselves to the most basic topological setup: the
phase A (t) consists of only one connected component and the associated interface

I(t) := ∂∗A (t) ∩ Ω is a sufficiently regular connected curve with exactly two dis-
tinct boundary points which in turn are located on ∂Ω; recall Figure 1 for a sketch.
We emphasize that the chosen setup already involves all the major difficulties.

Definition 10 (Strong solutions of planar mean curvature flow with constant con-
tact angle 0 < α ≤ π

2 ). Let Ω ⊂ R2 be a bounded domain with C3-boundary, T > 0
and α ∈ (0, π2 ]. We call A =

⋃
t∈[0,T ] A (t)×{t} a strong solution to mean curvature

flow with constant contact angle α if the following conditions are satisfied:

1. Evolving regular partition in Ω: For all t ∈ [0, T ] the set A (t) ⊂ Ω is open

and connected with finite perimeter in R2 such that ∂∗A (t) = ∂A (t). The

interface I(t) := ∂∗A (t) ∩ Ω is a compact, connected, one-dimensional embed-
ded C5-manifold with boundary such that its interior I(t)◦ lies in Ω and its
boundary ∂I(t) consists of exactly two distinct points which are located on the
boundary of the domain, i.e., ∂I(t) ⊂ ∂Ω.

Moreover, there are diffeomorphisms Φ(·, t) : R2 → R2, t ∈ [0, T ], with
Φ(·, 0) = Id as well as

Φ(A (0), t) = A (t), Φ(I(0), t) = I(t) and Φ(∂I(0), t) = ∂I(t)

for all t ∈ [0, T ], such that Φ: I(0) × [0, T ] → I :=
⋃

t∈[0,T ] I(t) × {t} is a

diffeomorphism of class C0
t C

5
x ∩ C1

t C
3
x.
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2. Mean curvature flow: the interface I evolves by MCF in the classical sense.
3. Contact angle condition: Let nI(·, t) denote the inner unit normal of I(t) with

respect to A (t) and let n∂Ω be the inner unit normal of ∂Ω with respect to Ω.
Let p0 ∈ ∂I(0) be a boundary point, and let p(t) := Φ(p0, t) ∈ ∂I(t). Then

nI |(p(t),t) · n∂Ω|p(t) = cosα (2.17)

for all t ∈ [0, T ] encodes the contact angle condition.

We emphasize that the required regularity of a strong solution implies necessary
(higher-order) compatibility conditions at the contact points for the initial data.
For the purposes of this work, we only rely on the one which one obtains from
differentiating in time the contact angle condition (2.17) and sending t ↘ 0. To
formulate it, let J denote the constant counter-clockwise rotation by 90◦, and define
the tangent vector fields τ∂Ω := JTn∂Ω as well as τI(·, 0) := JTnI(·, 0). Denoting
by H∂Ω and HI(·, 0) the scalar mean curvature of ∂Ω and I(0) oriented with respect
to n∂Ω and nI(·, 0), respectively, we then have as a necessary condition for the initial
data the identity (for a derivation, see Remark 17)

−HI |(p0,0)H
∂Ω|p0 + (HI)2τI |(p0,0) · τ∂Ω|p0 − n∂Ω|p0 · ((τI · ∇)HI)τI |(p0,0) = 0

for each of the two contact points p0 ∈ ∂I(0).

2.5. Structure of the paper. The remaining parts of the paper are structured
as follows. In Section 3, we define the relative energy functional, cf. (3.4), encoding
a distance measure between solutions of (AC1)–(AC3) and a calibrated evolution,
discuss its coercivity properties, and finally derive the associated stability estimate
from Theorem 3. We then proceed in Section 4 to derive, based on the stability
estimate for the relative energy, a stability estimate in terms of a phase field version
of a Luckhaus–Sturzenhecker type error functional, cf. (4.1), which in turn controls
the square of the L1-error appearing on the left hand side of the main quantitative
convergence estimate (2.2). Section 5 is devoted to the construction of a boundary
adapted gradient flow calibration with respect to a sufficiently regular evolution
by mean curvature flow with constant contact angle, thus providing a proof of
Theorem 4. We conclude with two appendices, Appendix A and Appendix B,
providing the proofs for the auxiliary results on weak solutions of (AC1)–(AC3) as
stated in Subsection 2.3 and the existence of well-prepared initial data, Lemma 9.

3. The stability estimate for the relative energy

The aim of this section is to derive the first stability estimate from Theorem 3,
which is phrased in terms of a suitable relative energy. With respect to the definition
and the coercivity properties of the relative energy functional, we follow closely [10,
Subsection 2.2 and Subsection 2.3].

3.1. Definition of the relative energy. Let A =
⋃

t∈[0,T ] A (t)×{t} be a cali-
brated evolution in Ω ⊂ Rd with associated boundary adapted gradient flow cali-
bration (ξ,B, ϑ) in the sense of Definition 2. Let uε be a solution to the Allen–Cahn
problem (AC1)–(AC3) in the sense of Definition 5 with finite energy initial data sat-
isfying uε,0 ∈ [−1, 1]. To be precise, we assume that the boundary energy density σ
satisfies both (1.9a) and (1.9b). Recalling (1.7), define

ψε(x, t) := ψ
(
uε(x, t)

)
=

ˆ uε(x,t)

−1

√
2W (s) ds, (x, t) ∈ Ω×[0, T ], (3.1)
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and by fixing an arbitrary unit vector s ∈ Sd−1

nε :=

{
∇uε

|∇uε| if ∇uε ̸= 0,

s else.
(3.2)

Due to the regularity properties of the weak solution uε from Definition 5 as well as
Lemma 6 and Lemma 7, it holds ψε ∈ C([0, T ], H1(Ω)), nε ∈ L∞((0, T ) × Ω) and
together with the features of ξ,B from Definition 2 the following computations are
rigorous. First, note that the definitions (3.1) and (3.2) imply the relations

∇ψε =
√
2W (uε)∇uε, nε|∇uε| = ∇uε, nε|∇ψε| = ∇ψε. (3.3)

Given this data, we define a relative energy as follows

ErelEn[uε|A ](t) :=

ˆ
Ω

ε

2

∣∣∇uε(·, t)∣∣2 + 1

ε
W

(
uε(·, t)

)
−∇ψε(·, t) · ξ(·, t) dx (3.4)

+

ˆ
∂Ω

σ
(
uε(·, t)

)
− ψ

(
uε(·, t)

)
cosα dHd−1, t ∈ [0, T ].

3.2. Coercivity properties of the relative energy. Using∇ψε =
√
2W (uε)∇uε

and completing the square yields the alternative representation

ErelEn[uε|A ](t) =

ˆ
Ω

1

2

(√
ε|∇uε(·, t)| −

√
2W (uε(·, t))√

ε

)2

dx

+

ˆ
Ω

(1− nε · ξ)(·, t)|∇ψε(·, t)|dx

+

ˆ
∂Ω

σ
(
uε(·, t)

)
− ψ

(
uε(·, t)

)
cosα dHd−1, t ∈ [0, T ].

(3.5)

It follows immediately from the representation (3.5) and the first item of (1.9b)
that for all t ∈ [0, T ]

0 ≤
ˆ
Ω

1

2

(√
ε|∇uε(·, t)| −

√
2W (uε(·, t))√

ε

)2

dx ≤ ErelEn[uε|A ](t), (3.6)

0 ≤
ˆ
Ω

(1− nε · ξ)(·, t)|∇ψε(·, t)|dx ≤ ErelEn[uε|A ](t), (3.7)

0 ≤
ˆ
∂Ω

σ
(
uε(·, t)

)
− ψ

(
uε(·, t)

)
cosα dHd−1 ≤ ErelEn[uε|A ](t). (3.8)

Moreover, it is a consequence of the length constraint (2.6b) and the coercivity
property (3.7) thatˆ

Ω

min
{
1,dist2

(
·, ∂∗A (t) ∩ Ω

)}
|∇ψε(·, t)|dx ≤ 1

c
ErelEn[uε|A ](t), t ∈ [0, T ],

(3.9)ˆ
Ω

|(nε−ξ)(·, t)|2|∇ψε(·, t)|dx ≤ 2ErelEn[uε|A ](t), t ∈ [0, T ].

(3.10)

Finally, as it turns out in the sequel, we have to control analogous terms with
the diffuse surface measure ε|∇uε|2 instead of |∇ψε|. Therefore adding zero as

well as using that ∇ψε =
√

2W (uε)∇uε in a first step, and then applying Young’s
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inequality together with (2.6b) in form of |ξ| ≤ 1 in a second step yields an auxiliary
estimate for all t ∈ [0, T ]ˆ

Ω

|(nε−ξ)(·, t)|2ε|∇uε(·, t)|2 dx

=

ˆ
Ω

|(nε−ξ)(·, t)|2
√
ε|∇uε(·, t)|

(√
ε|∇uε(·, t)| −

√
2W (uε(·, t))√

ε

)
dx

+

ˆ
Ω

|(nε−ξ)(·, t)|2|∇ψε(·, t)|dx

≤ 1

2

ˆ
Ω

|(nε−ξ)(·, t)|2ε|∇uε(·, t)|2 dx+ 2

ˆ
Ω

(√
ε|∇uε(·, t)| −

√
2W (uε(·, t))√

ε

)2

dx

+

ˆ
Ω

|(nε−ξ)(·, t)|2|∇ψε(·, t)|dx.

Hence, absorbing the first right hand side term of this inequality into the corre-
sponding left hand side, and recalling the coercivity properties (3.6) and (3.10),
respectively, we thus obtain the boundˆ

Ω

|(nε−ξ)(·, t)|2ε|∇uε(·, t)|2 dx ≤ 12ErelEn[uε|A ](t), t ∈ [0, T ]. (3.11)

Along similar lines using also (3.9), one establishes that for all t ∈ [0, T ]ˆ
Ω

min
{
1,dist2

(
·, ∂∗A (t) ∩ Ω

)}
ε|∇uε(·, t)|2 dx ≤ (1+2c−1)ErelEn[uε|A ](t).

(3.12)

3.3. Time evolution of the relative energy. We proceed with the derivation
of the stability estimate for the relative energy from Theorem 3. The basis is given
by the following relative energy inequality.

Lemma 11. In the setting of Theorem 3, the following estimate on the time evo-
lution of the relative energy ErelEn[uε|A ] defined by (3.4) holds true:

ErelEn[uε|A ](T ′)

+

ˆ T ′

0

ˆ
Ω

1

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2

+
1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2

dxdt

≤ ErelEn[uε|A ](0) (3.13)

+

ˆ T ′

0

ˆ
Ω

1√
ε

(
Hε+(∇ · ξ)

√
2W (uε)

)(
B · (nε−ξ)

)√
ε|∇uε|dxdt

+

ˆ T ′

0

ˆ
∂Ω

(
σ(uε)− ψε cosα

)
(Id−n∂Ω ⊗ n∂Ω) : ∇B dHd−1 dt

+

ˆ T ′

0

ˆ
Ω

2
∣∣(B · ξ)+(∇ · ξ)

∣∣2 ε|∇uε|2 dxdt
+

ˆ T ′

0

ˆ
Ω

2|∇ · ξ|2
(√

ε|∇uε|−
√
2W (uε)√

ε

)2

dxdt

−
ˆ T ′

0

ˆ
Ω

(nε−ξ) ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
|∇ψε|dxdt
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−
ˆ T ′

0

ˆ
Ω

ξ ·
(
∂tξ+(B · ∇)ξ

)
|∇ψε|dxdt

−
ˆ T ′

0

ˆ
Ω

(nε−ξ)⊗ (nε−ξ) : ∇B |∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ ·B)(1− nε · ξ) |∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ ·B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dxdt

−
ˆ T ′

0

ˆ
Ω

(nε ⊗ nε−ξ ⊗ ξ) : ∇B
(
ε|∇uε|2−|∇ψε|

)
dxdt

−
ˆ T ′

0

ˆ
Ω

ξ ⊗ ξ : ∇B
(
ε|∇uε|2−|∇ψε|

)
dxdt.

for all T ′ ∈ (0, T ].

Proof. Fix T ′ ∈ (0, T ]. Based on the definitions (1.2) and (3.4) of the energy
functional and the relative energy, respectively, and the boundary condition (2.6g)
for ξ, we may write

ErelEn[uε|A ](T ′) = Eε[uε(·, T ′)]−
ˆ
Ω

∇ψε(·, T ′) · ξ(·, T ′) dx

−
ˆ
∂Ω

ψε(·, T ′)
(
n∂Ω · ξ(·, T ′)

)
dHd−1.

Hence, by means of the energy dissipation equality (2.16) (which can be equivalently
expressed in form of (1.4) thanks to (2.14)), the analogous representation of the rel-
ative energy at the initial time, the fundamental theorem of calculus facilitated by a
standard mollification argument in the time variable, the definitions (1.7) and (3.1)
together with an application of the chain rule, the boundary condition (2.6g) for ξ,
as well as finally an integration by parts, we then obtain the estimate

ErelEn[uε|A ](T ′)

= ErelEn[uε|A ](0)−
ˆ T ′

0

ˆ
Ω

1

ε
H2

ε dxdt

−
(ˆ

Ω

∇ψε(·, T ′) · ξ(·, T ′) dx−
ˆ
Ω

∇ψε(·, 0) · ξ(·, 0) dx
)

−
(ˆ

∂Ω

ψε(·, T ′)
(
n∂Ω · ξ(·, T ′)

)
dHd−1 −

ˆ
∂Ω

ψε(·, 0)
(
n∂Ω · ξ(·, 0)

)
dHd−1

)
= ErelEn[uε|A ](0)−

ˆ T ′

0

ˆ
Ω

1

ε
H2

ε dxdt (3.14)

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)
√
2W (uε)∂tuε dxdt

−
ˆ T ′

0

ˆ
Ω

nε · ∂tξ |∇ψε|dxdt.
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Adding zero twice implies

−
ˆ T ′

0

ˆ
Ω

nε · ∂tξ |∇ψε|dx dt = −
ˆ T ′

0

ˆ
Ω

nε ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
|∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

ξ ⊗ nε : ∇B |∇ψε|dx dt

+

ˆ T ′

0

ˆ
Ω

nε · (B · ∇)ξ |∇ψε|dxdt

= −
ˆ T ′

0

ˆ
Ω

(nε−ξ) ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
|∇ψε|dxdt

−
ˆ T ′

0

ˆ
Ω

ξ ·
(
∂tξ+(B · ∇)ξ

)
|∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

ξ ⊗ (nε−ξ) : ∇B |∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

nε · (B · ∇)ξ |∇ψε|dxdt.

Moreover, we may compute by means of nε|∇ψε| = ∇ψε, the product rule, and
adding zero twice

ˆ T ′

0

ˆ
Ω

nε · (B · ∇)ξ |∇ψε|dxdt =
ˆ T ′

0

ˆ
Ω

∇ψε · (B · ∇)ξ dxdt

=

ˆ T ′

0

ˆ
Ω

∇ψε ·
(
∇ · (ξ ⊗B)

)
dxdt

−
ˆ T ′

0

ˆ
Ω

(nε · ξ − 1)(∇ ·B) |∇ψε|dxdt

−
ˆ T ′

0

ˆ
Ω

(Id−nε ⊗ nε) : ∇B |∇ψε|dxdt

−
ˆ T ′

0

ˆ
Ω

nε ⊗ nε : ∇B |∇ψε|dxdt.

By an integration by parts based on the regularity (2.5a)–(2.5b) of (ξ,B), an appli-
cation of the product rule, the symmetry relation ∇·

(
∇·(ξ⊗B)

)
= ∇·

(
∇·(B⊗ξ)

)
,

and an application of the boundary condition (2.6h) for the velocity field B, we also
get

ˆ T ′

0

ˆ
Ω

∇ψε ·
(
∇ · (ξ ⊗B)

)
dxdt = −

ˆ T ′

0

ˆ
Ω

ψε∇ ·
(
∇ · (ξ ⊗B)

)
dx dt

−
ˆ T ′

0

ˆ
∂Ω

ψεn∂Ω ·
(
∇ · (ξ ⊗B)

)
dHd−1 dt

=

ˆ T ′

0

ˆ
Ω

∇ψε ·
(
∇ · (B ⊗ ξ)

)
dx dt

+

ˆ T ′

0

ˆ
∂Ω

ψεn∂Ω · (ξ · ∇)B dHd−1 dt
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−
ˆ T ′

0

ˆ
∂Ω

ψεn∂Ω ·
(
(B · ∇)ξ+(∇ ·B)ξ

)
dHd−1 dt

=

ˆ T ′

0

ˆ
Ω

(∇ · ξ)(B · nε) |∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

nε ⊗ ξ : ∇B |∇ψε|dxdt

−
ˆ T ′

0

ˆ
∂Ω

ψε(n∂Ω · ξ)(∇ ·B) dHd−1 dt

−
ˆ T ′

0

ˆ
∂Ω

ψεn∂Ω · (B · ∇)ξ dHd−1 dt

+

ˆ T ′

0

ˆ
∂Ω

ψεn∂Ω · (ξ · ∇)B dHd−1 dt.

Splitting the vector field ξ into tangential and normal components in the form of
ξ = (n∂Ω · ξ)n∂Ω + (Id−n∂Ω ⊗ n∂Ω)ξ, and making use of ∇tan(B · n∂Ω) = 0 due to
the boundary condition (2.6h) for the velocity field B as well as the product rule,
we may further equivalently express

ˆ T ′

0

ˆ
∂Ω

ψεn∂Ω · (ξ · ∇)B dHd−1 dt

=

ˆ T ′

0

ˆ
∂Ω

ψε(n∂Ω · ξ)n∂Ω · (n∂Ω · ∇)B dHd−1 dt

−
ˆ T ′

0

ˆ
∂Ω

ψεB ·
(
(Id−n∂Ω ⊗ n∂Ω)ξ · ∇

)
n∂Ω dHd−1 dt.

Exploiting the boundary condition (2.6h) for B, applying the product rule, splitting
again the vector field ξ into tangential and normal components as before, and finally
relying on the classical facts that (∇tann∂Ω)

Tn∂Ω = 0 and (∇tann∂Ω)
T = ∇tann∂Ω

along ∂Ω, we also have

−
ˆ T ′

0

ˆ
∂Ω

ψεn∂Ω · (B · ∇)ξ dHd−1 dt

=

ˆ T ′

0

ˆ
∂Ω

ψεξ · (B · ∇)n∂Ω dHd−1 dt−
ˆ T ′

0

ˆ
∂Ω

ψε(B · ∇)(ξ · n∂Ω) dHd−1 dt

=

ˆ T ′

0

ˆ
∂Ω

ψε(Id−n∂Ω ⊗ n∂Ω)ξ · (B · ∇)n∂Ω dHd−1 dt

−
ˆ T ′

0

ˆ
∂Ω

ψε(B · ∇)(ξ · n∂Ω) dHd−1 dt

=

ˆ T ′

0

ˆ
∂Ω

ψεB ·
(
(Id−n∂Ω ⊗ n∂Ω)ξ · ∇

)
n∂Ω dHd−1 dt

−
ˆ T ′

0

ˆ
∂Ω

ψε(B · ∇)(ξ · n∂Ω) dHd−1 dt.
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The previous three displays in total imply
ˆ T ′

0

ˆ
Ω

∇ψε ·
(
∇ · (ξ ⊗B)

)
dx dt =

ˆ T ′

0

ˆ
Ω

(∇ · ξ)(B · nε) |∇ψε|dx dt

+

ˆ T ′

0

ˆ
Ω

nε ⊗ ξ : ∇B |∇ψε|dx dt

−
ˆ T ′

0

ˆ
∂Ω

ψε(n∂Ω · ξ)(∇tan ·B) dHd−1 dt

−
ˆ T ′

0

ˆ
∂Ω

ψε(B · ∇)(ξ · n∂Ω) dHd−1 dt,

so that the combination of the previous six displays culminates into

−
ˆ T ′

0

ˆ
Ω

nε · ∂tξ |∇ψε|dx dt =
ˆ T ′

0

ˆ
Ω

(∇ · ξ)(B · nε) |∇ψε|dx dt (3.15)

−
ˆ T ′

0

ˆ
Ω

(Id−nε ⊗ nε) : ∇B |∇ψε|dxdt

−
ˆ T ′

0

ˆ
∂Ω

ψε(n∂Ω · ξ)(∇tan ·B) dHd−1 dt

−
ˆ T ′

0

ˆ
∂Ω

ψε(B · ∇)(ξ · n∂Ω) dHd−1 dt

−
ˆ T ′

0

ˆ
Ω

(nε−ξ) ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
|∇ψε|dx dt

−
ˆ T ′

0

ˆ
Ω

ξ ·
(
∂tξ+(B · ∇)ξ

)
|∇ψε|dxdt

−
ˆ T ′

0

ˆ
Ω

(nε−ξ)⊗ (nε−ξ) : ∇B |∇ψε|dxdt

−
ˆ T ′

0

ˆ
Ω

(nε · ξ − 1)(∇ ·B) |∇ψε|dxdt.

Inserting (3.15) back into (3.14) and inspecting the structure of the right hand
side of the desired estimate (3.13), we still have to post-process the terms Res :=

Res(1) +Res(2), where

Res(1) := −
ˆ T ′

0

ˆ
Ω

1

ε
H2

ε dxdt+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)
√

2W (uε)∂tuε dxdt (3.16)

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)(B · nε) |∇ψε|dxdt

−
ˆ T ′

0

ˆ
Ω

(Id−nε ⊗ nε) : ∇B |∇ψε|dx dt,

Res(2) := −
ˆ T ′

0

ˆ
∂Ω

ψε(n∂Ω · ξ)(∇tan ·B) dHd−1 dt (3.17)

−
ˆ T ′

0

ˆ
∂Ω

ψε(B · ∇)(ξ · n∂Ω) dHd−1 dt.
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We start with the first residual term Res(1), and rewrite the last term for ε|∇uε|2
instead of |∇ψε| using the boundary condition (2.6h) for B and the definition
(1.5) for Hε. It turns out later that the difference can be controlled. Recalling
nε|∇uε| = ∇uε and integrating by parts in the sense of the identity (2.15) based
on the higher regularity of uε provided by the first item of (2.13) shows that
ˆ T ′

0

ˆ
Ω

nε ⊗ nε : ∇B ε|∇uε|2 dxdt =
ˆ T ′

0

ˆ
Ω

ε∇uε ⊗∇uε : ∇B dxdt

= −
ˆ T ′

0

ˆ
Ω

ε∆uε(B · nε) |∇uε|dxdt (3.18)

−
ˆ T ′

0

ˆ
Ω

ε∇uε ⊗B : ∇2uε dxdt

−
ˆ T ′

0

ˆ
∂Ω

σ′(uε)(B · ∇)uε dHd−1 dt.

Moreover, another integration by parts in combination with the boundary condi-
tion (2.6h) for the velocity field B entails

−
ˆ T ′

0

ˆ
Ω

ε∇uε ⊗B : ∇2uε dxdt =

ˆ T ′

0

ˆ
Ω

ε∇uε ⊗B : ∇2uε dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ ·B) ε|∇uε|2 dxdt.

In other words,

−
ˆ T ′

0

ˆ
Ω

ε∇uε ⊗B : ∇2uε dxdt =

ˆ T ′

0

ˆ
Ω

(∇ ·B)
1

2
ε|∇uε|2 dxdt,

so that completing the square, exploiting ∇ψε =
√

2W (uε)∇uε, integrating by
parts (relying in the process on nε|∇uε| = ∇uε as well as yet again the boundary
condition (2.6h) for the velocity field B) and finally recalling the definition (1.5) of
the map Hε yields

−
ˆ T ′

0

ˆ
Ω

ε∆uε(B · nε) |∇uε|dx dt−
ˆ T ′

0

ˆ
Ω

ε∇uε ⊗B : ∇2uε dxdt

=

ˆ T ′

0

ˆ
Ω

(∇ ·B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dxdt (3.19)

+

ˆ T ′

0

ˆ
Ω

(∇ ·B) |∇ψε|dxdt+
ˆ T ′

0

ˆ
Ω

Hε(B · nε) |∇uε|dx dt.

Inserting back (3.19) into (3.18), making use of the chain rule and the surface
divergence theorem in form of (relying in the process also on the higher regularity
of uε provided by the first item of (2.13) and the boundary condition (2.6h) for B)

−
ˆ T ′

0

ˆ
∂Ω

σ′(uε)(B · ∇)uε dHd−1 dt =

ˆ T ′

0

ˆ
∂Ω

σ(uε)(∇tan ·B) dHd−1 dt,

and adding zero several times thus implies

−
ˆ T ′

0

ˆ
Ω

(Id−nε ⊗ nε) : ∇B |∇ψε|dx dt (3.20)
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=

ˆ T ′

0

ˆ
Ω

Hε(B · nε) |∇uε|dxdt−
ˆ T ′

0

ˆ
Ω

nε ⊗ nε : ∇B
(
ε|∇uε|2−|∇ψε|

)
dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ ·B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dxdt

+

ˆ T ′

0

ˆ
∂Ω

σ(uε)(∇tan ·B) dHd−1 dt.

Appealing to the boundary condition (2.6g) of the vector field ξ in form of

Res(2) = −
ˆ T ′

0

ˆ
∂Ω

ψε cosα (∇tan ·B) dHd−1 dt

we may thus infer from (3.20) and the definitions (3.16)–(3.17) of the two residual

terms that it holds for Res = Res(1) +Res(2)

Res = −
ˆ T ′

0

ˆ
Ω

1

ε
H2

ε dxdt+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)
√

2W (uε)∂tuε dx dt (3.21)

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)(B · nε) |∇ψε|dxdt+
ˆ T ′

0

ˆ
Ω

Hε(B · nε) |∇uε|dxdt

+

ˆ T ′

0

ˆ
∂Ω

(
σ(uε)− ψε cosα

)
(Id−n∂Ω ⊗ n∂Ω) : ∇B dHd−1 dt

−
ˆ T ′

0

ˆ
Ω

(nε ⊗ nε−ξ ⊗ ξ) : ∇B
(
ε|∇uε|2−|∇ψε|

)
dx dt

−
ˆ T ′

0

ˆ
Ω

ξ ⊗ ξ : ∇B
(
ε|∇uε|2−|∇ψε|

)
dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ ·B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dxdt.

For the derivation of the desired relative energy inequality, it thus suffices in view
of (3.14), (3.15) and (3.21) to post-process the first four right hand side terms
of (3.21). To this end, one may argue as follows. First, based on the definition (1.5)

of the map Hε, nε|∇ψε| = ∇ψε, the identity ∇ψε =
√

2W (uε)∇uε, and finally the
Allen–Cahn equation (AC1) expressed in form of ∂tuε = − 1

εHε thanks to (2.14)
and (1.5), we obtain by completing the square and adding zero

−
ˆ T ′

0

ˆ
Ω

1

ε
H2

ε dx dt+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)
√
2W (uε)∂tuε dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)(B · nε) |∇ψε|dxdt+
ˆ T ′

0

ˆ
Ω

Hε(B · nε) |∇uε|dxdt

= −
ˆ T ′

0

ˆ
Ω

1

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2

dx dt (3.22)

−
ˆ T ′

0

ˆ
Ω

1

2ε
H2

ε dxdt+

ˆ T ′

0

ˆ
Ω

Hε(B · nε) |∇uε|dx dt

+

ˆ T ′

0

ˆ
Ω

1

2

(
(∇ · ξ)

√
2W (uε)√

ε

)2

dx dt
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+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)
√
2W (uε)√

ε
(B · ξ)

√
ε|∇uε|dx dt

+

ˆ T ′

0

ˆ
Ω

1√
ε
(∇ · ξ)

√
2W (uε)

(
B · (nε−ξ)

)√
ε|∇uε|dxdt.

Completing the square yet again also entails

−
ˆ T ′

0

ˆ
Ω

1

2ε
H2

ε dx dt+

ˆ T ′

0

ˆ
Ω

Hε(B · nε) |∇uε|dxdt

= −
ˆ T ′

0

ˆ
Ω

1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2
dxdt (3.23)

+

ˆ T ′

0

ˆ
Ω

1√
ε
Hε

(
B · (nε−ξ)

)√
ε|∇uε|dxdt+

ˆ T ′

0

ˆ
Ω

1

2
(B · ξ)2 ε|∇uε|2 dxdt.

Finally, observe that it holdsˆ T ′

0

ˆ
Ω

1

2

(
(∇ · ξ)

√
2W (uε)√

ε

)2

dx dt+

ˆ T ′

0

ˆ
Ω

1

2
(B · ξ)2 ε|∇uε|2 dx dt

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)
√

2W (uε)√
ε

(B · ξ)
√
ε|∇uε|dx dt

=

ˆ T ′

0

ˆ
Ω

1

2

∣∣∣∣(B · ξ)
√
ε|∇uε|+ (∇ · ξ)

√
2W (uε)√

ε

∣∣∣∣2 dxdt
=

ˆ T ′

0

ˆ
Ω

1

2

∣∣∣∣((B · ξ)+(∇ · ξ)
)√
ε|∇uε| − (∇ · ξ)

(√
ε|∇uε|−

√
2W (uε)√

ε

)∣∣∣∣2 dxdt
≤
ˆ T ′

0

ˆ
Ω

2
∣∣(B · ξ)+(∇ · ξ)

∣∣2 ε|∇uε|2 dxdt (3.24)

+

ˆ T ′

0

ˆ
Ω

2|∇ · ξ|2
(√

ε|∇uε|−
√
2W (uε)√

ε

)2

dxdt.

Hence, the combination of (3.22)–(3.24) yields

−
ˆ T ′

0

ˆ
Ω

1

ε
H2

ε dx dt+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)
√
2W (uε)∂tuε dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)(B · nε) |∇ψε|dxdt+
ˆ T ′

0

ˆ
Ω

Hε(B · nε) |∇uε|dxdt

≤ −
ˆ T ′

0

ˆ
Ω

1

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2

dx dt

−
ˆ T ′

0

ˆ
Ω

1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2
dx dt

+

ˆ T ′

0

ˆ
Ω

1√
ε

(
Hε+(∇ · ξ)

√
2W (uε)

)(
B · (nε−ξ)

)√
ε|∇uε|dxdt

+

ˆ T ′

0

ˆ
Ω

2
∣∣(B · ξ)+(∇ · ξ)

∣∣2 ε|∇uε|2 dxdt
+

ˆ T ′

0

ˆ
Ω

2|∇ · ξ|2
(√

ε|∇uε|−
√

2W (uε)√
ε

)2

dxdt.
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This in turn concludes the proof. □

A post-processing of the relative energy inequality based on the coercivity prop-
erties of the relative energy functional now yields the asserted stability estimate.

Corollary 12. In the setting of Theorem 3, there exist two constants c ∈ (0, 1) and
C ∈ (1,∞) such that

ErelEn[uε|A ](T ′)

+

ˆ T ′

0

ˆ
Ω

c

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2

+
1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2

dxdt

≤ ErelEn[uε|A ](0) + C

ˆ T ′

0

ErelEn[uε|A ](t) dt (3.25)

for all T ′ ∈ (0, T ].

Proof. Note that by (3.1), (1.7), and the chain rule

ε|∇uε|2 − |∇ψε| =
√
ε|∇uε|

(√
ε|∇uε| −

√
2W (uε)√

ε

)
. (3.26)

Hence, the right hand side terms of (3.13) can all be estimated in terms of the
relative energy itself (or by absorption into the first quadratic term on the left
hand side of (3.13)) based on straightforward arguments exploiting the coercivity
properties (3.6)–(3.12) of the relative energy and the properties (2.6c)–(2.6f) of the
vector fields (ξ,B). □

4. Quantitative stability with respect to a calibrated evolution

The main goal of this section is to conclude the proof of Theorem 3. To this end,
we first define an error functional which gives a direct control for the L1-distance
between the evolving indicator function associated with a calibrated evolution and
the solution of (AC1)–(AC3) in terms of (3.1).

4.1. Definition and coercivity properties of the bulk error functional. Let
A =

⋃
t∈[0,T ] A (t)×{t} be a calibrated evolution in Ω ⊂ Rd with associated bound-

ary adapted gradient flow calibration (ξ,B, ϑ) in the sense of Definition 2. Denote
by χ(·, t) the characteristic function associated to A (t), t ∈ [0, T ]. Let uε be a weak
solution to the Allen–Cahn problem (AC1)–(AC3) in the sense of Definition 5 with
finite energy initial data satisfying uε,0 ∈ [−1, 1].

Recalling the definitions (1.7), (1.8) and (3.1) of ψ, c0 and ψε, we then define a
bulk error functional by means of

Ebulk[uε|A ](t) :=

ˆ
Ω

(
ψε(·, t)− c0χ(·, t)

)
ϑ(·, t) dx, t ∈ [0, T ]. (4.1)

Note that thanks to (2.12) (in particular ψε ∈ [0, c0]) and the fact that ϑ(·, t) < 0
(resp. ϑ(·, t) > 0) in the essential interior of A (t) within Ω (resp. the essential
exterior of A (t)), definition (4.1) indeed provides a non-negative quantity for all
t ∈ [0, T ]:

Ebulk[uε|A ](t) =

ˆ
Ω

|ψε(·, t)− c0χ(·, t)
∣∣∣∣ϑ(·, t)∣∣dx ≥ 0. (4.2)

Under additional regularity assumptions on A , one may further guarantee that the
bulk error functional Ebulk[uε|A ](t) controls the squared L1-distance between ψε(·, t)
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and c0χ(·, t) for all t ∈ [0, T ]. For simplicity, let us state and prove this auxiliary
result in terms of a strong solution.

Lemma 13 (Coercivity of the bulk error functional). In the setting of Theorem 1,
there exists a constant C > 0 such that for all t ∈ [0, T ] it holds

∥ψε(·, t)− c0χ(·, t)∥2L1(Ω) ≤ CEbulk[uε|A ](t). (4.3)

Proof. We divide the proof into two steps.
Step 1: A slicing argument. Let M ⊂ Rd be a an embedded, compact and ori-

ented (d−1)-dimensional C2-submanifold of Rd (potentially with boundary). More-
over, let nM denote a unit normal vector field along M . Based on the tubular
neighborhood theorem, fix a localization scale rM ∈ (0, 1) and a constant CM > 0
such that the map

ΨM : M × (−rM , rM ) → Rd, (x, s) 7→ x+ snM (x)

defines a C2-diffeomorphism onto its image and such that sdistM = (Ψ−1
M )2 on

ΨM (M × (−rM , rM )) as well as

|∇ΨM | ≤ CM , |∇Ψ−1
M | ≤ CM .

For any measurable g : Rd → R bounded by 1 (or by a uniform constant) it holds
ˆ
M

∣∣∣∣ˆ rM

−rM

∣∣g(x+snM (x)
)∣∣ds∣∣∣∣2 dHd−1 ≲

ˆ
M

ˆ rM

−rM

∣∣g(x+snM (x)
)∣∣∣∣s∣∣dsdHd−1.

This estimate can be shown by splitting the inner integral at 0, using the Fubini
Theorem and by dividing (0, rM )2 into two triangles, cf. Fischer, Laux and Si-
mon [10], proof of Theorem 1 for a similar argument. By changing variables back
and forth by means of ΨM and Ψ−1

M , respectively, implies the estimate∣∣∣∣ ˆ
ΨM (M×(−rM ,rM ))

|g|dx
∣∣∣∣2 ≲

ˆ
ΨM (M×(−rM ,rM ))

|g|dist(·,M) dx. (4.4)

Step 2: Proof of (4.3). We claim that in the setting of Theorem 1, for any
measurable ∥g∥L∞(Rd) ≤ 1 it holds∣∣∣∣ˆ

Ω

|g|dx
∣∣∣∣2 ≲

ˆ
Ω

|g||ϑ|(·, t) dx (4.5)

uniformly over all t ∈ [0, T ], which in turn of course implies the claim.
For a proof of (4.5), fix t ∈ [0, T ] and then define a scale r := min{r∂Ω, r∂∗A (t)∩Ω

},
a map dmin := min{dist(·, ∂Ω),dist(·, ∂∗A (t) ∩ Ω)}, as well as sets

Ωbulk :=
{
x ∈ Ω: dmin(x) ≥ r

}
Ω∂Ω :=

{
x ∈ Ω \ Ωbulk : dmin(x) = dist(x, ∂Ω)

}
Ω

∂∗A (t)∩Ω
:=

{
x ∈ Ω \ Ωbulk : dmin(x) = dist(x, ∂∗A (t) ∩ Ω)

}
.

Then, it holds by a union bound∣∣∣∣ˆ
Ω

|g|dx
∣∣∣∣2 ≲

∣∣∣∣ˆ
Ωbulk

|g|dx
∣∣∣∣2 + ∣∣∣∣ˆ

Ω∂Ω

|g|dx
∣∣∣∣2 + ∣∣∣∣ ˆ

Ω
∂∗A (t)∩Ω

|g|dx
∣∣∣∣2.

Due to the definition of the set Ωbulk and the lower bound (2.7d) for the weight ϑ,
the first right hand side term of the previous display obviously admits an estimate of
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required form. For an estimate of the second term, note that by the definition of the
set Ω∂Ω and the choice of the scale r, it holds Ω∂Ω ⊂ Ω∩Ψ∂Ω(∂Ω×(−r∂Ω, r∂Ω)). In
particular, one may apply the estimate (4.4) and then post-process it to required
form based on the definition of the set Ω∂Ω and the lower bound (2.7d) for the
weight ϑ. The argument for the third term is essentially analogous, at least once
one carefully noted that Ω

∂∗A (t)∩Ω
is contained in the union of Ω∩Ψ∂Ω(∂Ω×(−r, r))

and Ω ∩Ψ
∂∗A (t)∩Ω

(∂∗A (t) ∩ Ω×(−r, r)). This concludes the proof. □

4.2. Time evolution of the bulk error functional. In a next step, we derive a
suitable representation for the time evolution of the error functional Ebulk[uε|A ].

Lemma 14. In the setting of Theorem 3, the time evolution of the bulk error
functional Ebulk[uε|A ] defined by (4.1) can be represented by

Ebulk[uε|A ](T ′) = Ebulk[uε|A ](0) +

ˆ T ′

0

ˆ
Ω

ϑ(B · ξ)
(
|∇ψε| − ε|∇uε|2

)
dx dt

+

ˆ T ′

0

ˆ
Ω

ϑ
√
ε|∇uε|

(
(B · ξ)

√
ε|∇uε| −

Hε√
ε

)
dxdt (4.6)

+

ˆ T ′

0

ˆ
Ω

ϑ

(
Hε√
ε
+(∇ · ξ)

√
2W (uε)√

ε

)(√
ε|∇uε|−

√
2W (uε)√

ε

)
dxdt

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)ϑ
(√

ε|∇uε| −
√
2W (uε)√

ε

)2

dx dt

−
ˆ T ′

0

ˆ
Ω

(∇ · ξ)ϑ
√
ε|∇uε|

(√
ε|∇uε| −

√
2W (uε)√

ε

)
dx dt

+

ˆ T ′

0

ˆ
Ω

ϑ
(
B · (nε − ξ)

)
|∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

(ψε − c0χ)ϑ(∇ ·B) dxdt

+

ˆ T ′

0

ˆ
Ω

(ψε − c0χ)
(
∂tϑ+(B · ∇)ϑ

)
dxdt

for all T ′ ∈ [0, T ].

Proof. By an application of the fundamental theorem of calculus together with a
standard mollification argument in the time variable, an application of the chain
rule, as well as by exploiting that the measure ∂tχ is absolutely continuous with
respect to the measure |∇χ| restricted to the set

⋃
t∈(0,T )(∂

∗A (t) ∩ Ω)×{t}, on
which in turn the weight ϑ vanishes due to (2.7c), it holds

Ebulk[uε|A ](T ′) = Ebulk[uε|A ](0) +

ˆ T ′

0

ˆ
Ω

ϑ
√
2W (uε)∂tuε dxdt

+

ˆ T ′

0

ˆ
Ω

(ψε − c0χ)∂tϑ dxdt.

Adding zero twice, making use of the chain rule, and integrating by parts (exploiting
in the process the boundary condition (2.6h) for B and again the condition (2.7c)
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for ϑ) yields the following update of the previous display

Ebulk[uε|A ](T ′) = Ebulk[uε|A ](0) +

ˆ T ′

0

ˆ
Ω

ϑ
√
2W (uε)∂tuε dxdt

+

ˆ T ′

0

ˆ
Ω

ϑ(B · ξ) |∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

ϑ
(
B · (nε − ξ)

)
|∇ψε|dxdt

+

ˆ T ′

0

ˆ
Ω

(ψε − c0χ)ϑ(∇ ·B) dxdt

+

ˆ T ′

0

ˆ
Ω

(ψε − c0χ)
(
∂tϑ+(B · ∇)ϑ

)
dxdt,

for which we also recall nε|∇ψε| = ∇ψε. Moreover, inserting the Allen–Cahn
equation (AC1) in form of ∂tuε = − 1

εHε thanks to (2.14) and (1.5) entails together
with adding zero twice thatˆ T ′

0

ˆ
Ω

ϑ
√

2W (uε)∂tuε dx dt+

ˆ T ′

0

ˆ
Ω

ϑ(B · ξ) |∇ψε|dxdt

=

ˆ T ′

0

ˆ
Ω

ϑ(B · ξ)
(
|∇ψε| − ε|∇uε|2

)
dx dt

+

ˆ T ′

0

ˆ
Ω

ϑ
√
ε|∇uε|

(
(B · ξ)

√
ε|∇uε| −

Hε√
ε

)
dxdt

+

ˆ T ′

0

ˆ
Ω

ϑ
Hε√
ε

(√
ε|∇uε| −

√
2W (uε)√

ε

)
dxdt.

Continuing in this fashion by adding appropriate zeros moreover givesˆ T ′

0

ˆ
Ω

ϑ
Hε√
ε

(√
ε|∇uε| −

√
2W (uε)√

ε

)
dx dt

=

ˆ T ′

0

ˆ
Ω

ϑ

(
Hε√
ε
+ (∇ · ξ)

√
2W (uε)√

ε

)(√
ε|∇uε| −

√
2W (uε)√

ε

)
dx dt

+

ˆ T ′

0

ˆ
Ω

(∇ · ξ)ϑ
(√

ε|∇uε| −
√
2W (uε)√

ε

)2

dxdt

−
ˆ T ′

0

ˆ
Ω

(∇ · ξ)ϑ
√
ε|∇uε|

(√
ε|∇uε| −

√
2W (uε)√

ε

)
dxdt.

The collection of the previous four displays now entails the claim. □

We have everything in place to proceed with the proof of the first main result
of this work concerning quantitative stability for the Allen–Cahn problem (AC1)–
(AC3) with respect to a calibrated evolution.

4.3. Proof of Theorem 3. Recalling the identity (3.26), the coercivity proper-
ties (3.6)–(3.12), the estimate (3.25) for the time evolution of the relative energy
functional, the representation (4.6) of the time evolution of the bulk error functional,
as well as the properties (2.7c)-(2.7e) of the weight ϑ (here (2.7c) implies the esti-

mate |ϑ(·, t)| ≤ C∥∇ϑ(·, t)∥L∞(Ω) min{1,dist(·, ∂∗A (t) ∩ Ω)}) for all t ∈ [0, T ]), we
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obtain by straightforward arguments that there exists two constants c ∈ (0, 1) and
C > 0 such that

Ebulk[uε|A ](T ′)

+

ˆ T ′

0

ˆ
Ω

c

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2

+
c

2ε

(
Hε−(B · ξ)ε|∇uε|

)2

dxdt

≤ (ErelEn + Ebulk)[uε|A ](0) + C

ˆ T ′

0

(ErelEn + Ebulk)[uε|A ](t) dt

for all T ′ ∈ [0, T ]. Together with (3.25), this implies the desired estimates. □

5. Construction of boundary adapted gradient flow calibrations

We follow the strategy of [9] by constructing local candidates for the vector fields
(ξ,B) around each topological feature, i.e., the contact points in Section 5.1, the
bulk interface in Section 5.2, and the domain boundary in Section 5.3. These local
constructions are then merged together into the global one in Section 5.4. The
construction of ϑ is simpler and carried out in Section 5.5.

Let A be a strong solution for mean curvature flow with contact angle α on the
time interval [0, T ] as in Definition 10. In the following we summarize some notation
and assertions concerning tubular neighbourhoods for I and ∂Ω in Remarks 15
and 16, respectively. Necessary compatibility conditions at the contact points are
collected in Remark 17.

Remark 15 (Notation and tubular neighbourhoods for strong solutions of planar
mean curvature flow with constant contact angle 0 < α ≤ π

2 ). For the following,
we refer to [9, Definition 21 and Lemma 23] and comments there.

In the situation of Definition 10, the assumptions imply the existence of a uni-
form localization scale rI ∈ (0, 1] such that natural ball conditions at interior and
boundary points are satisfied. Moreover, the standard tubular neighbourhood map
XI : I×(−rI , rI) → R2×[0, T ] : (x, t, s) 7→ (x+snI(x, t), t) is well-defined, bijective

onto its image im(XI), and the inverse has the regularity CtC
4
x ∩C1

t C
2
x on im(XI).

We denote by sI the signed distance function with respect to the normal nI and
let P I be the orthogonal projection. Then sI is of class CtC

5
x ∩ C1

t C
3
x on im(XI)

and P I the same except one regularity less in space. We note that

|sI(x̃, t)| = distx(·, I)(x̃, t) := dist(x̃, I(t)) for (x̃, t) ∈ im(XI),

where the latter is also defined globally on R2 and we will sometimes use the
notation distx(·, I) for convenience.

Moreover, the following definitions yield extensions of the inner unit normal nI
and the (mean) curvature HI to the tubular neighbourhood:

nI := ∇sI and HI := −∆sI |(P I ,prt)
on im(XI), (5.1)

where prt is the projection onto the time component. Then nI has the regularity

CtC
4
x ∩ C1

t C
2
x on im(XI) and H

I the same just one order less in space. Moreover,

|∇sI |2 = 1, ∇sI = ∇sI |(P I ,prt)
and ∂ts

I = ∂ts
I |(P I ,prt)

on im(XI).

Finally, let us define τI := JTnI pointwise on im(XI), where J is the constant
rotation by 90° counter-clockwise. Then by [9, (128) and (129)], we have

∇nI = −HIτI ⊗ τI and ∇τ I = HInI ⊗ τI on I. (5.2)
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Note that we did not use 2. and 3. from Definition 10 up to now. If 2. holds, then

∂ts
I = ∆sI |(P I ,prt)

= −HI and ∂tnI = −∇HI on im(XI). (5.3)

Remark 16 (Notation for the boundary). Since the boundary ∂Ω of the domain
is C3, we can use similar constructions and definitions as in the last Remark 15,
except equations (5.3). In particular, there is a suitable localization scale r∂Ω ∈
(0, 1] and an associated (time-independent) tubular neighbourhood diffeomorphism
X∂Ω, so that s∂Ω denotes the signed distance, P ∂Ω the orthogonal projection and
n∂Ω, τ∂Ω, and H

∂Ω are defined in the analogous way as in Remark 15. Concerning
regularity s∂Ω is C3

x, P
∂Ω, n∂Ω, τ∂Ω are C2

x and H∂Ω is of class C1
x.

Remark 17 (Compatibility conditions for strong solutions of planar mean cur-
vature flow with constant contact angle 0 < α ≤ π

2 ). We remark that 1.–3. in
Definition 10 imply compatibility conditions at the boundary points. The latter
will be important for the local construction of the calibrations close to the bound-
ary points. Let us fix a boundary point p ∈ ∂I(0) for the initial interface and set
p(t) := Φ(p, t) for t ∈ [0, T ]. Then p(t) ∈ ∂Ω and mean curvature flow yield

d

dt
p(t) · n∂Ω|p(t) = 0 and

d

dt
p(t) · nI |(p(t),t) = HI |(p(t),t), t ∈ [0, T ]. (5.4)

In order to obtain a higher order compatibility condition, we differentiate the angle
condition (2.17) with respect to time. This yields together with (5.2)

0 =

(
−H∂Ωτ∂Ω ⊗ τ∂Ω|p(t)

d

dt
p(t)

)
· nI |(p(t),t)

+ n∂Ω|p(t) ·
(
−HIτI ⊗ τI |(p(t),t)

d

dt
p(t) + ∂tnI |(p(t),t)

)
for all t ∈ [0, T ].

We insert the identities from (5.4) for d
dtp(t) and use the properties of the rotation

J ; the latter to rewrite n∂Ω|p(t)·τI |(p(t),t) = −τ∂Ω|p(t)·nI |(p(t),t). Therefore we obtain
the next compatibility condition, which is third order concerning derivatives: for
all t ∈ [0, T ] it holds

−HI |(p(t),t)H∂Ω|p(t) + (HI)2τI |(p(t),t) · τ∂Ω|p(t) − n∂Ω|p(t) · ∇HI |(p(t),t) = 0. (5.5)

5.1. Local building block for (ξ,B) at contact points. For the construction
at the contact points we proceed in a similar way as in the case of a triple junction
for multiphase mean curvature flow, see [9, Section 6]. Therefore we introduce
an appropriate localization radius rp for the contact points, such that there are
suitable evolving sectors confining the topological features on an evolving ball on
this scale. This is done in Lemma 18 below. Then in Section 5.1.1 we construct
candidates for (ξ,B) defined on tubular neighborhoods of the interface I and the
boundary ∂Ω, respectively, which will serve as a definition on corresponding sectors.
Here ideas from [9, Section 6.1] are adjusted for the present situation. Finally, these
constructions will be interpolated in Section 5.1.2 analogously to [9, Section 6.2].

Lemma 18. Let A be a strong solution for mean curvature flow with contact angle
α on the time interval [0, T ] as in Definition 10. Moreover, let p ∈ ∂I(0), p(t) :=
Φ(p, t) for t ∈ [0, T ] and P :=

⋃
t∈[0,T ]{p(t)} × {t} be the corresponding evolving

contact point. Then there is a localization radius r = rp ∈ (0,min{rI , r∂Ω}] such
that the evolving ball Br(p) :=

⋃
t∈[0,T ]Br(p(t)) × {t} has a wedge-decomposition

in the following sense:
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∂Ω

I(t)A (t)

WI(t)

W−(t)

W+(t)

W0(t)

W∂Ω(t)

Figure 2. Illustration of wedge decomposition at a contact point.

1. Br(p) is separated at each time t ∈ [0, T ] into open wedge-type domains WI(t),
W±(t), W0(t) and an open double-wedge-type domain W∂Ω(t). The latter are

disjoint and the union of the closures gives Br(p(t)). These domains are the
intersections of Br(p(t)) with cones defined from unit C1-vector fields in time
with constant-in-time angle relation (analogous to [9, Definition 24]). The cor-
responding space-time domains are denoted by WI , W±, W0 and W∂Ω.

2. Moreover, W±(t), W∂Ω(t), W0(t) are contained in the tubular neighborhood

for ∂Ω, and W±(t), WI(t) are contained in the tubular neighborhood of I(t) for
all t ∈ [0, T ]. Additionally, for all t ∈ [0, T ] it holds

W+(t) ⊂ A (t), W−(t) ⊂ Ω \ A (t), W0(t) ⊂ R2 \ Ω, WI(t) ⊂ Ω,

and finally I(t)∩Br(p(t)) ⊂WI(t)∪{p(t)} and ∂Ω∩Br(p(t)) ⊂W∂Ω(t)∪{p(t)}
for all t ∈ [0, T ].

3. Finally, on each of the separating domains, there are uniform natural estimates
comparing the distances to the different topological features (similar to [9, Def-
inition 24]).

We henceforth callWI interface wedge,W∂Ω boundary (double-)wedge,W± bulk
(or interpolation) wedges and W0 outer wedge, cf. Figure 2.

Proof. The separating domains can be defined in a purely geometric way, and one
may argue simply along the lines of the proof of [9, Lemma 25]. Therefore, we
refrain from going into details. □

We may now formulate the main result of this subsection.

Theorem 19. Let A be a strong solution for mean curvature flow with contact
angle α on the time interval [0, T ] as in Definition 10, and let the notation of Re-
mark 15 and Remark 16 be in place. For each of the two contact points p± ∈ ∂I(0)
with associated trajectory p±(t) ∈ ∂I(t), let r± = rp± be an associated localization
radius in the sense of Lemma 18 above. For a given r̂± ∈ (0, r±], we define a
space-time domain Br̂±(p±) :=

⋃
t∈[0,T ]Br̂±(p±(t))×{t}.

There then exists a localization scale r̂± ∈ (0, rp± ] and a pair of local vector fields

ξp± , Bp± : Br̂±(p±) ∩ (Ω×[0, T ]) → R2 such that the following conditions hold:
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1. (Regularity) It holds

ξp± ∈ C1(Br̂±(p±) ∩ (Ω×[0, T ])) ∩ CtC
2
x(Br̂±(p±) ∩ (Ω×[0, T ])), (5.6)

Bp± ∈ CtC
1
x(Br̂±(p±) ∩ (Ω×[0, T ])) ∩ CtC

2
x(Br̂±(p±) ∩ (Ω×[0, T ])), (5.7)

and there exists C > 0 such that

|∇2ξp± |+ |∇2Bp± | ≤ C in Br̂±(p±) ∩ (Ω×[0, T ]). (5.8)

2. (Consistency) We have |ξp± | = 1 in Br̂±(p±) ∩ (Ω× [0, T ]) as well as

ξp± = nI and
(
∇ξp±

)T
nI = 0 along Br̂±(p±) ∩ I, (5.9)

Bp±(p±(t), t) =
d

dt
p±(t) for all t ∈ [0, T ]. (5.10)

3. (Boundary conditions) Moreover, it holds

ξp± · n∂Ω = cosα and Bp± · n∂Ω = 0 along Br̂±(p±) ∩ (∂Ω×[0, T ]). (5.11)

4. (Motion laws) In terms of evolution equations, there exists C > 0 such that

|∂tξp± + (Bp± · ∇)ξp± + (∇Bp±)Tξp± | ≤ C distx(·, I), (5.12)

|(∂t +Bp± · ∇)|ξp± |2| = 0, (5.13)

|Bp± · ξp± +∇ · ξp± | ≤ C distx(·, I), (5.14)

|ξp± ⊗ ξp± : ∇Bp± | ≤ C distx(·, I) (5.15)

throughout Br̂±(p±) ∩ (Ω× [0, T ]).
5. (Additional constraints) Finally, the construction of Bp± may be arranged in a

way to guarantee that

∇symBp± = 0 along Br̂±(p±) ∩ (I ∪ (∂Ω×[0, T ])). (5.16)

The proof of this result occupies the whole remainder of this subsection.

5.1.1. Construction of local candidates for (ξ,B) at contact points. We fix the
contact point P in this section and consider a localization radius r = rp as in
Lemma 18. Then there is a unique rotation Rα (rotation by −α or α) such that

Rαn∂Ω|p(t) = nI |(p(t),t) and hence Rατ∂Ω|p(t) = τI |(p(t),t). (5.17)

Motivated from [9, Section 6.1], and the conditions in Definition 2, we consider
the following candidate vector fields

ξ̃I := nI + sIβIτI −
1

2
(sIβI)2nI on Br(p) ∩ im(XI), (5.18)

ξ̃∂Ω := Rα

[
n∂Ω+s

∂Ωβ∂Ωτ∂Ω−
1

2
(s∂Ωβ∂Ω)2n∂Ω

]
on Br(p) ∩ (im(X∂Ω)×[0, T ]),

(5.19)

where βI = β̂I(P I ,prt) on im(XI) and β
∂Ω = β̂∂Ω(P ∂Ω,prt) on (im(X∂Ω)×[0, T ])

with β̂I : I → R and β̂∂Ω : ∂Ω× [0, T ] → R. Note that the quadratic terms are just
added for a length correction later. Moreover, we introduce

B̃I := HInI + (γI + sIρI)τI on Br(p) ∩ im(XI), (5.20)

B̃∂Ω := (γ∂Ω + s∂Ωρ∂Ω)τ∂Ω on Br(p) ∩ (im(X∂Ω)×[0, T ]), (5.21)
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where γI , ρI are defined via projection from some γ̂I , ρ̂I : I → R and γ∂Ω, ρ∂Ω are
defined via projection from some γ̂∂Ω, ρ̂∂Ω : ∂Ω× [0, T ] → R analogously as before.

Our task is to choose the ansatz functions β̂I , γ̂I , ρ̂I and β̂∂Ω, γ̂∂Ω, ρ̂∂Ω in such
a way that the above vector fields ξ̃I , ξ̃∂Ω and B̃I , B̃∂Ω are compatible at P up
to first order in space derivatives, respectively, and that the latter equal d

dtp at P.

Moreover, the property (2.6a) should be satisfied at P for both ξ̃I and ξ̃∂Ω, and
the left hand side of the equations (2.6c)–(2.6f) should be zero exactly on I ∩Br(p)

for ξ̃I , B̃I and be zero at P for ξ̃∂Ω, B̃∂Ω. Finally, the boundary conditions (2.6g)–

(2.6h) should be satisfied for ξ̃I , BI at P and for ξ̃∂Ω, B̃∂Ω on (∂Ω× [0, T ])∩Br(p).
See also Theorem 22 below for more precise statements. Note that the consistency
for second order space derivatives in the regularity class from Definition 2 is not
needed and will be taken care of via a suitable interpolation in Section 5.1.2.

Therefore let us compute the required derivatives to first order for the above
vector fields:

Proposition 20. Let β̂I , β̂∂Ω be of class C1 on their respective domains of defini-
tion, and let γ̂I , ρ̂I , γ̂∂Ω, ρ̂∂Ω have the regularity CtC

1
x on their respective domains

of definition. Then it holds

∂tξ̃
I |I = −∇HI − βIHIτI on Br(p) ∩ I,

∂tξ̃
∂Ω|∂Ω×[0,T ] = 0 on Br(p) ∩ (∂Ω×[0, T ]),

∇ξ̃I |I = τI ⊗ [−HIτI + βInI ] on Br(p) ∩ I,

∇ξ̃∂Ω|∂Ω×[0,T ] = Rατ∂Ω ⊗ [−H∂Ωτ∂Ω + β∂Ωn∂Ω] on Br(p) ∩ (∂Ω×[0, T ]),

∇B̃I |I = (τI · ∇HI + γIHI)nI ⊗ τI

+ (τI · ∇γI − (HI)2)τI ⊗ τI

+ ρIτI ⊗ nI on Br(p) ∩ I,

∇B̃∂Ω|∂Ω×[0,T ] = (γ∂ΩH∂Ω)n∂Ω ⊗ τ∂Ω

+ (τ∂Ω · ∇γ∂Ω)τ∂Ω ⊗ τ∂Ω

+ ρ∂Ωτ∂Ω ⊗ n∂Ω on Br(p) ∩ (∂Ω×[0, T ]).

Proof. This follows from a straightforward calculation using the identities from
Remark 15 and Remark 16 and the definitions (5.18)–(5.21). □

Now we can insert the compatibility conditions and derive equations for the

ansatz functions β̂I , γ̂I , ρ̂I and β̂∂Ω, γ̂∂Ω, ρ̂∂Ω, respectively, in order to satisfy the
requirements mentioned just before Proposition 20.

First, we have by (5.17), (5.18) and (5.19)

ξ̃I |(p(t),t) = nI |(p(t),t) = Rαn∂Ω|p(t) = ξ̃∂Ω|(p(t),t) for all t ∈ [0, T ].

Moreover, note that it holds Rατ∂Ω|p(t) = τI |(p(t),t) for all t ∈ [0, T ]. Therefore,
due to Proposition 20 the compatibility of the gradient at the contact point, i.e.,
∇ξ̃I |(p(t),t) = ∇ξ̃∂Ω|(p(t),t) for t ∈ [0, T ], is equivalent to

βI |(p(t),t) = −H∂Ω|p(t)τ∂Ω · nI |(p(t),t) + β∂Ω|(p(t),t)n∂Ω · nI |(p(t),t), (5.22)

−HI |(p(t),t) = −H∂Ω|p(t)τ∂Ω · τI |(p(t),t) + β∂Ω|(p(t),t)n∂Ω · τI |(p(t),t)
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for t ∈ [0, T ]. Hence we obtain for t ∈ [0, T ]

β∂Ω|(p(t),t) =
1

n∂Ω · τI |(p(t),t)
(
−HI |(p(t),t) +H∂Ω|p(t)τ∂Ω · τI |(p(t),t)

)
, (5.23)

where |n∂Ω·τI |(p(t),t)| = cos(π2−α) > 0. This determines also βI |(p(t),t). Note that in

the case α = π
2 one simply gets βI |(p(t),t) = −H∂Ω|p(t) and β∂Ω|(p(t),t) = −HI |p(t),

respectively.
Next, we consider the requirement

B̃I |(p(t),t) =
d

dt
p(t) = B̃∂Ω|(p(t),t) for t ∈ [0, T ].

Because of (5.4) for d
dtp from Remark 17, we simply obtain that for t ∈ [0, T ]

γI |(p(t),t) =
d

dt
p(t) · τI |(p(t),t), (5.24)

γ∂Ω|(p(t),t) =
d

dt
p(t) · τ∂Ω|(p(t),t). (5.25)

Now let us consider ∇B̃I . Let us note that (2.6c) is an approximate equation for

the transport and rotation of the vector field ξ. This motivates us to require ∇B̃I

to be anti-symmetric on the interface I, since then the latter can be interpreted
as an infinitesimal rotation. Hence in the formula for ∇B̃I |I in Proposition 20 the
coefficient of τI ⊗ τI should vanish and the prefactors of nI ⊗ τI and τI ⊗ nI should
be the negative of each other. This yields

τI · ∇γI = (HI)2 on I, (5.26)

ρI = −τI · ∇HI − γIHI on I. (5.27)

Then the equation for ∇B̃I |I becomes

∇B̃I = ρI(τI ⊗ nI − nI ⊗ τI) = ρIJ on I, (5.28)

with the counter-clockwise rotation J by 90. Due to the same reason, we require
∇B̃∂Ω to be anti-symmetric on ∂Ω× [0, T ] which yields

τ∂Ω · ∇γ∂Ω = 0 on ∂Ω× [0, T ], (5.29)

ρ∂Ω = −γ∂ΩH∂Ω on ∂Ω× [0, T ], (5.30)

and thus

∇B̃∂Ω = ρ∂ΩJ on ∂Ω×[0, T ]. (5.31)

Hence, the compatibility condition at first order ∇B̃I |(p(t),t) = ∇B̃∂Ω|(p(t),t) is
equivalent to

ρ∂Ω|(p(t),t) = ρI |(p(t),t) for t ∈ [0, T ]. (5.32)

Because of (5.26)–(5.27) and (5.29)–(5.30) the latter is the same as

−γ∂Ω|(p(t),t)H∂Ω|p(t) = −τI · ∇HI − γIHI |(p(t),t) for t ∈ [0, T ].

By inserting (5.24)–(5.25) and using

(τ∂Ω|p(t) · nI |(p(t),t))τI · ∇HI = −n∂Ω|p(t) · ∇HI |(p(t),t)
due to the properties of J and HI being constant in direction of nI , we see
that (5.32) is in fact equivalent to the compatibility condition (5.5), which in turn
is valid because of Remark 17.
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It will turn out that these choices will ensure the requirements for the candidate
vector fields. Therefore let us fix these vector fields in the following definition.

Definition 21. We define ξ̃I , ξ̃∂Ω and B̃I , B̃∂Ω as in (5.18)–(5.19) and (5.20)–

(5.21), respectively, with the following choices of the coefficient functions β̂I , γ̂I , ρ̂I : I →
R and β̂∂Ω, γ̂∂Ω, ρ̂∂Ω : ∂Ω×[0, T ] → R:
1. Let β̂I : I → R and β̂∂Ω : ∂Ω×[0, T ] → R be defined by the right hand side

of (5.22) and (5.23), respectively, in the sense that these coefficient functions
are independent of the space variable.

2. Let γ̂I : I → R be determined by (5.24) and (5.26).
3. Let γ̂∂Ω : ∂Ω×[0, T ] → R be defined by the right hand side of (5.25) in the

sense that γ̂∂Ω is independent of the space variable.
4. Finally, ρ̂I : I → R is given by (5.27) and ρ̂∂Ω : ∂Ω× [0, T ] → R by (5.30).

Note that the equations for γ̂I can be reduced to a parameter-dependent ODE
which can be explicitly solved, cf. [9, Proof of Lemma 27]. In the next theorem we
prove the properties of the above construction. One may compare with Definition 2
and Theorem 19.

Theorem 22. In the above situation and with the choices from Definition 21 the
following holds:

1. Regularity: ξ̃I , ξ̃∂Ω are of class CtC
2
x ∩C1

t Cx and B̃I , B̃∂Ω have the regularity
CtC

2
x on their respective domains of definition.

2. Compatibility: For t ∈ [0, T ] it holds

ξ̃I |(p(t),t) = ξ̃∂Ω|(p(t),t), (∂t,∇)ξ̃I |(p(t),t) = (∂t,∇)ξ̃∂Ω|(p(t),t), (5.33)

B̃I |(p(t),t) =
d

dt
p(t) = B̃∂Ω|(p(t),t) and ∇B̃I |(p(t),t) = ∇B̃∂Ω|(p(t),t). (5.34)

3. Local gradient flow calibration properties: We have

ξ̃I |I = nI and (∇ξ̃I)TnI |I = 0 on Br(p) ∩ I. (5.35)

Moreover, it holds |ξ̃I |2 = 1− 1
4 (β

IsI)4 on Br(p) ∩ im(XI) as well as

|∂tξ̃I + (B̃I · ∇)ξ̃I + (∇B̃I)Tξ̃I | ≤ C|sI | on Br(p) ∩ im(XI), (5.36)

|(∂t + B̃I · ∇)|ξ̃I |2| ≤ C|sI |4 on Br(p) ∩ im(XI), (5.37)

|ξ̃I · B̃I +∇ · ξ̃I | ≤ C|sI | on Br(p) ∩ im(XI), (5.38)

|ξ̃I · (ξ̃I · ∇)B̃I | ≤ C|sI | on Br(p) ∩ im(XI). (5.39)

Additionally, |ξ̃∂Ω|2 = 1− 1
4 (β

∂Ωs∂Ω)4 on Br(p) ∩ im(X∂Ω) and

∂tξ̃
∂Ω+(B̃∂Ω · ∇)ξ̃∂Ω+(∇B̃∂Ω)Tξ̃∂Ω = 0 at P, (5.40)

|(∂t+B̃∂Ω · ∇)|ξ̃∂Ω|2| ≤ C|s∂Ω|4 on Br(p) ∩ (im(X∂Ω)×[0, T ]),
(5.41)

ξ̃∂Ω · B̃∂Ω +∇ · ξ̃∂Ω = 0 at P, (5.42)

ξ̃∂Ω · (ξ̃∂Ω · ∇)B̃∂Ω = 0 at P. (5.43)

4. Boundary Conditions: It holds ξ̃∂Ω · n∂Ω = cosα as well as B̃∂Ω · n∂Ω = 0 on
Br(p) ∩ (∂Ω×[0, T ]).
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5. Additional Constraints: ∇B̃I is anti-symmetric on Br(p) ∩ I and ∇B̃∂Ω is
anti-symmetric on Br(p) ∩ (∂Ω×[0, T ]).

Note that the anti-symmetry condition 5. for ∇B̃∂Ω is only used to derive the
corresponding condition in Theorem 19. The latter will be used to obtain the
additional conditions (2.8)–(2.10). If these are not needed, then it would suffice
to require (5.29)–(5.30) at the contact point. Hence, ρ̂∂Ω could be chosen space-
independent.

Proof. Ad 1. The regularity properties can be derived by considering the equations
determining the functions in Definition 21. For the coefficient, γ̂I this can be done
as in [9, Proof of Lemma 27].
Ad 2. These compatibility assertions at the contact point follow from the choices
in Definition 21 and the derivations from above between Proposition 20 and Defi-
nition 21, except for the time derivative. Concerning the latter, observe that due
to Proposition 20 we have to show ∂tξ̃

I |(p(t),t) = 0 for all t ∈ [0, T ], which by the

first identity of Proposition 20 and (nI · ∇)HI = 0 is equivalent to

(−τI · ∇HI − βIHI)|(p(t),t) = 0 for t ∈ [0, T ]. (5.44)

We then use (5.22)–(5.23), again (nI · ∇)HI = 0, and multiply by n∂Ω · τI |(p(t),t) to
rewrite the left side of (5.44) as

−n∂Ω ·∇HI +H∂ΩHI ((τ∂Ω · nI)(n∂Ω · τI)− (n∂Ω · nI)(τ∂Ω · τI))+ (HI)2(n∂Ω ·nI),
where all terms are evaluated at (p(t), t) for arbitrary t ∈ [0, T ]. However, due to

(τ∂Ω · nI)(n∂Ω · τI)− (n∂Ω · nI)(τ∂Ω · τI)|(p(t),t) = −|n∂Ω · τI |2 − |n∂Ω · nI |2|(p(t),t)
= −|(n∂Ω · τI)τI + (n∂Ω · nI)nI |2|(p(t),t) = −|n∂Ω|2|(p(t),t) = −1

and n∂Ω · nI |(p(t),t) = τ∂Ω · τI |(p(t),t) for t ∈ [0, T ], it turns out that the validity of
(5.44) is in fact equivalent to the compatibility condition (5.5). The latter holds
because of Remark 17.
Ad 3. Equation (5.35) is directly clear from the definition (5.18) of ξ̃I and the

formula for ∇ξ̃I in Proposition 20. Moreover, the identities for |ξ̃I |2 and |ξ̃∂Ω|2
follow directly from the definitions (5.18)–(5.19). The latter yield the estimates
(5.37) and (5.41) by using the product and chain rule for the differential operators

∂t + B̃I · ∇ and ∂t + B̃∂Ω · ∇, respectively, as well as

(∂t + B̃I · ∇)sI = ∂ts
I +HI = 0 on Br(p) ∩ im(XI),

(∂t + B̃∂Ω · ∇)s∂Ω = ∂ts
∂Ω = 0 on Br(p) ∩ (im(X∂Ω)×[0, T ]).

where we used Remarks 15 and 16 as well as (B̃∂Ω · ∇)s∂Ω = B̃∂Ω · n∂Ω = 0 along
∂Ω×[0, T ] due to (5.21).

Next, we observe

(ξ̃I · B̃I +∇ · ξ̃I)|I = (HI +Tr∇ξ̃I)|I = 0 on Br(p) ∩ I
because of Tr(a⊗b) = a ·b for vectors a,b in Rd. Then (5.38) follows from a Taylor
expansion argument, and (5.42) holds due to the compatibility conditions (5.33)–
(5.34). Furthermore, by (5.28) and (5.35)

ξ̃I · (ξ̃I · ∇)B̃I |I = ξ̃I · (∇B̃I)ξ̃I |I = ρInI · JnI |I = 0 on Br(p) ∩ I,
Hence, (5.39) and (5.43) follow as above.
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Finally, we compute the left hand side of (5.36) on I. By Proposition 20 and
(5.28)

[∂tξ̃
I + (B̃I · ∇)ξ̃I + (∇B̃I)Tξ̃I ]|I

= −∇HI |I − βIHIτI + τI ⊗ [−HIτI + βInI ]|I(HInI + γIτI)|I + ρIJTnI |I
= −∇HI |I − (γIHI + ρI)τI |I = 0,

where the last equation follows from the form (5.27) of ρI and (nI · ∇)HI = 0.
Therefore (5.36) is valid because of a Taylor expansion argument. Finally, (5.40)
holds due to the compatibility conditions (5.33)–(5.34).
Ad 4. The boundary conditions are evident from the definitions (5.19) and (5.21)

for the vector fields ξ̃∂Ω and B̃∂Ω, respectively.
Ad 5. This follows directly from the choices of Definition 21. Indeed, recall that
these imply (5.28) and (5.31). □

5.1.2. Interpolation of local candidates for (ξ,B) at contact points. In this section
we piece together the local candidates from the last Section 5.1.1 in order to con-
struct the ones in Theorem 19. Therefore, we use the wedge decomposition from
Lemma 18 and suitable interpolation functions on the interpolation wedges W±:

Lemma 23 (Interpolation Functions). Let A be a strong solution for mean cur-
vature flow with contact angle α on the time interval [0, T ] as in Definition 10.
Moreover, let p ∈ ∂I(0), p(t) := Φ(p, t) for t ∈ [0, T ] and P =

⋃
t∈[0,T ]{p(t)} × {t}

be the corresponding evolving contact point. Finally, let r = rp be an admissible
localization scale as in Lemma 18 and recall the notation there.

Then there exists a constant C > 0 and interpolation functions

λ± :
⋃

t∈[0,T ]

(
Br(p(t)) ∩W±(t) \ {p(t)}

)
× {t} → [0, 1]

of the class C1
t C

2
x such that:

1. For all t ∈ [0, T ] it holds

λ±(., t) = 0 on (∂W±(t) ∩ ∂W∂Ω(t)) \ {p(t)}, (5.45)

λ±(., t) = 1 on (∂W±(t) ∩ ∂WI(t)) \ {p(t)}. (5.46)

2. There is controlled blow-up of the derivatives when approaching the contact
point. More precisely for all t ∈ [0, T ] we have in Br(p(t)) ∩W±(t) \ {p(t)}:

|(∂t,∇)λ±(., t)| ≤ C dist(·, p(t))−1, (5.47)

|∇2λ±(., t)| ≤ C dist(·, p(t))−2. (5.48)

Moreover, on the wedge lines these derivatives vanish: for all t ∈ [0, T ] it holds

(∂t,∇,∇2)λ± = 0 on Br(p(t)) ∩ ∂W±(t) \ {p(t)}. (5.49)

3. The advective derivative with respect to d
dtp stays bounded, i.e., for all t ∈ [0, T ]:∣∣∣∣∂tλ±(., t) + (

d

dt
p(t) · ∇

)
λ±(., t)

∣∣∣∣ ≤ C in Br(p(t)) ∩W±(t) \ {p(t)}. (5.50)

Proof. One can define these interpolation functions in an explicit and purely geo-
metric way, in fact completely analogously to [9, Proof of Lemma 32]. □
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Proof of Theorem 19. The procedure is similar to [9, Proof of Proposition 26]. In
the following, we fix one of the two contact points p ∈ {p±} for convenience. Let
r̂ ∈ (0, r) where r = rp denotes the localization scale from Lemma 18.

Step 1: Definition of interpolations. We define ξ̂ : Br̂(p) → R2 by

ξ̂ :=


ξ̃I on WI ∩ Br̂(p),

ξ̃∂Ω on (W∂Ω ∪W0) ∩ Br̂(p),

λ±ξ̃
I + (1−λ±)ξ̃∂Ω on W± ∩ Br̂(p),

where ξ̃I , ξ̃∂Ω are from Theorem 22 and λ± are from Lemma 23. In the analogous

way, we define B : Br̂(p) → R2 with the B̃I , B̃∂Ω from Theorem 22. It will turn out

to be enough to prove the desired properties for ξ̂, B first and then to normalize ξ̂
in the end. This last step gives rise to the smaller domain of definition Br̂(p).

Step 2: Regularity (5.6)–(5.7) and (5.8) for ξ̂, B. In terms of the required qualita-

tive regularity, in the following we even show that ξ̂ ∈ C1(Br̂(p))∩CtC
2
x(Br̂(p)\P)

and B ∈ CtC
1
x(Br̂(p))∩CtC

2
x(Br̂(p)\P). First, ξ̂, B are well-defined and have the

asserted regularity on WI and on W∂Ω ∪W0 \ P due to Theorem 22. Within the
interpolation wedges W±, we also have this qualitative regularity by Theorem 22
and Lemma 23. Next, note that thanks to (5.45), (5.46) and (5.49) no jumps oc-

cur for the vector fields ξ̂, B and their required derivatives across the wedge lines

Br̂(p(t)) ∩ ∂W±(t) \ {p(t)}, t ∈ [0, T ], which proves ξ̂, B ∈ CtC
2
x(Br̂(p) \ P).

For a proof of ξ̂ ∈ C1(Br̂(p)), B ∈ CtC
1
x(Br̂(p)), and the quantitative regularity

estimate (5.8), we need to study the behaviour when approaching the contact point.
To this end, one employs the controlled blow-up rates (5.47)–(5.48) of λ± from

Lemma 23 as well as the compatibility up to first order for ξ̃I , ξ̃∂Ω and B̃I , B̃∂Ω

from Theorem 22; the latter in fact in form of the Lipschitz estimates

|ξ̃I−ξ̃∂Ω|+ |B̃I−B̃∂Ω| ≤ C dist2x(·,P) on W±, (5.51)

|(∂t,∇)ξ̃I−(∂t,∇)ξ̃∂Ω|+ |∇B̃I−∇B̃∂Ω| ≤ C distx(·,P) on W±. (5.52)

For example, ∇ξ̂ is continuous on Br̂(p) because on one side ∇ξ̃I |P = ∇ξ̃∂Ω|P
due to (5.33), so that on the other side by (5.51), (5.52) and (5.47)∣∣(∇(λ±ξ̃

I)+∇((1−λ±)ξ̃∂Ω)
)
−∇ξ̃I |P

∣∣
≤ λ±

∣∣∇ξ̃I−∇ξ̃I |P
∣∣+ (1−λ±)

∣∣∇ξ̃∂Ω−∇ξ̃∂Ω|P
∣∣+ |∇λ±|

∣∣ξ̃I−ξ̃∂Ω∣∣ ≤ C distx(·,P).

Continuing in this fashion for the remaining first order derivatives ∂tξ̂ and ∇B,

and employing an even simpler argument for ξ̂ and B itself, we indeed obtain

ξ̂ ∈ C1(Br̂(p)) and B ∈ CtC
1
x(Br̂(p)). A similar argument based on the same

ingredients (5.47)–(5.48) and (5.51)–(5.52) also implies (5.8).

Step 3: Additional properties for ξ̂, B. Consider 2.-3. and 5. in Theorem 19

first. The consistency in 2. (except the |.|-constraint) is satisfied for ξ̂ on Br̂(p)∩ I
because of its definition and since this is true for ξ̂I by Theorem 22. Moreover, the
boundary conditions in Theorem 19, 3., hold on Br̂(p) ∩ (∂Ω×[0, T ]) since these

are valid for ξ̃∂Ω and B̃∂Ω due to Theorem 22. Finally, ∇B is anti-symmetric on
Br̂(p) ∩ (I ∪ (∂Ω×[0, T ])) because of its definition and Theorem 22.
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Next, we consider the required motion laws in Theorem 19, 4., except for (5.13).
The following estimates

|∂tξ̂ + (B · ∇)ξ̂ + (∇B)Tξ̂| ≤ C distx(·, I),

|B · ξ̂ +∇ · ξ̂| ≤ C distx(·, I),

|ξ̂ ⊗ ξ̂ : ∇B| ≤ C distx(·, I)

in Br̂(p) ∩ (Ω×[0, T ]) can be shown in a similar manner as in [9, Proof of Propo-
sition 26, Steps 3 and 4], where admittedly the analogue of the third estimate is
not proven. The idea, however, is the same for all three estimates: away from the
interpolation wedges, i.e., in WI and W∂Ω, one can simply use the corresponding
estimates obtained from Theorem 22 (with an additional Taylor expansion argu-

ment throughout W∂Ω). On the interpolation wedges, one uses the definition of ξ̂
and B together with the product rule, the corresponding estimates in Theorem 22,
the Lipschitz estimates (5.51)–(5.52), and the controlled blow-up rates for the λ±
from Lemma 23. For the first estimate, also the control of the advective derivative
of λ± with respect to d

dtp in form of (5.50) enters.

Step 4: Normalization of ξ̂ and conclusion of the proof. In order to divide by |ξ̂|
and to carry over the estimates and properties, we have to control |ξ̂| and the first
derivatives in a uniform way. Indeed, one can prove

|1− |ξ̂|2| ≤ C dist2x(·, I),

|(∂t,∇)|ξ̂|2| ≤ C distx(·, I)

in Br̂(p) similar as in [9, Proof of Proposition 26, Step 5]. Again, away from
the interpolation wedges this is a consequence of Theorem 22 (even with the rates
increased by 2 in the orders). On the interpolation wedges one uses the definition

of ξ̂, Theorem 22, and again the Lipschitz estimates (5.51)–(5.52) as well as the
controlled blow-up rates for the λ± from Lemma 23.

Finally, we can choose r̂ > 0 small such that 1
2 ≤ |ξ̂|2 ≤ 3

2 in Br̂(p). Then we

define ξ := ξ̂/|ξ̂| on Br̂(p). One can directly check that the properties of ξ̂ above
carry over to ξ. Here one uses the chain rule and the above estimates, cf. [9, Proof
of Proposition 26, Step 7] for a similar calculation. Additionally, it holds |ξ| = 1 in
Br̂(p) by definition and this finally also yields (5.13). The proof of Theorem 19 is
therefore completed. □

5.2. Local building block for (ξ,B) at the bulk interface. We proceed with
the less technical parts of the local constructions. In this subsection, we take care of
the local building blocks in the vicinity of the bulk interface. Recalling the notation
from Remark 15, we simply define

ξI := nI on im(XI) ∩ (Ω×[0, T ]). (5.53)

For a suitable definition of the velocity field BI on im(XI) ∩ (Ω×[0, T ]), we first
provide some auxiliary constructions. Denote by θ : R → [0, 1] a standard smooth
cutoff satisfying θ ≡ 1 on [− 1

2 ,
1
2 ] and θ ≡ 0 on R \ (−1, 1). Furthermore, for each

of the two contact points p± ∈ ∂I(0) with associated trajectory p±(t) ∈ ∂I(t),
denote by r̂± and Bp± the associated localization scale and local velocity field from
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Theorem 19, respectively. Define

r̂ := min
{
r̂+, r̂−,

1

3
min

t∈[0,T ]
dist(p+(t), p−(t))

}
(5.54)

and

γ̃I : im(XI) ∩ (Ω×[0, T ]) → R, (5.55)

(x, t) 7→ θ
(dist(x, p+(t))

r̂

)
(τI ·Bp+)(x, t) + θ

(dist(x, p−(t))
r̂

)
(τI ·Bp−)(x, t),

ρ̃I : im(XI) ∩ (Ω×[0, T ]) → R, (5.56)

(x, t) 7→ −
(
(nI · ∇)γ̃I

)
(x, t)−HI(x, t)γ̃I(x, t)−

(
(τI · ∇)HI

)
(x, t),

as well as

BI := HInI + (γ̃I + ρ̃IsI)τI on im(XI) ∩ (Ω×[0, T ]). (5.57)

With these definitions in place, we then have the following result.

Lemma 24. Let A be a strong solution for mean curvature flow with contact
angle α on the time interval [0, T ] as in Definition 10, and let the notation from
Remark 15 be in place. Then, the local vector fields ξI and BI defined by (5.53)
and (5.57) satisfy

ξI ∈ (C0
t C

4
x ∩ C1

t C
2
x)(im(XI) ∩ (Ω×[0, T ])), (5.58)

BI ∈ CtC
1
x(im(XI) ∩ (Ω×[0, T ])) ∩ CtC

2
x(im(XI) ∩ (Ω×[0, T ])), (5.59)

and there exists C > 0 such that

|∇2BI | ≤ C in im(XI) ∩ (Ω×[0, T ]). (5.60)

Moreover, it holds

∂ts
I + (BI · ∇)sI = 0, (5.61)

∂tξ
I + (BI · ∇)ξI + (∇BI)TξI = 0, (5.62)

ξI · (∂t + (BI · ∇))ξI = 0, (5.63)

|BI · ξI +∇ · ξI | ≤ C|sI |, (5.64)

|ξI · ∇symBI | ≤ C|sI | (5.65)

on the whole space-time domain im(XI) ∩ (Ω×[0, T ]) as well as

ξI = nI and
(
∇ξI

)T
nI = 0 along I. (5.66)

For each p± ∈ ∂I(0) with associated trajectory p±(t) ∈ ∂I(t), denote further
by ξp± and Bp± the local vector fields from Theorem 19, respectively. These vector
fields are compatible with ξI and BI in the sense that∣∣ξI − ξp±

∣∣+ ∣∣(∇ξI −∇ξp±)TξI
∣∣ ≤ C|sI |, (5.67)∣∣(ξI − ξp±) · ξI
∣∣ ≤ C|sI |2, (5.68)∣∣BI −Bp±
∣∣ ≤ C|sI |, (5.69)∣∣(∇BI −∇Bp±)TξI
∣∣ ≤ C|sI |. (5.70)

on Br̂/2(p±(t)) ∩
(
W

p±
I (t) ∪W p±

+ (t) ∪W p±
− (t)

)
⊂ Ω for all t ∈ [0, T ], where r̂ was

defined by (5.54) and W
p±
I (t),W

p±
+ (t),W

p±
− (t) denote the wedges from Lemma 18

with respect to the contact points p±, respectively.
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Proof. The asserted regularity (5.58)–(5.60) is a consequence of the definitions (5.53)
and (5.57), Remark 15, and Theorem 19. The identities (5.61)–(5.63) and the esti-
mate (5.64) follow by straightforward arguments, e.g., along the lines of [9, Proof of
Lemma 22]. The estimate (5.65) is immediate from the definitions (5.53) and (5.57),
the fact that it holds (nI · ∇)HI = 0 due to (5.1), and the precise choice (5.56)
of ρ̃I . Note also for this computation that γ̃I is not constant in normal direction.
The properties of (5.66) hold true because of (5.53) and (5.2).

The local compatibility estimates (5.67)–(5.70) follow along the lines of [9, Proof
of Proposition 33]. Note for the proof of (5.70) that the first order perturbation
in the definition (5.70) of BI does not play a role since we contract in the end
with ξI . □

5.3. Local building block for (ξ,B) at the domain boundary. This subsec-
tion concerns the definition of local building blocks for (ξ,B), which will be used
near to the domain boundary but away from the bulk interface. This constitutes the
by far easiest part of the local constructions. Indeed, the conditions (2.6c)–(2.6f)
only require to provide estimates with respect to the distance to the bulk interface
and not the domain boundary. Essentially, we only have to respect the required
boundary conditions (2.6g) and (2.6h). The most straightforward choice to satisfy
these consists of

ξ∂Ω(x, t) := (cosα)n∂Ω(P
∂Ω(x)), B∂Ω(x, t) := 0, (x, t) ∈ im(X∂Ω)×[0, T ], (5.71)

for which we also recall the notation from Remark 16. This choice will also become
handy for a proof of the additional requirements (2.8) and (2.9). Note finally that
by Remark 16 it holds

ξ∂Ω ∈ C∞
t C2

x(im(X∂Ω)×[0, T ]). (5.72)

5.4. Global construction of (ξ,B). We finally perform a gluing construction to
lift the local constructions from the previous three subsections to a global con-
struction. To fix notation, we denote again by ξI , BI : im(XI) ∩ (Ω×[0, T ]) → R2

the local building blocks in the vicinity of the bulk interface as defined by (5.53)

and (5.57), and by ξ∂Ω, B∂Ω : im(X∂Ω)×[0, T ] → R2 the local building blocks in the
vicinity of the domain boundary as defined by (5.71). For each of the two contact
points p± ∈ ∂I(0) with associated trajectory p±(t) ∈ ∂I(t), we further denote by

ξp± , Bp± : Br̂±(p±)∩(Ω×[0, T ]) → R2 the local building blocks in the vicinity of the
two moving contact points as provided by Theorem 19, respectively. For a recap of
the definition of the associated space-time domains im(XI), im(X∂Ω) and Br̂±(p±),
we refer to Remark 15, Remark 16 and Theorem 19, respectively.

Before we proceed with the gluing construction, let us fix a final localization
scale r̄ ∈ (0, 1]. To this end, recall first from Remark 15 and Remark 16 the choice
of the localization scales rI ∈ (0, 1] and r∂Ω ∈ (0, 1], respectively. For each of
the moving contact points, we then chose a corresponding localization radius r± ∈
(0,min{rI , r∂Ω}] such that the conclusions of Lemma 18 hold true. Next, we derived
the existence of a potentially even smaller radius r̂± ∈ (0, r±] so that also the
conclusions of Theorem 19 are satisfied. Recalling in the end the definition (5.54)
of the localization scale r̂, we eventually define

r̄ :=
1

2
r̂ =

1

2
min

{
r̂+, r̂−,

1

3
min

t∈[0,T ]
dist(p+(t), p−(t))

}
. (5.73)
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Apart from r̄, it turns out to be convenient to introduce a second localization
scale δ̄ ∈ (0, 1] which is chosen as follows. Recall from Remark 15 and Remark 16
the definition of the tubular neighborhood diffeomorphisms XI and X∂Ω, respec-

tively. Their restrictions to I×(−δ̄r̄, δ̄r̄) and ∂Ω×(−δ̄r̄, δ̄r̄) will be denoted by X r̄,δ̄
I

and X r̄,δ̄
∂Ω , respectively. We then choose δ̄ ∈ (0, 1] small enough such that for all

t ∈ [0, T ] the images of X r̄,δ̄
I (·, t, ·) and X r̄,δ̄

∂Ω do not overlap away from the contact
points p±(t):

im(X r̄,δ̄
I (·, t, ·)) \

⋃
p∈{p+,p−}

Br̄(p(t)) ∩ im(X r̄,δ̄
∂Ω) \

⋃
p∈{p+,p−}

Br̄(p(t)) = ∅. (5.74)

The implementation of the gluing construction now works as follows. Given a
set of localization functions

ηI , ηp± , η∂Ω, η̃I , η̃p± , η̃∂Ω : Ω×[0, T ] → [0, 1],

whose supports are at least required to satisfy the natural conditions supp ηI ∪
supp η̃I ⊂ im(XI) ∩ (Ω×[0, T ]), supp ηp± ∪ supp η̃p± ⊂ Br̂±(p±) ∩ (Ω×[0, T ]) and

supp η∂Ω ∪ supp η̃∂Ω ⊂ im(X∂Ω)×[0, T ], one then defines

ξ : Ω×[0, T ] → R2, (x, t) 7→
(
ηIξ

I + ηp+
ξp+ + ηp−ξ

p− + η∂Ωξ
∂Ω

)
(x, t), (5.75)

B : Ω×[0, T ] → R2, (x, t) 7→
(
η̃IB

I + η̃p+
Bp+ + η̃p−B

p− + η̃∂ΩB
∂Ω

)
(x, t).

(5.76)

The main task then is to extract conditions on the localization functions guarantee-
ing that the vector fields ξ and B defined by (5.75) and (5.76), respectively, satisfy
the requirements of a boundary adapted gradient flow calibration of Definition 2.
Such conditions are captured by the following definition. If one does not rely on the
additional constraints (2.8)–(2.10), we remark that one may in fact choose η̃I = ηI ,
η̃p± = ηp± and η̃∂Ω = η∂Ω.

Definition 25. In the setting of this subsection, we call a collection of maps
ηI , ηp± , η∂Ω, η̃I , η̃p± , η̃∂Ω : Ω×[0, T ] → [0, 1] an admissible family of localization func-
tions if they satisfy the following list of requirements:

1. (Regularity) It holds

ηI , ηp± , η∂Ω, η̃I , η̃p± , η̃∂Ω ∈ C1(Ω×[0, T ]) ∩ CtC
2
x(Ω×[0, T ]), (5.77)

and there exists C > 0 such that

|∇2(ηI , ηp± , η∂Ω, η̃I , η̃p± , η̃∂Ω)| ≤ C in Ω×[0, T ]. (5.78)

2. (Localization) We have for all t ∈ [0, T ]

supp ηI(·, t) ⊂ supp η̃I(·, t) ⊂
(
im(X r̄,δ̄

I (·, t, ·)) \ ∂Ω
)
∪ ∂I(t), (5.79)

supp η∂Ω(·, t) ⊂ supp η̃∂Ω(·, t) ⊂ im(X r̄,δ̄
∂Ω) \ (I(t) ∩ Ω), (5.80)

supp ηp±(·, t) ⊂ supp η̃p±(·, t) ⊂ Br̄(p±(t)) ∩ Ω, (5.81)

such that for all t ∈ [0, T ] one has minimal overlaps in the sense of

supp η̃p+
(·, t) ∩ supp η̃p−(·, t) = ∅, (5.82)

Br̄(p±(t)) ∩ supp η̃I(·, t) ⊂ Br̄(p±(t)) ∩
(
W

p±
I (t) ∪W p±

+ (t) ∪W p±
− (t)

)
, (5.83)

Br̄(p±(t)) ∩ supp η̃∂Ω(·, t) ⊂ Br̄(p±(t)) ∩
(
W

p±
∂Ω (t) ∪W p±

+ (t) ∪W p±
− (t)

)
, (5.84)
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supp η̃∂Ω(·, t) ∩ supp η̃I(·, t) ⊂
⋃

p∈{p±}

Br̄(p(t)) ∩
(
W p

+(t) ∪W
p
−(t)

)
. (5.85)

Here, W
p±
I (t),W

p±
+ (t),W

p±
− (t),W

p±
∂Ω (t) denote the wedges from Lemma 18 with

respect to the contact points p±. We emphasize that the relations (5.82)–(5.85)
also hold with (η̃I , η̃p± , η̃∂Ω) replaced by (ηI , ηp± , η∂Ω) thanks to the first inclu-
sions of (5.79)–(5.81), respectively.

3. (Partition of unity) Define ηbulk := 1− ηI − ηp+ − ηp− − η∂Ω. Then

ηbulk ∈ [0, 1] on Ω×[0, T ] and ηbulk = 0 along I ∪ (∂Ω×[0, T ]). (5.86)

The same properties are satisfied by η̃bulk := 1− η̃I − η̃p+
− η̃p− − η̃∂Ω.

4. (Coercivity estimates) There exists C ≥ 1 such that

C−1 min{1,dist2(·, I(t)),dist2(·, ∂Ω)} ≤ ηbulk(·, t), (5.87)

(ηbulk + η̃bulk + η∂Ω + η̃∂Ω)(·, t) ≤ Cmin{1,dist2(·, I(t))}, (5.88)

|(∇, ∂t)(ηbulk, η̃bulk, η∂Ω, η̃∂Ω)|(·, t) ≤ Cmin{1,dist(·, I(t))}, (5.89)

|(∇, ∂t)(ηI , η̃I)|(·, t) ≤ Cmin{1,dist(·, ∂Ω))}, (5.90)

throughout Ω for all t ∈ [0, T ]. Moreover, there exists C > 0 such that

dist2(x, I(t)) ≤ C(1−ηp±)(x, t), t ∈ [0, T ], x ∈ Br̄(p±(t)) ∩W p±
∂Ω (t). (5.91)

5. (Motion laws) There exists C > 0 such that

|∂tηbulk + (B · ∇)ηbulk|(·, t) ≤ Cmin{1,dist2(·, I(t))}, (5.92)

|∂tη∂Ω + (B · ∇)η∂Ω|(·, t) ≤ Cmin{1,dist2(·, I(t))} (5.93)

throughout Ω for all t ∈ [0, T ], where B is defined by (5.76).
6. (Additional boundary constraints) Finally, it holds for all t ∈ [0, T ]

η̃p±(·, t) = 1− η̃∂Ω(·, t) = 1 along supp ηp±(·, t) ∩ ∂Ω, (5.94)

(n∂Ω · ∇)η̃∂Ω(·, t) = (n∂Ω · ∇)η̃p±(·, t) = 0 along ∂Ω. (5.95)

With the above definition in place, we then have the following result.

Proposition 26. Let ηI , ηp± , η∂Ω, η̃I , η̃p± , η̃∂Ω : Ω×[0, T ] → [0, 1] be an admissi-
ble family of localization functions in the sense of Definition 25. Then the vector
fields ξ and B defined by means of (5.75) and (5.76), respectively, satisfy the re-
quirements (2.5a)–(2.5b) and (2.6a)–(2.6h) of a boundary adapted gradient flow
calibration of Definition 2 as well as the additional constraints (2.8)–(2.10).

It thus remains to construct an admissible family of localization functions.

Proposition 27. In the setting as described at the beginning of this subsection,
there exist ηI , ηp± , η∂Ω, η̃I , η̃p± , η̃∂Ω : Ω×[0, T ] → [0, 1] which form an admissible
family of localization functions in the sense of Definition 25.

The remainder of this subsection is devoted to the proofs of these two results.

Proof of Proposition 26. The proof is split into several steps.
Step 1: Proof of regularity (2.5a)–(2.5b). This is an obvious consequence of the

definitions (5.75) and (5.76), the regularity of the local building blocks (5.6)–(5.8),
(5.58)–(5.60), and (5.72) (recall from (5.71) that B∂Ω = 0), respectively, as well as
the regularity of the localization functions (5.77)–(5.78).
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Step 2: Proof of consistency (2.6a) and boundary conditions (2.6g)–(2.6h). Plug-
ging in the definition (5.75), exploiting the properties (5.79)–(5.81) and (5.86), as
well as recalling (5.9) and (5.66) yields the first part of (2.6a) due to

ξ(·, t)|I(t)∩Ω =
∑

n∈{I,p+,p−}

(ηnξ
n)(·, t)|I(t)∩Ω =

( ∑
n∈{I,p+,p−}

ηn(·, t)|I(t)∩Ω

)
nI(·, t)

= nI(·, t).

Relying in addition on (5.89) shows the second part of (2.6a) due to

(∇ξ(·, t))T|I(t)∩ΩnI(·, t)

=
∑

n∈{I,p+,p−}

ηn(·, t)(∇ξn(·, t))T|I(t)∩ΩnI(·, t) +
∑

n∈{I,p+,p−}

∇ηn(·, t)|I(t)∩Ω

= −∇ηbulk(·, t)|I(t)∩Ω = 0.

The same properties of the localization functions together with (5.11) and (5.71)
also imply (2.6g) as the following computation reveals:

ξ(·, t)|∂Ω · n∂Ω =
∑

n∈{∂Ω,p+,p−}

(ηnξ
n)(·, t)|∂Ω · n∂Ω =

( ∑
n∈{∂Ω,p+,p−}

ηn(·, t)|∂Ω
)
cosα

= cosα.

One may finally infer (2.6h) analogously.
Step 3: Proof of coercivity estimate (2.6b). Fix a point (x, t) ∈ Ω×[0, T ]. Let

nmax(x, t) ∈ {I, p+, p−, ∂Ω} be defined by nmax = argmaxn∈{I,p+,p−,∂Ω} ηn(x, t).
Without loss of generality, we may assume that there exists n ∈ {I, p+, p−, ∂Ω}
such that x ∈ supp ηn(·, t) and that this topological feature satisfies n = nmax(x, t).
Moreover, we may assume without loss of generality that it holds ηn(x, t) ≥ 1

4 .

Indeed, otherwise we get |ξ(x, t)| ≤ 3
4 as a consequence of the definition (5.75), the

triangle inequality, and the fact that at most three localization functions can be
simultaneously strictly positive due to (5.82). The estimate |ξ(x, t)| ≤ 3

4 in turn of
course implies (2.6b) for such (x, t).

We now distinguish between two cases. First, if n = nmax(x, t) = ∂Ω, it follows
from (5.86), η∂Ω(x, t) ≥ 1

4 and |ξ∂Ω(x, t)| = cosα, cf. (5.71), that

|ξ(x, t)| ≤ η∂Ω(x, t) cosα+
∑

n∈{I,p+,p−}

ηn(x, t)

≤ 1− η∂Ω(x, t)(1− cosα) ≤ 1− 1

4
(1− cosα),

which in turn implies (2.6b).
If instead n = nmax(x, t) ∈ {I, p−, p+}, it follows from the localization prop-

erties (5.79) and (5.81) that x ∈
(
Br̄(p+(t)) ∪ Br̄(p−(t))

)
∪ im(X r̄,δ̄

I (·, t, ·)). In
case of x /∈ Br̄(p+(t)) ∪ Br̄(p−(t)), condition (5.74) ensures that there exists
C ≥ 1 such that dist(x, I(t)) ≤ C dist(x, ∂Ω). We thus infer (2.6b) for such x
from (5.87) due to |ξ(x, t)| ≤ 1− ηbulk(x, t). In case of x ∈ Br̄(p+(t)) ∪ Br̄(p−(t)),
say for concreteness x ∈ Br̄(p+(t)), the same conclusions hold true if in addition
x ∈ W

p+

I (t) ∪W p+

+ (t) ∪W p−
I (t). Hence, consider finally x ∈ W

p+

∂Ω (t) ∩ Br̄(p+(t)).
Due to the localization properties (5.82)–(5.85) it follows ηI(x, t) = ηp−(x, t) = 0.

Recalling further |ξ∂Ω(x, t)| = cosα, cf. (5.71), we may then estimate

1− |ξ(x, t)| ≥ 1− ηp+
(x, t)− (cosα)η∂Ω(x, t) ≥ (1− cosα)(1−ηp+

)(x, t).
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Hence, (2.6b) follows from (5.91).
Step 4: From local to global compatibility estimates. We claim that there exists

a constant C > 0 such that for all n ∈ {I, p+, p−} it holds in Ω×[0, T ]

χsupp η̃n

(
|ξn−ξ|+ |(∇ξn−∇ξ)Tξn|

)
≤ Cmin{1,dist(·, I)}, (5.96)

χsupp η̃n
|(ξn−ξ) · ξn| ≤ Cmin{1,dist2(·, I)}, (5.97)

χsupp η̃n
|(Bn−B)| ≤ Cmin{1,dist(·, I)}, (5.98)

χsupp η̃n
|(∇Bn−∇B)Tξn| ≤ Cmin{1,dist(·, I)}. (5.99)

Plugging in the definitions (5.75) and (5.76) and making use of the estimate (5.88)
entails

χsupp η̃n
(ξn−ξ) = χsupp η̃n

∑
n′∈{I,p+,p−}\{n}

ηn′(ξn−ξn
′
) +O(min{1,dist2(·, I)}),

χsupp η̃n
(Bn−B) = χsupp η̃n

∑
n′∈{I,p+,p−}\{n}

η̃n′(Bn−Bn′
) +O(min{1,dist2(·, I)}).

Hence, due to (5.82), (5.83) and the choice (5.73), the first part of (5.96) follows
from the first part of (5.67) and the first identity of the previous display. The
estimate (5.98) in turn follows from (5.69) and the second identity of the previous
display. Furthermore, the estimate (5.97) follows from (5.68) and contracting the
first identity of the previous display with ξn.

We proceed computing based on the definition (5.75), the estimate (5.89), the
property (5.82), and the first part of the estimate (5.67)

χsupp η̃n
(∇ξn−∇ξ)Tξn

= χsupp η̃n

∑
n′∈{I,p+,p−}\{n}

(
ηn′(∇ξn−∇ξn

′
)Tξn +

(
(ξn−ξn

′
) · ξn

)
∇ηn

)
+O(min{1,dist2(·, I)})

= χsupp η̃n

∑
n′∈{I,p+,p−}\{n}

ηn′(∇ξn−∇ξn
′
)Tξn +O(min{1,dist(·, I)}).

Hence, the second part of (5.96) follows now from (5.82), (5.83), the choice (5.73),
and the second part of (5.67). The proof of the remaining estimate (5.99) is anal-
ogous.

Step 5: Proof of error estimates (2.6c)–(2.6f). For a proof of the estimates (2.6c)
and (2.6e), we may simply refer to the corresponding argument given in [9, Proof of
Lemma 42]. Indeed, the whole structure of this argument solely relies on the struc-
ture of the definitions (5.75) and (5.76), the coercivity estimates (5.88) and (5.89),
the compatibility estimates (5.96), (5.98), and (5.99), the local counterparts (5.12)
and (5.62) of (2.6c), the local counterparts (5.14) and (5.64) of (2.6e), and finally
the regularity estimates of the involved constructions.

Next, we provide a proof of (2.6f). Starting with the definition (5.75), the

bound (5.88), adding zero in form of ξn
′
= (ξn

′−ξ) + (ξ−ξn) + ξn, and the esti-
mate (5.96), we get

ξ ⊗ ξ : ∇B =
∑

n,n′∈{I,p+,p−}

ηn′ηnξ
n′

· (∇B)Tξn +O(min{1,dist2(·, I)})
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=
∑

n∈{I,p+,p−}

ηnξ
n · (∇B)Tξn +O(min{1,dist(·, I)}).

Hence, (2.6f) is entailed by its local counterparts (5.15) and (5.65).
In comparison to [9, Proof of Lemma 42], some changes are necessary for the

proof of (2.6d) due to the weaker compatibility estimate (5.98). In fact, the only
essential difference concerns the verification of the preliminary estimate

ξ · (∂tξ+(B · ∇)ξ) (5.100)

=
∑

n,n′∈{I,p+,p−}

ηn′ηnξ
n · (∂tξn

′
+(Bn′

· ∇)ξn
′
) +O(min{1,dist2(·, I)}).

Post-processing (5.100) to (2.6d) can be done analogously to [9, Proof of Lemma 42]
because this argument solely relies on exploiting the local estimates (5.12)–(5.13)
and (5.62)–(5.63), respectively, as well as the compatibility estimates (5.96) and (5.99).

Hence, it remains to carry out a proof of (5.100) for which we give details now.
Inserting the definition (5.76), making use of the estimates (5.88) and (5.93), and

adding zero in form of B = (B−Bn′
) +Bn′

we obtain

ξ · (∂tξ+(B · ∇)ξ) =
∑

n∈{I,p+,p−}

ηnξ
n · (∂tξ+(B · ∇)ξ) +O(min{1,dist2(·, I)})

=
∑

n,n′∈{I,p+,p−}

ηnηn′ξn · (∂tξn
′
+(Bn′

· ∇)ξn
′
) (5.101)

+
∑

n,n′∈{I,p+,p−}

ηnηn′ξn · ((B−Bn′
) · ∇)ξn

′

+
∑

n,n′∈{I,p+,p−}

ηn(ξ
n · ξn

′
)(∂tηn′+(B · ∇)ηn′)

+O(min{1,dist2(·, I)}).

Adding zero several times in form of ξn · ξn′
= |ξ|2 − |ξn−ξ|2 + (ξn−ξ) · ξn + ξn

′ ·
(ξn

′−ξ) + (ξn−ξn′
) · (ξn′−ξ), we get from (5.82), (5.83), the choice (5.73), and the

compatibility estimates (5.67), (5.96) and (5.97) that∑
n,n′∈{I,p+,p−}

ηn(ξ
n · ξn

′
)(∂t+(B · ∇))ηn′

= |ξ|2
∑

n,n′∈{I,p+,p−}

ηn(∂t+(B · ∇))ηn′ +O(min{1,dist2(·, I)}).

Based on (5.88), (5.92) and (5.93) this may be upgraded to∑
n,n′∈{I,p+,p−}

ηn(ξ
n · ξn

′
)(∂t+(B · ∇))ηn′

= |ξ|2
∑

n′∈{I,p+,p−}

(∂t+(B · ∇))ηn′ +O(min{1,dist2(·, I)})

= −|ξ|2(∂t+(B · ∇))ηbulk +O(min{1,dist2(·, I)}) = O(min{1,dist2(·, I)}).
(5.102)
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Due to (5.82), (5.83), the choice (5.73), as well as the estimates (5.67), (5.96),
(5.98), and (5.88), we may further estimate∑

n,n′∈{I,p+,p−}

ηnηn′ξn · ((B−Bn′
) · ∇)ξn

′

=
∑

n′∈{I,p+,p−}

ηn′ξn
′
· ((B−Bn′

) · ∇)ξn
′
+O(min{1,dist2(·, I)})

=
∑

n′∈{I,p+,p−}

ηn′ξn
′
· ((B−Bn′

) · ∇)ξ +O(min{1,dist2(·, I)})

=
∑

n′∈{I,p+,p−}

ηn′ξ · ((B−Bn′
) · ∇)ξ +O(min{1,dist2(·, I)})

= O(min{1,dist2(·, I)}). (5.103)

The combination of (5.101), (5.102), and (5.103) thus implies (5.100) and therefore
concludes the proof of (2.6d).

Step 6: Proof of additional estimates (2.8)–(2.10). Plugging in the definition (5.76)
and exploiting the properties (5.88)–(5.89), we obtain

(ξ · ∇symB)(·, t)

=
∑

n∈{I,p+,p−}

(η̃nξ · ∇symBn)(·, t) +
∑

n∈{I,p+,p−}

(ξ · (Bn ⊗∇η̃n)sym)(·, t)

+O(min{1,dist(·, I(t))}).

Due to the estimates (5.96), (5.98) and (5.89), the previous display upgrades to

(ξ · ∇symB)(·, t)

=
∑

n∈{I,p+,p−}

(η̃nξ
n · ∇symBn)(·, t)− (ξ · (B ⊗∇η̃bulk)sym)(·, t)

+O(min{1,dist(·, I(t))})

=
∑

n∈{I,p+,p−}

(η̃nξ
n · ∇symBn)(·, t) +O(min{1,dist(·, I(t))}).

Hence, (2.10) follows from the previous display and exploiting (5.16) and (5.65).
For a proof of (2.8) and (2.9), let v be either ξ(·, t) or n∂Ω. We first compute

based on the definition (5.75), the properties (5.79)–(5.81), (5.90) and (5.94) of the
localization functions, as well as the properties (5.16) and (5.71)

(v · ∇symB)(·, t)|∂Ω

=
∑

n∈{p+,p−}

(η̃nv · ∇symBn)(·, t)|∂Ω +
∑

n∈{p+,p−}

(v · (Bn ⊗∇η̃n)sym)(·, t)|∂Ω

=
∑

n∈{p+,p−}

(v · (Bn ⊗∇η̃n)sym)(·, t)|∂Ω\supp ηn(·,t).

Due to the second item of (5.11) and (5.95), we have on one side that (Bn⊗∇η̃n)(·, t)
only carries a τ∂Ω ⊗ τ∂Ω component along ∂Ω ∩ supp η̃n(·, t), n ∈ {p+, p−}. On the
other side, by the localization properties (5.79)–(5.81) and (5.82) as well as the
definition (5.71), we have τ∂Ω · ξ(·, t) = 0 along (∂Ω ∩ supp η̃n(·, t)) \ supp ηn(·, t),
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n ∈ {p+, p−}. Hence, for both choices of v = ξ(·, t) and v = n∂Ω we obtain from
these two facts and the previous display that (2.8) and (2.9) are satisfied.

This in turn concludes the proof of Proposition 26. □

Proof of Proposition 27. First, we provide the definition of the localization func-
tions. Afterwards, we prove that the required properties are satisfied. This second
part of the proof will be split into several steps.

Let us start with the choice of some suitable quadratic cutoff functions. To this

end, fix two smooth cutoffs θ, θ̃ : R → [0, 1] such that θ ≡ 1 on [−1/2, 1/2] and

θ ≡ 0 on R \ (−1, 1) as well as θ̃ ≡ 1 on [−3/2, 3/2] and θ̃ ≡ 0 on R \ (−2, 2). Define

ζ(s) := θ(s2)(1− s2), s ∈ R, (5.104)

ζ̃(s) := θ̃(s2)


1 |s| ≤ 1,

1− (s− 1)2 s > 1,

1− (s− (−1))2 s < −1.

(5.105)

We refer to Figure 3 for a sketch.
For a given δ ∈ (0, δ̄] and a given c̄ ∈ (0, 1] which we fix later, we next define

(ζI , ζ̃I)(x, t) :=

{
(ζ, ζ̃)

( sI(x,t)
δr̄

)
(x, t) ∈ im(XI),

(0, 0) else,
(5.106)

(ζ∂Ω, ζ̃∂Ω)(x, t) := (ζ, ζ̃)
(s∂Ω(x)

δr̄

)
, (x, t) ∈ R2 × [0, T ], (5.107)

(ζp± , ζ̃p±)(x, t) :=

{
(ζ, ζ̃)

(
dist(P∂Ω(x),p±(t))

c̄r̄

)
(x, t) ∈ im(X∂Ω),

(0, 0) else.
(5.108)

For each of the two contact points p±, denote by λ
p
± the two associated interpolation

functions from Lemma 23. We have everything in place to write down the definition
of the localization functions ηI , ηp, η∂Ω: for all (x, t) ∈ Ω×[0, T ], let

ηI(x, t) :=


ζI(x, t) x ∈ im(X r̄,δ̄

I (·, t, ·)) \
⋃

p∈{p+,p−}Br̄(p(t)),

(1−ζ∂Ω)ζI(x, t) x ∈ Br̄(p±(t)) ∩W p±
I (t),

λ
p±
± (1−ζ∂Ω)ζI(x, t) x ∈ Br̄(p±(t)) ∩W p±

± (t),

0 else,

(5.109)

and

η∂Ω(x, t) :=


ζ∂Ω(x, t) x ∈ im(X r̄,δ̄

∂Ω(·, t, ·)) \
⋃

p∈{p+,p−}Br̄(p(t)),

(1−ζp±)ζ∂Ω(x, t) x ∈ Br̄(p±(t)) ∩W p±
∂Ω (t),

(1−λp±
± )(1−ζp±)ζ∂Ω(x, t) x ∈ Br̄(p±(t)) ∩W p±

± (t),

0 else,

(5.110)
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r1/2 1 3/2 2−1/2−1−3/2−2

1

ζ(r) ζ̃(r)

Figure 3. The cutoff functions ζ and ζ̃.

as well as

ηp±(x, t) :=


ζ∂ΩζI(x, t) x ∈ Br̄(p±(t)) ∩W p±

I (t),

ζp±ζ∂Ω(x, t) x ∈ Br̄(p±(t)) ∩W p±
∂Ω (t),

λ
p±
± ζ∂ΩζI(x, t) + (1−λp±

± )ζp±ζ∂Ω(x, t) x ∈ Br̄(p±(t)) ∩W p±
± (t),

0 else.

(5.111)

The localization functions η̃I , η̃p± , η̃∂Ω are defined analogously in the sense that one

simply replaces the cutoffs (ζI , ζp± , ζ∂Ω) by (ζ̃I , ζ̃p± , ζ̃∂Ω). We now continue with
the verification of the required properties from Definition 25.

Step 1: Regularity and localization properties. In order to guarantee the required
regularity (5.77) and (5.78) for the piecewise definitions (5.109)–(5.111) it suffices to
choose δ ∈ (0, δ̄] and c̄ ∈ (0, 1] small enough, respectively, and to recall the regularity
assertions from Remark 15, Remark 16 and Lemma 23. For more details, one may
consult the arguments given in [9, Proof of Lemma 34, Steps 1–3]. Furthermore,
the localization properties (5.79)–(5.85) are straightforward consequences of the
definitions (5.104)–(5.111), the choices (5.73)–(5.74), the properties (5.45)–(5.46),
as well as choosing δ ∈ (0, δ̄] and c̄ ∈ (0, 1] sufficiently small again.

Step 2: Partition of unity. For a proof of (5.86), we first provide some useful
identities which will also be of help in later stages of the proof. Fix t ∈ [0, T ]. Due
to the localization properties (5.79)–(5.81), it holds

ηbulk(·, t) = 1 in Ω \
(
im(X r̄,δ̄

I (·, t, ·)) ∪ im(X r̄,δ̄
∂Ω) ∪

⋃
p∈{p±}

Br̄(p(t))
)
. (5.112)

Using in addition the properties (5.82)–(5.85) and the choice (5.74), we also obtain
from plugging in the definitions (5.109)–(5.111)

ηbulk(·, t) = (1−ηI)(·, t) = (1−ζI)(·, t) (5.113)

in Ω ∩
(
im(X r̄,δ̄

I (·, t, ·)) \
⋃

p∈{p±}

Br̄(p(t))
)
,

ηbulk(·, t) = (1−η∂Ω)(·, t) = (1−ζ∂Ω)(·, t) (5.114)

in Ω ∩
(
im(X r̄,δ̄

∂Ω) \
⋃

p∈{p±}

Br̄(p(t))
)
,

ηbulk(·, t) = (1−ηI−ηp±)(·, t) = (1−ζI)(·, t) (5.115)

in Ω ∩
(
Br̄(p±(t)) ∩W p±

I (t)
)
,
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ηbulk(·, t) = (1−η∂Ω−ηp±)(·, t) = (1−ζ∂Ω)(·, t) (5.116)

in Ω ∩
(
Br̄(p±(t)) ∩W p±

∂Ω (t)
)
,

ηbulk(·, t) = (1−ηI−η∂Ω−ηp±)(·, t) =
(
λ
p±
± (1−ζI) + (1−λp±

± )(1−ζ∂Ω)
)
(·, t)
(5.117)

in Ω ∩
(
Br̄(p±(t)) ∩W p±

± (t)
)
.

The identities (5.112)–(5.117) immediately imply (5.86) due to the definitions (5.106)–
(5.108) and the properties of the wedges, cf. Lemma 18. Since the identities (5.112)–
(5.117) hold analogously with the localization functions (ηI , ηp± , η∂Ω) replaced by

(η̃I , η̃p± , η̃∂Ω) and the cutoff functions (ζI , ζp± , ζ∂Ω) replaced by (ζ̃I , ζ̃p± , ζ̃∂Ω), re-
spectively, (5.86) also follows in terms of η̃bulk.

Step 3: Additional boundary constraints. The identities (5.94) and (5.95) are
straightforward consequences of the definitions (5.104) and (5.105), the defini-
tions (5.107) and (5.108), and the definitions (5.110) and (5.111), respectively.

Step 4: Coercivity estimates. We first note that by the properties of the wedges
from Lemma 18 and the choice (5.74) that there exists a constant C ≥ 1 such that
for all t ∈ [0, T ] it holds

1 ≤ Cmin{dist(·, I(t)),dist(·, ∂Ω)} on the domain of (5.112), (5.118)

dist(·, I(t)) ≤ C dist(·, ∂Ω) on the domains of (5.113), (5.115), (5.117), (5.119)

dist(·, ∂Ω) ≤ C dist(·, I(t)) on the domains of (5.114), (5.116) , (5.117), (5.120)

dist(·, p±(t)) ≤ C dist(·, I(t)) on the domain of (5.116). (5.121)

dist(·, p±(t)) ≤ Cmin{dist(·, I(t)),dist(·, ∂Ω)} on the domain of (5.117). (5.122)

Furthermore, by the definitions (5.104)–(5.111) it follows that there exists C ≥ 1
such that for all t ∈ [0, T ] it holds

C−1 dist2(·, I(t)) ≤ |1−ζI(·, t)| on the domains of (5.113), (5.115), (5.117),
(5.123)

C−1 dist2(·, ∂Ω) ≤ |1−ζ∂Ω(·, t)| on the domains of (5.114), (5.116) , (5.117),
(5.124)

C−1 dist2(·, p±(t)) ≤ |1−ζp±(·, t)| on the domain of (5.116). (5.125)

The combination of the identities (5.112)–(5.117) from the previous step with the
estimates (5.118)–(5.125) from the current step and the definition (5.111) therefore
implies the coercivity estimates (5.87) and (5.91).

For a verification of the upper bounds (5.88)–(5.90), we first remark that as a
straightforward consequence of the definitions (5.104)–(5.111) there exists C ≥ 1
such that for all t ∈ [0, T ] we have

|1−ζI(·, t)| ≤ C dist2(·, I(t)) on the domains of (5.113), (5.115), (5.117),
(5.126)

|(∇, ∂t)ζI(·, t)| ≤ C dist(·, I(t)) on the domains of (5.113), (5.115), (5.117),
(5.127)

|1−ζ∂Ω(·, t)| ≤ C dist2(·, ∂Ω) on the domains of (5.114)–(5.117), (5.128)

|(∇, ∂t)ζ∂Ω(·, t)| ≤ C dist(·, ∂Ω) on the domains of (5.114)–(5.117), (5.129)

|(ζI−ζ∂Ω)(·, t)| ≤ C dist2(·, p±(t)) on the domain of (5.117), (5.130)
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|1−ζp±(·, t)| ≤ C dist2(·, p±(t)) on the domains of (5.116), (5.117), (5.131)

|(∇, ∂t)ζp±(·, t)| ≤ C dist(·, p±(t)) on the domains of (5.116), (5.117). (5.132)

The upper bounds (5.88)–(5.89) with respect to ηbulk thus follow from the esti-
mates (5.126)–(5.130), the estimates (5.118) and (5.120), the estimate (5.47), as
well as the identities (5.112)–(5.117). The upper bounds (5.88)–(5.89) with respect
to η∂Ω in turn are implied by the estimates (5.129) and (5.131)–(5.132), the es-
timates (5.120)–(5.122), the estimate (5.47), as well as the definition (5.110). We
also obtain the desired upper bound (5.90) as a consequence of the estimates (5.127)
and (5.129), the estimate (5.119), the estimate (5.47), as well as the definition (5.109).

Finally, we remark that the upper bounds (5.88)–(5.90) in terms of (η̃bulk, η̃I , η̃∂Ω)
follow analogously.

Step 5: Motion laws. We claim that there exists C > 0 such that it holds

|(∂t +B · ∇)ζI | ≤ C dist2(·, I) on im(XI) ∩ (Ω×[0, T ]), (5.133)

|(∂t +B · ∇)ζ∂Ω| ≤ C dist2(·, ∂Ω) on (im(X∂Ω)×[0, T ]) ∩ (Ω×[0, T ]), (5.134)

|(∂t +B · ∇)ζp± | ≤ C dist2(·, p±) on
⋃

t∈[0,T ]

Br̄(p±(t))×{t}, (5.135)

|(∂t +B · ∇)λ
p±
± | ≤ C on

⋃
t∈[0,T ]

(
Br̄(p±(t)) ∩W p±

± (t)
)
×{t}. (5.136)

Once these estimates are proved, one may argue along the lines of [9, Proof of
Lemma 40] to establish (5.92) and (5.93). Indeed, apart from (5.133)–(5.136) the
structure of the argument of [9, Proof of Lemma 40] only relies on the already es-
tablished ingredients from Step 2 and Step 4 of this proof, the localization proper-
ties (5.79)–(5.85), the structure of the definitions (5.75)–(5.76) and (5.109)–(5.111).

The estimate (5.135) is an easy consequence of B(p±(t), t) = d
dtp±(t), the

chain rule in form of (∂t +
d
dtp±(t) · ∇)ζp± = 0, the estimate (5.132), and fi-

nally the estimate |B − B(p±(t), t)| ≤ C dist(·, p±(t)). The bound (5.136) fol-
lows similarly thanks to the estimates (5.47) and (5.50). Furthermore, one de-
rives (5.134) by means of the definition (5.107), the estimates (5.129) and |B(x, t)−
B(P ∂Ω(x), t)| ≤ C dist(x, ∂Ω), and finally the fact that ∂tζ∂Ω = 0 as well as
(B(P ∂Ω(x), t) ·∇)ζ∂Ω(x, t) = 0. The latter more precisely follows from ∇s∂Ω = n∂Ω
in form of ∇ζ∂Ω · τ∂Ω = 0 and the boundary condition B|∂Ω · n∂Ω = 0 (cf. Proof
of Proposition 26, Step 2: Proof of (2.6h)). It remains to establish the esti-
mate (5.133). This in turn follows from (5.61), B|I = ηIB

I+ηp+B
p+ +ηp−B

p− due
to (5.80) and (5.76), as well as the estimates (5.127), (5.88), and (5.69) resulting in
|(B−BI) · ∇ζI | ≤ C dist2(·, I). □

5.5. Construction of the transported weight ϑ. The last missing ingredient
for the proof of Theorem 4 consists of the following result.

Lemma 28. Let the setting as described at the beginning of Subsection 5.4 be in
place. For a given set of admissible localization functions in the sense of Defini-
tion 25, let B denote the associated velocity field defined by (5.76). There then exists
a map ϑ : Ω×[0, T ] → [−1, 1] which satisfies the corresponding requirements (2.5c)
and (2.7a)–(2.7e) of a boundary adapted gradient flow calibration.
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Proof of Theorem 4. This now follows immediately from Proposition 26, Proposi-
tion 27 and Lemma 28. Recall also in this context that the supplemental condi-
tions (2.8)–(2.10) are taken care of by Proposition 26. □

Proof of Lemma 28. We first provide a construction of the transported weight ϑ.
In a second step, we establish the desired properties.

Let us start by fixing some useful notation. For the two localization scales r̄
and δ̄ defined by (5.73) and (5.74), respectively, define an associated neighborhood
of the network I ∪ (∂Ω×[0, T ]) by means of

Ur̄,δ̄(t) := im(X r̄,δ̄
I (·, t, ·)) ∪ im(X r̄,δ̄

∂Ω) ∪
⋃

p∈{p±}

Br̄(p(t)), t ∈ [0, T ]. (5.137)

For each t ∈ [0, T ], we also introduce for convenience the notation A+(t) := A (t)

and A−(t) := Ω \ A (t).
Choose next a (up to the sign) smooth truncation of the identity ϑ̄ : R → [−1, 1]

in the sense that ϑ̄(s) = −s for s ∈ [−1/2, 1/2], ϑ̄′(s) < 0 for s ∈ (−1, 1), ϑ̄(s) = 1
for s ≤ −1 and ϑ̄(s) = −1 for s ≥ 1. For a given δ ∈ (0, δ̄] which we fix later, we
next define two auxiliary maps

ϑI(x, t) := ϑ̄
(sI(x, t)

δr̄

)
, (x, t) ∈ im(XI), (5.138)

ϑ∂Ω(x, t) := ϑ̄
(s∂Ω(x)

δr̄

)
, (x, t) ∈ im(X∂Ω)×[0, T ]. (5.139)

We have everything set up to proceed with an adequate definition of the weight ϑ.
Fix t ∈ [0, T ]. Away from the two contact points, we set

ϑ(·, t) :=


±1 in A±(t) \ Ur̄,δ̄(t),

±ϑ∂Ω(·, t) in im(X r̄,δ̄
∂Ω) \

⋃
p∈{p±}Br̄(p(t)),

ϑI(·, t) in im(X r̄,δ̄
I (·, t, ·)) \

⋃
p∈{p±}Br̄(p(t)),

(5.140)

whereas we define in the vicinity of the two contact points

ϑ(·, t) :=


ϑI(·, t) in Br̄(p±(t)) ∩W p±

I (t),

±ϑ∂Ω(·, t) in Br̄(p±(t)) ∩W p±
∂Ω (t),(

λ
p±
± ϑI ± (1−λp±

± )ϑ∂Ω
)
(·, t) in Br̄(p±(t)) ∩W p±

± (t).

(5.141)

In order to guarantee the required regularity (2.5c) for the piecewise defini-
tions (5.140)–(5.141), it simply suffices to choose δ ∈ (0, δ̄] small enough and to
recall the regularity assertions from Remark 15, Remark 16 and Lemma 23. The
desired sign conditions (2.7a)–(2.7c) also follow immediately from an inspection of
the definitions (5.140)–(5.141).

For a proof of the coercivity estimate (2.7d), note that by the properties of ϑ̄
and the definitions (5.138)–(5.139) there exists C > 0 such that for all t ∈ [0, T ]

dist(·, I(t)) ≤ C|ϑI(·, t)| on im(XI)(·, t, ·), (5.142)

dist(·, ∂Ω) ≤ C|ϑ∂Ω(·, t)| on im(X∂Ω). (5.143)

In view of the estimates (5.118)–(5.122), the required bound (2.7d) therefore holds
as a consequence of the definitions (5.140)–(5.141).
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For a proof of the estimate (2.7e), we first claim that there exists C > 0 such
that for all t ∈ [0, T ] it holds

|(∂t +B · ∇)ϑI |(·, t) ≤ C dist(·, I(t)) on im(XI)(·, t, ·) ∩ Ω, (5.144)

|(∂t +B · ∇)ϑ∂Ω|(·, t) ≤ C dist(·, ∂Ω) on im(X∂Ω) ∩ Ω, (5.145)

|ϑI − ϑ∂Ω|(·, t) ≤ C dist(·, p±(t)) on Br̄(p±(t)) ∩W p±
± (t). (5.146)

Since (5.146) is obvious, let us concentrate on the proof of (5.144) and (5.145).
These two, however, can be derived along the lines of the argument in favor of the
two estimates (5.133) and (5.134), respectively. Being equipped with the auxiliary
estimates (5.144)–(5.146), the desired bound (2.7e) now follows from making use of
the definitions (5.140)–(5.141), the estimates (5.118)–(5.122), the estimate (5.136),
and the already established bound (2.7d). □

Appendix A. Weak solutions to the Allen–Cahn problem (AC1)–(AC3)

Proof of Lemma 6. Step 1: Implicit time discretization. Let T > 0 be fixed, N ∈ N
and τ = τ(N) := T

N . We define u0N := uε,0 ∈ H1(Ω) and construct inductively for

k = 1, ..., N : if uk−1
N ∈ H1(Ω) is known, then let ukN be a minimizer of

Ek : H1(Ω) → [0,∞] : u 7→ Eε[u] +
1

2τ
∥u− uk−1

N ∥2L2(Ω). (A.1)

Clearly, Ek is non-trivial due to the assumptions on W,σ. The existence of a
minimizer can be shown via the direct method, cf. Step 2 below. Due to (1.6b) it
follows that ukN ∈ H1(Ω) ∩ Lp(Ω).

Due to the assumptions on W and σ one can proceed similar to Garcke [12],
Lemma 3.5, to obtain the associated Euler-Lagrange equation: for all test functions
ξ ∈ H1(Ω) ∩ L∞(Ω) it holds

ε

ˆ
Ω

∇ukN · ∇ξ +
ˆ
Ω

ukN − uk−1
N

τ
ξ +

ˆ
Ω

1

ε
W ′(ukN )ξ +

ˆ
∂Ω

σ′(trukN )trξ dHd−1 = 0.

We consider the piecewise constant extension uN (t) := ukN on ((k − 1)τ, kτ ] for

k = 0, ..., N and the piecewise linear extension uN (t) := λuk−1
N + (1 − λ)ukN for

t = λ(k − 1)τ + (1− λ)kτ , where λ ∈ [0, 1], k = 0, ..., N .
Step 2: Existence of minimizers. To this end, we consider a minimizing sequence

(un)n∈N for Ek in H1(Ω). The functional Ek is coercive. More precisely, it holds

Ek(u) ≥
ε

2
∥∇u∥2L2(Ω) +

1

4τ
∥u∥2L2(Ω) − C(∥ukN∥L2(Ω)),

where we used W,σ ≥ 0 and Young’s inequality. Hence (un)n∈N is a bounded
sequence in H1(Ω) and there is a weakly convergent subsequence (for simplicity
denoted with the same index) un ⇀ ũ for n → ∞ in H1(Ω) for some ũ ∈ H1(Ω).
The terms in Ek without the W and σ-contributions are convex and continuous,
hence also weakly lower semi-continuous. Furthermore, because of the compact
embedding H1(Ω) ↪→↪→ L2(Ω) as well as the compactness of the trace operator
tr : H1(Ω) → L2(∂Ω), we obtain after sub-sequence extractions that for n→ ∞

un → ũ in L2(Ω), un → ũ a.e. in Ω,

trun → trũ in L2(∂Ω), trun → trũ a.e. in ∂Ω.

Finally, the Fatou Lemma yields that ũ is a minimizer of Ek.
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Step 3: Uniform Estimates. Inserting ukN and uk−1
N in Ek from (A.1) yields

Eε[u
k
N ] +

1

2τ
∥ukN − uk−1

N ∥2L2(Ω) ≤ Eε[u
k−1
N ].

Because of uk−1
N , ukN ∈ H1(Ω) ∩ Lp(Ω) the terms stemming from Eε are finite.

Therefore one can apply a telescope sum argument which implies
ˆ
Ω

ε

2
|∇ukN |2 +

ˆ
Ω

1

ε
W (ukN ) +

ˆ
∂Ω

σ(ukN )Hd−1 +

k∑
l=1

1

2τ
∥ulN − ul−1

N ∥2L2(Ω)

≤
ˆ
Ω

ε

2
|∇uε,0|2 +

ˆ
Ω

1

ε
W (uε,0) +

ˆ
∂Ω

σ(truε,0) dHd−1.

Therefore (1.6a) yields that the ukN are uniformly bounded in H1(Ω)∩Lp(Ω) inde-
pendently of k = 0, ..., N and N ∈ N. Hence it follows that

(uN )N∈N is bounded in L∞(0, T ;H1(Ω) ∩ Lp(Ω)),

(uN )N∈N is bounded in H1(0, T, L2(Ω)) ∩ L∞(0, T ;H1(Ω) ∩ Lp(Ω)).

Step 4: Convergence. There is a sub-sequence (not re-labelled) and a û such
that

uN ⇀∗ û in L∞(0, T ;H1(Ω) ∩ Lp(Ω)).

Moreover, due to the Aubin-Lions-Lemma, cf. Simon [34], Corollary 5 , the space
L∞(0, T,H1(Ω))∩H1(0, T, L2(Ω)) is compactly embedded into C([0, T ], Hs(Ω)) for
all s ∈ [0, 1), where we choose a fixed s ∈ ( 12 , 1). Therefore up to a sub-sequence
for some u it holds

uN → u in C([0, T ], Hs(Ω)).

With the estimate

∥uN (t)− uN (t)∥L2(Ω) ≤ ∥ukN − uk−1
N ∥L2(Ω) ≤ C

√
τ for all t ∈ [(k − 1)τ, kτ ]

for some C > 0 independent of k,N and using τ = T
N we obtain

uN → u in L∞(0, T, L2(Ω))

and û = u. Using ϕ ∈ L∞(0, T,H1(Ω)) and an interpolation estimate we get

uN → u in L∞(0, T,Hs(Ω)).

Moreover, it holds u ∈ C
1
2 ([0, T ], L2(Ω)) since (uN )N∈N is bounded in this space

and an interpolation estimate yields uN → u in Cα([0, T ], L2(Ω)) for all α ∈ (0, 12 ).
Furthermore, it holds

uN ⇀ u in L2(0, T,H1(Ω)) ∩H1(0, T, L2(Ω)),

where the weak limit equals u due to the compactness into L2(0, T, L2(Ω)). Due
to all these convergence properties and the continuity of the trace operator from
Hs(Ω) to L2(∂Ω), we obtain after sub-sequence extraction that

uN , uN → u a.e. in Ω× (0, T ), truN , truN → tru a.e. in ∂Ω× (0, T ).

Step 5: Weak formulation. Using the above convergence properties one can pass
to the limit in the Euler-Lagrange equation. This yields (2.11b).

Step 6: Uniqueness and bound in Lemma 6. Using a Gronwall-argument and
the splitting (1.6c) of W , one can prove uniqueness of weak solutions. Now assume
that the initial phase field additionally satisfies uε,0 ∈ [−1, 1] a.e. in Ω. Then in the
above construction of a weak solution via the implicit time discretization one can
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choose the minimizers ukN in such a way that ukN ∈ [−1, 1] a.e. in Ω for k = 1, ..., N ,
N ∈ N. This follows via mathematical induction over k since the energy Ek(u) is
non-increasing when truncating the values of u at [−1, 1] provided that this holds

for uk−1
N . Then the obtained weak solution also has the desired property. □

Proof of Lemma 7. We split the proof into three steps. In principle, all of these
steps are based on standard arguments. However, due to the nonlinear Robin
boundary condition (AC2), we decided to present some level of detail.

Step 1: Proof of the properties (2.14) and (2.15). Since the initial phase field
satisfies uε,0 ∈ [−1, 1] almost everywhere in Ω, it follows from (2.12) in Lemma 6 and
the boundedness of W ′ on [−1, 1] that W ′(uε) ∈ L∞(Ω×(0, T )). Testing (2.11b)
with test functions which are compactly supported in Ω×(0, T ) thus entails together
with the regularity in time (2.11a) of uε that ∆uε, as a distribution on Ω×(0, T ),
is represented by an L2-function on Ω×(0, T ), namely ∂tuε + 1

ε2W
′(uε), which

in turn proves (2.14). Then (2.15) directly follows by testing (2.11b) with ζ ∈
C∞

cpt((0, T );C
∞(Ω)).

Step 2: Proof of ∇∂tuε ∈ L2
loc(0, T ;L

2(Ω)). Let 0 < s < t < T , and let
η ∈ C∞

cpt((0, T ); [0, 1]) be such that η|[s,t] ≡ 1. Denote with Dh
t f the difference

quotient in the time variable for h > 0 and some function f . We test (2.11b) with

D−h
t (ηDh

t uε) for |h| ≪s,t 1, which is an admissible test function after approxima-
tion. Then by approaching the characteristic function χ[s,t] with η we obtain
ˆ t

s

ˆ
Ω

|Dh
t ∇uε|2 dx dt+

ˆ t

s

ˆ
Ω

∂t
1

2
|Dh

t uε|2 dxdt

= −
ˆ t

s

ˆ
Ω

1

ε2
Dh

t

(
W ′(uε)

)
Dh

t uε dxdt−
ˆ t

s

ˆ
∂Ω

1

ε
Dh

t

(
σ′(uε)

)
Dh

t uε dHd−1 dt

for all |h| ≪s,t 1. By a Lipschitz estimate and standard Sobolev theory for difference
quotients we have∣∣∣∣ˆ t

s

ˆ
Ω

1

ε2
Dh

t

(
W ′(uε)

)
Dh

t uε dxdt

∣∣∣∣ ≤ C(ε, ∥W ′′∥L∞([−1,1]))

ˆ T

0

ˆ
Ω

|∂tuε|2 dxdt

for all |h| ≪s,t 1. For an estimate of the boundary integral, we argue as follows.
Since the initial phase field satisfies uε,0 ∈ [−1, 1] almost everywhere in Ω, it follows
from (2.12) that we may replace σ by any C2-density σ̃ : R → R which coincides
with σ on [−1, 1]. Fix one such σ̃. Then analogous as before we have

∣∣Dh
t

(
σ′(uε)

)∣∣ ≤
C∥σ̃′′∥L∞([−1,1])

∣∣Dh
t uε

∣∣. Using the trace (interpolation) inequality and Young’s
inequality as well as standard Sobolev theory for difference quotients we finally
obtain the bound∣∣∣∣ˆ t

s

ˆ
∂Ω

1

ε
Dh

t

(
σ′(uε)

)
Dh

t uε dHd−1 dt

∣∣∣∣ ≤ C(δ, ε, ∥σ̃′′∥L∞([−1,1]))

ˆ T

0

ˆ
Ω

|∂tuε|2 dx dt

+ δ

ˆ t

s

ˆ
Ω

|Dh
t ∇uε|2 dxdt

for all δ ∈ (0, 1) and all |h| ≪s,t 1. Hence, an absorption argument together with the
fundamental theorem of calculus (the latter facilitated by a standard mollification
argument in the time variable) entails based on the previous four displays thatˆ t

s

ˆ
Ω

|Dh
t ∇uε|2 dxdt
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≤
ˆ
Ω

|Dh
t uε(·, s)|2 dx+ C(ε, ∥W ′′∥L∞([−1,1]), ∥σ̃′′∥L∞([−1,1]))

ˆ T

0

ˆ
Ω

|∂tuε|2 dx dt

for all 0 < s < t < T and all |h| ≪s,t 1. In particular, since for almost every
s ∈ (0, T ) it holds

´
Ω
|∂tuε(·, s)|2 dx <∞, it follows that for almost every s ∈ (0, T )

and all t ∈ (s, T ) it holds
´ t
s

´
Ω
|Dh

t ∇uε|2 dx dt ≲ 1 uniformly over all |h| ≪s,t 1.
This in turn implies the claim by standard Sobolev theory for difference quotients.

Step 3: Proof of uε ∈ L2(0, T ;H2(Ω)). We only provide details for the local
estimate for tangential derivatives of ∇uε at a boundary point x0 ∈ ∂Ω after locally
flattening the boundary ∂Ω around x0. With respect to the latter—up to a rotation
and translation—we may assume that x0 = 0 and that there exists a radius r > 0
as well as a C2-map g : Br(0) ∩ Rd−1 → R such that g(0) = 0 and

Ω ∩Br(0) = {x = (x′, xd) ∈ Br(0) : xd > g(x′)},
∂Ω ∩Br(0) = {x = (x′, xd) ∈ Br(0) : xd = g(x′)}.

Defining the map Ψ: Br(0) → Rd : (x′, xd) 7→ (x′, xd−g(x′)), which is a C2-
diffeomorphism onto its image, and the coefficient field A := ∇Ψ−1(∇Ψ−1)T, we
have that det∇Ψ = 1 and that the operator −∇(a∇ ·) is uniformly elliptic and
bounded. Choosing r′ ∈ (0, 1) small enough such that Br′(0) ⊂⊂ imΨ, we then
obtain from (2.11b) and a change of variables that

ˆ T

0

ˆ
B+

r′ (0)

ζ∂tũε dx dt+

ˆ T

0

ˆ
B+

r′ (0)

∇ζ ·A∇ũε dx dt

= −
ˆ T

0

ˆ
B+

r′ (0)

ζ
1

ε2
W ′(ũε) dx dt (A.2)

−
ˆ T

0

ˆ
Br′ (0)∩{xd=0}

ζ
√

1+|∇x′g(x′)|2 1
ε
(σ′ ◦ ũε)

(
x′, g(x′)

)
dHd−1 dt

for all ζ ∈ C∞
cpt(Br′(0)), where we have also defined ũε := uε ◦ Ψ−1 as well as

B+
r′(0) = Br′(0) ∩ {(x′, xd) ∈ Rd : xd > 0}.
Let η ∈ C∞

cpt(
1
2Br′(0); [0, 1]). We denote by Dh

xf for h > 0 and some f the
difference quotient in the spatial variables with respect to an arbitrary, but fixed,
tangential direction. Testing (A.2) with the (after approximation) admissible test
function D−h

x (η2Dh
x ũε) for |h| < 1

2 we obtain together with the fundamental the-
orem of calculus (which is facilitated by a standard mollification argument in the
time variable) and the uniform ellipticity of A

ˆ T

0

ˆ
B+

r′ (0)

η2|Dh
x∇ũε|2 dxdt ≲

ˆ T

0

ˆ
B+

r′ (0)

η2Dh
x∇ũε ·ADh

x∇ũε dxdt

≤
ˆ
B+

r′ (0)

η2|Dh
x ũε(·, 0)|2 dx−

ˆ T

0

ˆ
B+

r′ (0)

η2Dh
x ũε

1

ε2
Dh

x

(
W ′(ũε)

)
dx dt

−
ˆ T

0

ˆ
Br′ (0)∩{xd=0}

η2Dh
x ũε

√
1+|∇x′g(x′)|2 1

ε
Dh

x

(
(σ′ ◦ ũε)(x′, g(x′))

)
dHd−1 dt

−
ˆ T

0

ˆ
B+

r′ (0)

Dh
x ũε2η∇η ·ADh

x∇ũε dx dt
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−
ˆ T

0

ˆ
B+

r′ (0)

η2Dh
x∇ũε ·

{
Dh

x

(
A∇ũε

)
−ADh

x∇ũε
}
dx dt

−
ˆ T

0

ˆ
B+

r′ (0)

Dh
x ũε2η∇η ·

{
Dh

x

(
A∇ũε

)
−ADh

x∇ũε
}
dxdt

−
ˆ T

0

ˆ
B+

r′ (0)

η2Dh
x ũε ·

{
Dh

x

(√
1+|∇x′g(x′)|2 1

ε
(σ′ ◦ ũε)

(
x′, g(x′)

))
−
√
1+|∇x′g(x′)|2 1

ε
Dh

x

(
(σ′ ◦ ũε)(x′, g(x′))

)}
dHd−1 dt

for all η ∈ C∞
cpt(

1
2Br′(0); [0, 1]) and all |h| < 1

2 .
The terms on the right hand side without the first one can be estimated similarly

as in Step 2 of this proof by

δ

ˆ T

0

ˆ
B+

r′ (0)

η2|Dh
x∇ũε|2 dxdt+ C(δ)

ˆ T

0

ˆ
Ψ(Ω∩Br(0))

|ũε|2 + |∇ũε|2 dxdt

for all δ ∈ (0, 1), η ∈ C∞
cpt(

1
2Br′(0); [0, 1]) and |h| < 1

2 , where the first three of

these six terms can be estimated without the |ũε|2-term on the right hand side.
Altogether, by an absorption argument and by fixing η ∈ C∞

cpt(
1
2Br′(0); [0, 1]) such

that η| 1
4Br′ (0)

≡ 1, we obtain
ˆ T

0

ˆ
1
4B

+

r′ (0)

|Dh
x∇ũε|2 dxdt

≤ C

ˆ
Ω

|uε(·, 0)|2 + |∇uε(·, 0)|2 dx+ C

ˆ T

0

ˆ
Ω

|uε|2 + |∇uε|2 dx dt

uniformly over all |h| < 1
2 . This in turn establishes the desired local estimate

for tangential derivatives at a boundary point x0 ∈ ∂Ω after locally flattening
the boundary ∂Ω around x0. From here onwards, one may proceed by standard
arguments to deduce uε ∈ L2(0, T ;H2(Ω)). □

Proof of Lemma 8. We proceed in two steps.
Step 1: Proof of (2.16) under an additional assumption. In this step, we estab-

lish (2.16) assuming momentarily that the energy functional Eε[uε] is continuous
on [0, T ]. This fact will then be checked in a second step. Under this additional
assumption it clearly suffices to prove that for all 0 < s < T ′ < T it holds

Eε[uε(·, T ′)] +

ˆ T ′

s

ˆ
Ω

ε
∣∣∂tuε∣∣2 dxdt = Eε[uε(·, s)]. (A.3)

Let 0 < s < T ′ < T , and let η ∈ C∞
cpt((0, T ); [0, 1]) such that η|[s,T ′] ≡ 1. Test-

ing (A.2) with the thanks to Lemma 7 admissible test function εη∂tuε and by
approaching the characteristic function χ[s,T ′] with η shows

ˆ T ′

s

ˆ
Ω

ε∇uε · ∂t∇uε dxdt+
ˆ T ′

s

ˆ
Ω

1

ε
W ′(uε)∂tuε dxdt

+

ˆ T ′

s

ˆ
∂Ω

σ′(uε)∂tuε dHd−1 dt = −
ˆ T ′

s

ˆ
Ω

ε|∂tuε|2 dxdt.

By a standard mollification argument, the chain rule, and the fundamental theorem
of calculus, we thus obtain from the previous display the desired identity (A.3).
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Step 2: Proof of Eε[uε] ∈ C([0, T ]). Recalling that uε ∈ C([0, T ];L2(Ω)), it
suffices to prove that the Dirichlet energy is continuous on [0, T ]. Indeed, conti-
nuity for the other two energy contributions then follows from the trace (interpo-
lation) inequality and a Lipschitz estimate. Hence note that uε ∈ H1(0, T ;L2(Ω))∩
L2(0, T ;H2(Ω)) due to (2.11a) and (2.13). Interpolation yields uε ∈ C([0, T ];H1(Ω))
which concludes the claim. □

Appendix B. Construction of well-prepared initial data

Proof of Lemma 9. We split the proof into four steps.
Step 1: Construction of auxiliary signed distance to initial bulk interface. As the

C2-interface ∂∗A (0) ∩ Ω intersects the C2-domain boundary ∂Ω non-tangentially
at two distinct points c±(0) ∈ ∂Ω, we may choose two localization scales r, δ ∈ (0, 1)
being sufficiently small such that the following properties hold true:

First, we require as usual that (with n(·, 0) := n∂∗A (0)∩Ω)

Ψ: (∂∗A (0)∩Ω)× (−r, r) → R2, (x, s) 7→ x+ sn(x, 0)

defines a C1-diffeo onto its image imΨ such that Ψ ∈ C1(∂∗A (0)∩Ω×[−r, r]) and
Ψ−1 ∈ C1(imΨ). Furthermore, denote by L±(0) the tangent line to ∂∗A (0)∩Ω
at c±(0) ∈ ∂Ω, respectively, and let τ±(0) ∈ L±(0) the associated unit tangent

to ∂∗A (0) ∩ Ω at c±(0) ∈ ∂Ω pointing outside of Ω (i.e., c±(0)+ℓτ±(0) ∈ R2 \ Ω
for all 0 < ℓ < r for r small). Denoting by H±(0) the open half-space given
by {x ∈ R2 : (x−c±(0)) · τ±(0) > 0}, we next require that r is small such that

Br(y±)∩ ∂∗A (0)∩Ω = {c±(0)} for all y± ∈ ∂Br(c±(0))∩H±(0). By this choice of
the scale r ∈ (0, 1), the set

Ĩ(0) := ∂∗A (0)∩Ω ∪
⋃

c±(0)

((
c±(0)+L±(0)

)
∩H±(0) ∩B r

2
(c±(0))

)
(B.1)

is an embedded, compact and orientable C1-manifold with boundary {c±(0)+ r
2τ±(0)}

extending the bulk interface ∂∗A (0)∩Ω. We write ñ(·, 0) for the associated contin-
uous unit normal vector field coinciding with n(·, 0) along ∂∗A (0)∩Ω. The second
localization scale δ ∈ (0, 1) is now chosen sufficiently small such that

Ψ̃ : Ĩ(0)× [−δr, δr] → R2, (x̃, s̃) 7→ x̃+ s̃ ñ(x̃, 0) (B.2)

defines a homeomorphism onto its image im Ψ̃, and such that Ω \ im Ψ̃ decomposes

into two non-empty and disjoint connected components Ω±(Ψ̃) such that the set

∂Ω±(Ψ̃) ∩ Ω is given by Ψ̃(Ĩ(0)×{±δr}) ∩ Ω.
With two such localization scales r, δ ∈ (0, 1) in place, we remark that the

projection onto the second coordinate of the inverse Ψ̃−1 defines a C1-function s̃

which inside Ω equals the signed distance to Ĩ(0). Hence, by a slight abuse of
notation we may extend s̃ to a 1-Lipschitz continuous function on Ω by means of

s̃(x) :=

{
±dist(x, Ĩ(0)) x ∈ Ω±(Ψ̃),

s̃(x) x ∈ Ω ∩ im Ψ̃,
(B.3)

which serves as a suitable extension of the signed distance function to the initial
bulk interface ∂∗A (0) ∩ Ω (by which we again understand the projection onto the
second coordinate of the inverse Ψ−1).
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Step 2: Definition of initial phase field uε,0. Let θ0 : R → (−1, 1) denote the
optimal transition profile associated with the double-well potential W , and fix a
scale ε ∈ (0, 1). Recalling the definition (B.3), we then introduce an initial phase
field by means of

uε,0(x) := θ0

( s̃(x)
ε

)
, x ∈ Ω. (B.4)

Step 3: Properties of uε,0 and optimal estimates for bulk energy contributions.
That Eε[uε,0] < ∞ and (2.1) hold true follows directly from the definitions (B.3)
and (B.4). In terms of the required estimates, we claim thatˆ

Ω

ε

2
|∇uε,0|2 +

1

ε
W (uε,0)−∇(ψ ◦ uε,0) · ξ(·, 0) dx ≲ ε2, (B.5)

Ebulk[uε,0|A (0)] ≲ ε2. (B.6)

In particular, in case of the specific choice (1.10) for the boundary energy density,
these two bounds immediately imply (2.3) with optimal rate ε2 since the boundary
term in the definition (3.4) of the relative energy simply vanishes in the special
case (1.10).

For a proof of (B.5), we split our task into two contributions by decomposing

Ω = (Ω∩{|s̃ | ≥ δr})∪(Ω∩{|s̃ | < δr}). By |∇(ψ◦uε,0)·ξ(·, 0)| ≤
√

2W (uε,0)|∇uε,0|,
the generalized chain rule for Lipschitz functions, |∇s̃ | ≤ 1, and Young’s inequality,
we have ˆ

Ω∩{|s̃ | ≥δr}

ε

2
|∇uε,0|2 +

1

ε
W (uε,0)−∇(ψ ◦ uε,0) · ξ(·, 0) dx

≤ 2

ε

ˆ
Ω∩{|s̃ | ≥δr}

∣∣∣θ′0( s̃(x)ε )∣∣∣2 +W
(
θ0

( s̃(x)
ε

))
dx,

which thanks to θ′0(r) =
√
2W (θ0(r)) for all r ∈ R and the exponential decay of |θ′0|

upgrades toˆ
Ω∩{|s̃ | ≥δr}

ε

2
|∇uε,0|2 +

1

ε
W (uε,0)−∇(ψ ◦ uε,0) · ξ(·, 0) dx ≲ ε2. (B.7)

For an estimate of the contribution from Ω ∩ {|s̃ | < δr}, we note that ∇uε,0(x) =
1
εθ

′
0(

s̃(x)
ε )ñ(PĨ(0)(x), 0) and thus ∇(ψ ◦ uε,0)(x) = 1

ε |θ
′
0(

s̃(x)
ε )|2ñ(PĨ(0)(x), 0) for all

x ∈ Ω ∩ {|s̃ | < δr} ⊂ im Ψ̃, where the map PĨ(0) denotes the projection onto the

nearest point on Ĩ(0). In particular,ˆ
Ω∩{|s̃ |<δr}

ε

2
|∇uε,0|2 +

1

ε
W (uε,0)−∇(ψ ◦ uε,0) · ξ(·, 0) dx

= −
ˆ
Ω∩{|s̃ |<δr}

1

ε

∣∣∣θ′0( s̃(x)ε )∣∣∣2ñ(PĨ(0)(x), 0) ·
(
ξ(·, 0)− ñ(PĨ(0)(·), 0)

)
dx. (B.8)

We claim that ∣∣ñ(PĨ(0)(x), 0) ·
(
ξ(x, 0)− ñ(PĨ(0)(x), 0)

)∣∣ ≲ s̃ 2(x) (B.9)

for all x ∈ Ω∩{|s̃ | < δr}. Once the estimate (B.9) is established, it follows in combi-
nation with (B.8) and the exponential decay of |θ′0| (together with a transformation
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argument) thatˆ
Ω∩{|s̃ |<δr}

ε

2
|∇uε,0|2 +

1

ε
W (uε,0)−∇(ψ ◦ uε,0) · ξ(·, 0) dx

≲ ε

ˆ
Ω∩{|s̃ |<δr}

∣∣∣θ′0( s̃(x)ε )∣∣∣2 s̃ 2(x)

ε2
dx ≲ ε2. (B.10)

Obviously, the estimates (B.7) and (B.10) then imply the desired bound (B.5), so
that it remains to verify (B.9).

To this end, we observe first that for all x ∈ Ω ∩ {|s̃ | < δr} ⊂ im Ψ̃ it holds
ñ(PĨ(0)(x), 0) = n(P

∂∗A (0)∩Ω
(x), 0) due to the choice of r ∈ (0, 1) and the definition

of the extended interface Ĩ(0). Hence,

ñ(PĨ(0)(x), 0) ·
(
ξ(x, 0)− ñ(PĨ(0)(x), 0)

)
= n(P

∂∗A (0)∩Ω
(x), 0) ·

(
ξ(x, 0)− n(P

∂∗A (0)∩Ω
(x), 0)

)
for all x ∈ Ω∩{|s̃ | < δr}. In particular, a Taylor expansion argument based on the
conditions (2.6a) and the regularity (2.5a) entails∣∣ñ(PĨ(0)(x), 0) ·

(
ξ(x, 0)− ñ(PĨ(0)(x), 0)

)∣∣ ≲ dist2(x, ∂∗A (0)∩Ω)

for all x ∈ Ω∩{|s̃ | < δr}. The previous display can be post-processed to (B.9) since

dist(·, ∂∗A (0)∩Ω) ≲ |s̃ | in Ω ∩ {|s̃ | < δr}. Indeed, the latter claim is trivially true

in the image Ψ̃((∂∗A (0)∩Ω)×(−δr, δr)) as dist(·, ∂∗A (0)∩Ω) = |s̃ | on this set. For

the remaining points x ∈ (Ω∩{|s̃ |<δr}) \ Ψ̃((∂∗A (0)∩Ω)×(−δr, δr)) ⊂ im Ψ̃, the
claim follows from recognizing that for such points P

∂∗A (0)∩Ω
(x) ∈ {c±(0)} and

that the angle formed by the vectors x−P
∂∗A (0)∩Ω

(x) and PĨ(0)(x)−P∂∗A (0)∩Ω
(x)

is bounded away from zero uniformly (which in turn holds true since the bulk
interface intersects the domain boundary non-tangentially).

We next turn to the proof of the estimate (B.6). Recalling (4.1), we start by
plugging in definitions in form of

Ebulk[uε,0|A (0)] =

ˆ
A (0)

|ϑ(·, 0)|
∣∣∣∣ˆ 1

θ0(
s̃(x)
ε )

√
2W (ℓ) dℓ

∣∣∣∣dx
+

ˆ
Ω\A (0)

|ϑ(·, 0)|
∣∣∣∣ˆ θ0(

s̃(x)
ε )

−1

√
2W (ℓ) dℓ

∣∣∣∣ dx,
so that one obtains the preliminary estimate

Ebulk[uε,0|A (0)] ≲
ˆ

A (0)

|ϑ(·, 0)|
∣∣∣θ0( s̃(x)

ε

)
− 1

∣∣∣dx
+

ˆ
Ω\A (0)

|ϑ(·, 0)|
∣∣∣θ0( s̃(x)

ε

)
− (−1)

∣∣∣dx.
Both terms on the right hand side of the previous display can again be treated by
decomposing Ω = (Ω ∩ {|s̃ | ≥ δr}) ∪ (Ω ∩ {|s̃ | < δr}). Throughout Ω ∩ {|s̃ | ≥ δr},
one then simply capitalizes on the fact that the optimal profile θ0(r) converges
exponentially fast to ±1 as r → ±∞ and that χ = 0, 1 correlates with the sign of s̃.
Throughout Ω ∩ {|s̃ | < δr}, one in addition makes use of the Lipschitz estimate

|ϑ(·, 0)| ≲ dist(·, ∂∗A (0)∩Ω) ≲ |s̃ | (recall for the first inequality that ϑ(·, 0) = 0

along ∂∗A (0)∩Ω). In summary, one obtains (B.6).
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Step 4: Estimate for boundary energy contribution. We claim that

0 ≤
ˆ
∂Ω

σ(uε,0)− ψ(uε,0) cosα dHd−1 ≲ ε. (B.11)

Note that together with the estimates from the previous step, we in particular
obtain the asserted bound (2.3) once (B.11) is proven.

Due to the definition (1.7) and the compatibility conditions between σ and ψ at
the endpoints ±1 from (1.9b), it follows again from the exponentially fast conver-
gence θ0(r) → ±1 as r → ±∞ that the contribution coming from the integration
over the set ∂Ω ∩ {|s̃| ≥ δr} is of higher order compared with the claim (B.11).
On ∂Ω ∩ {0 ≤ |s̃| < δr} we can additionally use an integral transformation and a
scaling argument to obtain (B.11). □
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