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Abstract

The present thesis is concerned with the derivation of weak-strong uniqueness principles for
curvature driven interface evolution problems not satisfying a comparison principle. The spe-
cific examples being treated are two-phase Navier–Stokes flow with surface tension, modeling
the evolution of two incompressible, viscous and immiscible fluids separated by a sharp inter-
face, and multiphase mean curvature flow, which serves as an idealized model for the motion
of grain boundaries in an annealing polycrystalline material. Our main results—obtained in
joint works with Julian Fischer, Tim Laux and Theresa M. Simon—state that prior to the
formation of geometric singularities due to topology changes, the weak solution concept of
Abels (Interfaces Free Bound. 9, 2007) to two-phase Navier–Stokes flow with surface tension
and the weak solution concept of Laux and Otto (Calc. Var. Partial Differential Equations 55,
2016) to multiphase mean curvature flow (for networks in R2 or double bubbles in R3) rep-
resents the unique solution to these interface evolution problems within the class of classical
solutions, respectively.

To the best of the author’s knowledge, for interface evolution problems not admitting
a geometric comparison principle the derivation of a weak-strong uniqueness principle rep-
resented an open problem, so that the works contained in the present thesis constitute the
first positive results in this direction. The key ingredient of our approach consists of the
introduction of a novel concept of relative entropies for a class of curvature driven interface
evolution problems, for which the associated energy contains an interfacial contribution be-
ing proportional to the surface area of the evolving (network of) interface(s). The interfacial
part of the relative entropy gives sufficient control on the interface error between a weak
and a classical solution, and its time evolution can be computed, at least in principle, for
any energy dissipating weak solution concept. A resulting stability estimate for the relative
entropy essentially entails the above mentioned weak-strong uniqueness principles.

The present thesis contains a detailed introduction to our relative entropy approach,
which in particular highlights potential applications to other problems in curvature driven
interface evolution not treated in this thesis.
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CHAPTER 1
Introduction

1.1 Curvature driven interface evolution: Applications

Interfaces evolving under the effect of extrinsic curvature quantities such as mean curvature
are ubiquitous in a wide variety of applications. We briefly discuss some of these fascinating
topics including applications from image processing, biology, flame propagation in combustion
processes, fluid mechanics, and finally applications from materials science.

• The first example concerns the removal of noise and the improvement of features in
a given image (cf. Sethian [144, Section 16]). Typical goals are to smooth out small-
scale oscillations in boundaries of distinct regions or to blend into the background color
scattered points of noise. A specific challenge in this context consists of keeping sharp
interfaces present in the image while trying to blur such noise or small-scale oscillations
of boundaries. One strategy which overcomes this challenge is to let the image defin-
ing intensity function evolve by a speed function depending in a suitable way on the
mean curvature of the contour lines of this intensity function. We refer to the books of
Sethian [144], Sapiro [134], Aubert and Kornprobst [14] as well as Cao [28] for precise
representations of such schemes.

• Curvature driven interface evolution also appears as a model to explain the effect of
the surface geometry of supporting structures (e.g., the geometry of scaffolds in tissue
engineering with applications to defect healing) on observed growth patterns for in vitro
tissue formation (cf. Rumpler et al. [133]). For instance, Rumpler et al. [133] show that
numerical experiments modeling tissue growth within various two-dimensional scaffold
structures (i.e., triangular, square, hexagonal and circular shapes) based on the hypoth-
esis that the tissue interface evolves proportional to its mean curvature, indeed match
the results from corresponding in vitro cell growth experiments. For further results
on curvature driven tissue growth and relevant applications, we refer to the works of
Bidan et al. [21], Bidan et al. [22] as well as Guyot et al. [77].

• One way to model flame propagation within combustion processes is to view the evolving
flame front as a sharp interface separating the burnt and unburnt regions (cf. Sethian [144,
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1. Introduction

Section 18.1]). A simplified model taking into account, amongst other things, a depen-
dence of the normal speed of the flame front on its mean curvature as a result of heat
conduction is due to Markstein [112]. Apart from this, the modeling of combustion pro-
cesses also has to incorporate the fluid dynamics within both the burnt and unburnt
regions, and has to account for several effects coupling the motion of the fluids and the
evolution of the flame front, which affect each other. For a discussion of such models and
further references to the relevant literature, we refer to the book of Sethian [144] as well
as the papers by Sethian [143] and Osher and Sethian [122].

• Further applications of curvature driven interface evolution in the context of fluid me-
chanics concerns, e.g., the analysis of the evolution of two incompressible, immiscible
and viscous fluids (e.g., the motion of droplets of oil in surrounding water) under surface
tension effects (see, e.g., Denisova [49], Sussmann, Smereka and Osher [147], Chang, Hou,
Merriman and Osher [32] and Prüss and Simonett [127]), or the propagation of a “cold”
flame front (see, e.g., Zhu and Sethian [150]) meaning that effects of the combustion zone
on the fluid dynamics within the burnt and unburnt regions are neglected.

• A very prominent example of curvature driven interface evolution is given by the motion
of grain boundaries (i.e., the interfaces between crystals with differing orientation) dur-
ing grain growth in an annealing polycrystalline material like a piece of aluminum (cf.
Mullins [120] or Brakke [23, Appendix A]). The driving force behind this coarsening pro-
cess is the reduction of (in principle anisotropic) surface energy in form of surface tension
associated with each grain boundary. The resulting evolution of the grain boundaries
takes place in the direction of their center of curvature with a speed being proportional to
their mean curvature (see, e.g., Beck and Sperry [18] and Rhines, Craig and DeHoff [130]).

• We conclude by mentioning the important example of liquid-solid interface evolution
in solidification processes like crystal growth or the formation of dendritic patterns (cf.
Sethian [144, Section 18.2]). The modeling of such phenomena requires to account for
interactions between the evolving liquid-solid interface and the associated temperature
field, which solves a heat equation away from the interface. Curvature appears in these
models in form of boundary conditions for the temperature field along the moving liquid-
solid interface as well as for the jump of the heat flux in normal direction across it (see,
e.g., the works of Mullins and Sekerka [121], Langer [94], Ben-Jacobi, Goldenfield, Langer
and Schon [20] or Gurtin [76]).

1.2 Curvature driven interface evolution: A small sample of
mathematical models

We present in this section three important mathematical models accounting for curvature
driven interface evolution: i) two-phase Navier–Stokes flow with surface tension, ii) multi-
phase mean curvature flow, and iii) the Stefan problem with isotropic Gibbs–Thomson law
together with its quasi-static version, the Mullins–Sekerka equation. Our selection is mainly
motivated by the fact that the main results presented and announced in this thesis (cf. Sec-
tion 1.4) are precisely concerned with these models. The focus of the following discussion lies
on the mathematical formulation of these problems and a brief discussion of selected parts
of the existence theory for weak and strong solution concepts.

Of course, this section only provides a very small glimpse into the rich variety of mathe-
matical models accounting for curvature driven interface evolution. For instance, we neglect
at this stage considerations concerning evolution problems incorporating anisotropic resp.

2



1.2. Curvature driven interface evolution: A small sample of mathematical models

crystalline surface energies (see, e.g., [29], [19], [73], [90], [31] or [30]) or the alternative rep-
resentation of the evolving interface in terms of diffuse interface approximations (see, e.g.,
[33], [46], [9], [4], [7], [5] or [6]) instead of sharp interfaces. For an excellent overview article
on the topic, we refer the reader to Garcke [72].

1.2.1 Two-phase Navier–Stokes flow with surface tension

As a first example, we consider the flow of two immiscible, incompressible and viscous fluids
incorporating surface tension effects. For such a system of two fluids, the most basic model
featuring a sharp interface is described as follows. Because of the immiscibility, the evolution
of the interface between the fluids is governed by a transport equation along the fluid flow.
The motion of each single fluid is moreover modeled by means of the incompressible Navier–
Stokes equation. Finally, surface tension acts on the sharp interface by exerting a force which
is proportional to the mean curvature vector of the interface.

In terms of a mathematical formulation, we consider a full space setting with time hori-
zon T ∈ (0,∞). The two fluids fill two disjoint evolving open domains Ω+ = (Ω(t))t∈[0,T ]

and Ω− = (Rd \Ω(t))t∈[0,T ] in Rd, d ∈ {2, 3}, respectively. The evolving interface separating
the two regions is denoted by (I(t))t∈[0,T ]. Imposing a no-slip boundary condition at the
interface for the velocity fields of the single fluids, one may treat them as a single vector field
u = u(x, t). One may also denote the pressure as a single scalar field p = p(x, t), which in
general however jumps across the interface. Denoting for each t ∈ [0, T ] by χ = χ(·, t) the
indicator function of the domain Ω(t), by µ± the shear viscosities of the two fluids, by ρ±
their densities, by σ > 0 a surface tension constant, by HI = HI(·, t) the mean curvature
vector of the interface I(t), as well as by |∇χ| = |∇χ|(·, t) the corresponding surface measure,
one obtains the following PDE formulation in Rd×[0, T ] for the above two-phase fluid system

∂tχ+ (u · ∇)χ = 0, (1.1a)

∂t
(
ρ(χ)u

)
+∇ ·

(
ρ(χ)u⊗ u

)
= −∇p+∇ ·

(
µ(χ)

(
∇u+ (∇u)T

))
+ σHI |∇χ|, (1.1b)

∇ · u = 0, (1.1c)

where we introduced the abbreviations ρ(χ) := ρ+χ+ρ−(1−χ) and µ(χ) := µ+χ+µ−(1−χ).
Writing n = n(·, t) for the unit normal along I(t) pointing inside Ω(t), the right hand side
of (1.1b) encodes the Young–Laplace law along the interface:[

n ·
(
µ(χ)

(
∇u+ (∇u)T

)
−pId

)]
I(t)

= σHI (1.2)

for all t ∈ [0, T ], where [·]I(t) denotes the jump across the interface. In words, the normal
component of the jump of the viscous stress tensor across the interface equals the mean
curvature vector of the interface times the surface tension constant.

The energy functional for the free boundary problem (1.1a)–(1.1c) is given by

E[χ, u](t) :=

ˆ
1

2
ρ
(
χ(·, t)

)
|u(·, t)|2 dx+ σ

ˆ
I(t)

1 dHd−1, t ∈ [0, T ], (1.3)

and thus consists of a combination of kinetic energy due to the two fluids and interfacial energy
due to surface tension. We discuss in the following a selection of results from the existence
theory (either local-in-time for strong solutions or global-in-time for weak solutions) of finite
energy solutions to (1.1a)–(1.1c) satisfying the associated energy dissipation inequality (or
rather its time-integrated version)

d

dt
E[χ, u](t) +

ˆ
1

2
µ
(
χ(·, t))

∣∣∇u(·, t)+(∇u)T(·, t)
∣∣2 dx ≤ 0. (1.4)

3



1. Introduction

The existence and uniqueness of local-in-time strong solutions in Sobolev–Slobodeckij
spaces is due to Denisova [49], building on earlier works by Denisova ([47] and [48]) as well
as Denisova and Solonnikov ([50] and [51]) on the linearized problem in Sobolev–Slobodeckij
spaces resp. Hölder spaces. As always in the context of free boundary problems, a major
difficulty for the construction of solutions stems from the fact that the domains on which the
PDEs are formulated are themselves part of the problem. In the context of strong solutions,
the standard approach to handle this issue is to transform the problem under consideration
into a setting with a fixed domain. The above mentioned works by Denisova and Solonnikov
achieve this by passing to Lagrangian coordinates.

Instead of employing Lagrangian coordinates, another strategy consists of a parametriza-
tion of the evolving interface in terms of a height function over the initial interface, and to
transform the free boundary problem into a setting with a fixed domain by means of this
height function. The resulting evolution problem in the fixed domain is of highly nonlinear
nature, and a major step in the analysis then consists of a careful study of the corresponding
linearized problems in order to facilitate in the end a contraction mapping principle argument
for the nonlinear problem. This idea dates back to a work of Hanzawa [78] on the existence of
strong solutions for the one-phase Stefan problem, which is why the associated transformation
to a fixed domain is usually referred to in the literature as the Hanzawa transform.

In the case that the initial interface is given by a graph over Rd−1×{0} and assuming
a smallness condition on the initial data, Prüss and Simonett [126] establish based on this
approach a short time existence and uniqueness result for the two-phase Navier–Stokes flow
with surface tension. In contrast to the works of Denisova and Solonnikov, their methods even
allow to deduce a smoothing effect for positive times, namely guaranteeing real analyticity
of the interface as well as real analyticity of the velocity field and the pressure away from the
interface for positive times. The same result holds true if one allows gravity to act on the
system, see Prüss and Simonett [127] who also provide in their work [125] an analysis on the
Rayleigh–Taylor instability. For a general local-in-time existence and uniqueness result (i.e.,
without employing a parametrization assumption over a flat model interface Rd−1×{0}), we
refer to the work of Köhne, Prüss and Wilke [89].

Thinking of the possibility of the pinch-off of a liquid drop into two separate drops, or
the coalescence of two drops into a single drop, a mathematical formulation of the evolution
problem in terms of a strong PDE solution concept necessarily breaks down from the first
topology change onwards. For a global-in-time existence result with respect to general initial
data, one therefore has to resort to weaker descriptions of the dynamics.

A first guess in this direction is provided by the desired energy dissipation inequality (1.4).
On one side, it suggests to require u ∈ L∞(0, T ;L2(Rd;Rd)) and ∇u ∈ L2(0, T ;L2(Rd;Rd×d))
for the solenoidal velocity field u (with (1.1c) interpreted in a distributional sense). On the
other side, it suggests to represent the underlying evolving geometry Ω+ = (Ω(t))t∈[0,T ] in
terms of a time-dependent family of sets of finite perimeter, so that the associated inter-
faces I(t) are given by the reduced boundaries ∂∗Ω(t) for all t ∈ [0, T ]. In other words, one
may require χ ∈ L∞(0, T ;BV (Rd; {0, 1})) for the corresponding time-dependent indicator
function. How do these choices reflect in a weak formulation of (1.1a)–(1.1b)?

In a smooth setting (i.e., I(t) being a smooth and closed manifold without boundary), the
surface divergence theorem (cf. [128, Equation (2.31)]) implies the following distributional
representation of the mean curvature vector HI = HI(·, t)

ˆ
I(t)

HI · ϕdHd−1 = −
ˆ
I(t)

(Id−n⊗ n) : ∇ϕdHd−1 (1.5)

for all compactly supported and smooth test vector fields ϕ ∈ C∞cpt(Rd;Rd). Observing that
the right hand side of (1.5) even makes sense in the setting of sets of finite perimeter, whereas

4



1.2. Curvature driven interface evolution: A small sample of mathematical models

the left hand side in general does not, one may try to solve (1.1b) in form ofˆ
ρ
(
χ(·, T ′)

)
u(·, T ′) · ϕ(·, T ′) dx−

ˆ
ρ
(
χ(·, 0)

)
u(·, 0) · ϕ(·, 0) dx

=

ˆ T ′

0

ˆ
ρ(χ)u · ∂tϕdx dt+

ˆ T ′

0

ˆ
ρ(χ)u⊗ u : ∇ϕdx dt (1.6)

−
ˆ T ′

0
µ(χ)

(
∇u+(∇u)T

)
: ∇ϕdx dt− σ

ˆ T ′

0

ˆ
I(t)

(Id−n⊗ n) : ∇ϕdHd−1 dt

for almost every T ′ ∈ [0, T ] and all solenoidal ϕ ∈ C∞cpt(Rd×[0, T ];Rd). A weak formulation
of the transport equation (1.1a) making sense in the energy space for (χ, u) is in turn given
by requiringˆ

χ(·, T ′)φ(·, T ′) dx−
ˆ
χ(·, 0)φ(·, 0) dx =

ˆ T ′

0

ˆ
χ
(
∂tφ+ (u · ∇)φ

)
dx dt (1.7)

for almost every T ′ ∈ [0, T ] and all φ ∈ C∞cpt(Rd×[0, T ]).
However, there is an immediate problem when one tries to construct solutions to (1.1a)–

(1.1b) in the sense of the BV formulation (1.6)–(1.7) by, say, passing to the limit in an
approximating sequence of solutions (χk, uk), k ∈ N, associated with a regularized version of
the problem. Indeed, the energy dissipation inequality (1.4) only allows to infer boundedness
of the sequence (χk)k∈N in the space BVloc(Rd) which in turn implies weak∗ convergence
of a subsequence in this space (cf. [12, Section 3.1]). In particular, in such a setting we
in general only know that a subsequence of ∇χk converges to ∇χ weakly∗ in the sense of
finite Radon measures on Rd. Without additional information (e.g., convergence of the total
variations |∇χk|(Rd) to the total variation of the weak∗ limit |∇χ|(Rd) which then allows to
exploit Reshetnyak’s continuity result [12, Theorem 2.39]), this in turn is not sufficient to
pass to the limit in the nonlinear functional (1.5) representing the mean curvature vector (cf.
the discussion of Abels [2, Section 3]).

Following the work of Plotnikov [124], Abels [1] deals with this problem by passing to
an even weaker notion of solutions; a framework which he refers to as varifold solutions (cf.
Abels [2, Definition 3.2]). The key ingredient is the concept of an oriented varifold, which
is a finite Radon measure V on the product space Rd×Sd−1 (where Sd−1 denotes the unit
sphere). Any oriented varifold may be equivalently expressed in terms of its disintegration
V = |V | ⊗ (νx)x∈Rd (cf. [12, Theorem 2.28]), where |V | denotes the associated local mass
density (i.e., |V |(U) := V (U×Sd−1) for all Borel measurable U ⊂ Rd) and (νx)x∈Rd is a
family of probability measures on Sd−1. Since the data associated with the sets of finite
perimeter represented through the indicator functions χk can be lifted to an oriented varifold
Vk := |∇χk| ⊗ (δ ∇χk

|∇χk|
(x)

)x∈Rd , one may pass to the weak∗ limit in the sense of oriented
varifolds. Due to

−σ
ˆ
Rd

(
Id− ∇χk
|∇χk|

⊗ ∇χk
|∇χk|

)
: ∇ϕd|∇χk| = −σ

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇ϕ(x) dVk(x, s),

this in turn allows to pass to the limit in the “varifold formulation” of the mean curvature
functional.

These arguments motivate Abels [1] to consider the following generalization of (1.6)ˆ
ρ
(
χ(·, T ′)

)
u(·, T ′) · ϕ(·, T ′) dx−

ˆ
ρ
(
χ(·, 0)

)
u(·, 0) · ϕ(·, 0) dx

=

ˆ T ′

0

ˆ
ρ(χ)u · ∂tϕdx dt+

ˆ T ′

0

ˆ
ρ(χ)u⊗ u : ∇ϕdx dt (1.8)

−
ˆ T ′

0
µ(χ)

(
∇u+(∇u)T

)
: ∇ϕdx dt− σ

ˆ T ′

0

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇ϕ(x, t) dVt(x, s) dt

5



1. Introduction

in terms of a time-dependent family of oriented varifolds (Vt)t∈[0,T ], which is coupled to the
time-dependent indicator function χ through the natural compatibility condition

ˆ
Rd×Sd−1

s · ψ(x) dVt(x, s) =

ˆ
I(t)

n(x, t) · ψ(x) dHd−1(x) (1.9)

for all t ∈ [0, T ] and all ψ ∈ C∞cpt(Rd;Rd). Abels [1] then proves for general initial data
the global-in-time existence of varifold solutions (χ, u, V ) satisfying (1.7)–(1.9), and which
dissipate the energy given by

E[χ, u, V ](t) :=

ˆ
1

2
ρ
(
χ(·, t)

)
|u(·, t)|2 dx+ σ

ˆ
Rd×Sd−1

1 dVt(x, s), t ∈ [0, T ]. (1.10)

His analysis even provides that χ solves the transport equation (1.1a) in a renormalized
sense of DiPerna and Lions [54], and that one may include a class of non-Newtonian fluids
by passing to a concept of measure-valued varifold solutions (cf. Abels [1, Definition 1.2 and
Theorem 1.6]).

1.2.2 Evolution by multiphase mean curvature flow

As a second example, we consider evolution by multiphase mean curvature flow. In short,
this evolution problem concerns the evolution of a network of interfaces which is formed by
an underlying partition of a domain into several phases. Any given point on one of these
interfaces is required to move with a velocity which is proportional to the mean curvature
vector at this point. The proportionality factor accounts for surface tension at the respective
interface, and it may vary from interface to interface. (We will only consider the isotropic
regime in the following.) A major motivation behind studying multiphase mean curvature
flow is that it represents idealized grain boundary motion in a recrystallized metal which
underwent a process of heat treatment (cf. Mullins [120]). The analysis of multiphase systems
which evolve by the mean curvature flow rule is also a mathematically intriguing problem
due to its inherent singular character: junctions form at points where more than two phases
meet, parts of the boundary and even whole phases vanish during the evolution of the system,
and so on. For a visual illustration, we refer to the grain growth movies on Brakke’s webpage
(http://facstaff.susqu.edu/brakke).

In mathematical terms, evolution by multiphase mean curvature flow may be phrased in a
full space setting with time horizon T ∈ (0,∞) as follows. Let P ≥ 2 be an integer denoting
the number of phases, and consider a family Ω = (Ω1(t), . . . ,ΩP (t))t∈[0,T ] representing an
evolving partition of Rd in the sense that for all t ∈ [0, T ] the family (Ω1(t), . . . ,ΩP (t))
consists of P pairwise disjoint open sets which partition Rd. For each t ∈ [0, T ] and each
pair of distinct phases i, j ∈ {1, . . . , P}, the common boundary of the ith phase Ωi(t) and
the jth phase Ωj(t) describes the associated interface and is denoted by Ii,j(t). Denoting
by VIi,j = VIi,j (·, t) and HIi,j = HIi,j (·, t) the normal velocity vector field and the mean
curvature vector field along an interface Ii,j(t), respectively, the geometric evolution problem
then simply reads

VIi,j = HIi,j along each interface Ii,j(t), t ∈ [0, T ], i 6= j ∈ {1, . . . , P}. (1.11)

Evolution by mean curvature can be derived as the L2-gradient flow of interfacial surface
area (cf. Garcke [72, Section 2.3]). In the multiphase case (1.11), interfacial energy is given
by a weighted sum of the surface areas of the evolving interfaces . The weights account for
surface tension at the interfaces, and are represented by a symmetric matrix σ ∈ RP×P such

6
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that (at least) σi,i = 0 for all i ∈ {1, . . . , P} as well as σi,j > 0 for all i, j ∈ {1, . . . , P}
with i 6= j. The associated energy is then defined by

E[Ω](t) :=
1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(t)

1 dHd−1, t ∈ [0, T ]. (1.12)

Under the assumption that only exactly three phases may meet along codimension two junc-
tions, and under the assumption that along each of these triple junctions the Herring angle
condition is satisfied in form of (where ni,j = ni,j(·, t) denotes the unit normal along the
interface Ii,j(t) pointing from the ith to the jth phase)

σi,jni,j + σj,knj,k + σk,ink,i = 0 (1.13)

for the associated pairwise distinct phases i, j, k ∈ {1, . . . , P}, the energy (1.12) is then
formally subject to the energy dissipation inequality

d

dt
E[Ω](t) +

1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(t)

|VIi,j |2 dHd−1 ≤ 0. (1.14)

After these preliminaries, we next turn to local-in-time existence and uniqueness of strong
solutions to multiphase mean curvature flow. We start with results concerning the evolution
of planar networks (i.e., d = 2) with equal surface tensions (i.e., the classical 120◦ Herring
angle condition at triple junctions). In this context, the first result establishing local-in-
time existence and uniqueness of strong solutions in Hölder spaces is due to Bronsard and
Reitich [25], who restrict themselves to the specific case of three regular curves γi : [0, 1] ×
[0, T ] → D ⊂ R2, (x, t) 7→ γi(x, t), i ∈ {1, 2, 3}, joining at a single triple junction, and
where D ⊂ R2 is an open and convex domain with smooth boundary. In their work, the
requirement (1.11) is expressed in terms of an evolution equation for the curves

∂tγ
i =

∂xxγ
i

|∂xγi|2
, i ∈ {1, 2, 3}, (1.15)

which corresponds to a special choice for the tangential velocity. The resulting system of
equations is then amended with compatibility conditions up to second order. This in par-
ticular includes the 120◦ Herring angle condition, which in turn necessitates a non-trivial
tangential velocity at the triple junction in order to allow for the motion of the junction.
Indeed, if the velocity vector at the triple junction for each curve would only consist of the
associated normal component, the velocity vector would have to vanish as a consequence.

Given an initial triod which is parametrized by three curves such that the required com-
patibility conditions up to second order hold, Bronsard and Reitich [25] (cf. also Mantegazza,
Novaga and Tortorelli [111]) then show local-in-time existence and uniqueness of strong so-
lutions to (1.15). A global-in-time existence result for strong solutions in a perturbative
regime of initial conditions close to minimal (Steiner) configurations is due to Kinderlehrer
and Liu [88]. Finally, the result of Bronsard and Reitich [25] can be extended to a local-in-
time existence and uniqueness result for the full network case in the plane, see the work of
Mantegazza, Novaga, Pluda and Schulze [110].

Results in the framework of strong solutions in Hölder spaces are also available for double
bubbles moving by mean curvature in ambient dimension d = 3. In the special case that
the three surfaces are represented by graphs over a fixed domain, this follows from the works
of Freire ([71] and [70]). For general double bubble clusters, local-in-time existence and
uniqueness is due to Depner, Garcke and Kohsaka [52] (cf. in this context also the works of
Schulze and White [138] as well as Gößwein, Menzel and Pluda [75]).

7



1. Introduction

There is also considerable interest in short-time existence results for the planar network
flow when considering non-regular networks as initial data. The main motivation stems from
configurations which arise from topology changes in the evolving partition (e.g., the collision
of two triple junctions) at which the above mentioned existence results for strong solutions
necessarily stop to hold. With this in mind, a short-time existence result for the curvature
flow of non-regular initial networks can thus be interpreted as a restarting result for the
curvature flow of a network past a singularity, which explains its importance. The first work
accomplishing this task is the paper by Ilmanen, Neves and Schulze [83]. An alternative
approach is provided in the very recent work of Lira, Mazzeo, Pluda and Saez [106].

Let us now turn to the existence theory for weak solutions to multiphase mean curvature
flow (1.11). The seminal work in this direction is the one of Brakke [23], who provides a global-
in-time existence result for general initial data in a geometric measure theory context. His
notion of solutions roughly speaking consists of a localized version of the energy dissipation
inequality (1.14), the so-called Brakke inequality, which is formulated in terms of an evolving
integral varifold with locally bounded first variation. Instead of diving into the technical
GMT details of the solution concept in the sense of Brakke, we refer the reader to the
inequality (1.19) below for a BV formulation of Brakke’s inequality.

Since solutions to multiphase mean curvature flow in the sense of Brakke are defined by
means of a localized energy dissipation principle alone, a sudden and arbitrary loss of surface
measure at any stage of the time evolution is admissible with the definition. Therefore,
the recently obtained existence result of Kim and Tonegawa [87] constitutes a significant
improvement since they succeeded in proving that a variant of Brakke’s original scheme
converges towards a non-trivial Brakke flow. Non-triviality of the evolution more precisely
follows from the fact that the authors can bound the total variation measure of the evolving
varifolds from below by the boundary measure of a partition of Rd formed by a finite family of
open sets (as introduced above). Moreover, the Lebesgue measure of this partition is shown
to depend continuously on the time parameter, thus preventing an arbitrary and sudden loss
of measure for the total variation of the evolving varifolds.

We finally comment on the BV formulation of energy dissipating solutions (1.14) to multi-
phase mean curvature flow (1.11). This solution concept is modeled on a time-evolving parti-
tion Ω = (Ω1(t), . . . ,ΩP (t))t∈[0,T ] of Rd, such that for all t ∈ [0, T ] each phase Ω1(t), . . . ,ΩP (t)
is a set of finite perimeter, and all phases except for, say, the P th phase have finite mass.
Denoting for each i ∈ {1, . . . , P} by χi ∈ L∞(0, T ;BVloc(Rd; {0, 1})) the time-dependent in-
dicator function associated with the ith phase, one then first requires the existence of normal
velocity vector fields Vi ∈ L2(0, T ;L2(Rd, d|∇χi|;Rd)) such that it holds in a distributional
sense

∂tχi + (Vi · ∇)χi = 0 in Rd×[0, T ] for all i ∈ {1, . . . , P}. (1.16)

A weak formulation of the evolution law (1.11) is given by imposing

P∑
i,j=1,i 6=j

σi,j

ˆ T ′

0

ˆ
Ii,j(t)

Vi · ϕdHd−1 dt

= −
P∑

i,j=1,i 6=j
σi,j

ˆ T ′

0

ˆ
Ii,j(t)

(Id−ni,j ⊗ ni,j) : ∇ϕdHd−1 dt

(1.17)

for almost every T ′ ∈ [0, T ] and all ϕ ∈ C∞cpt(Rd×[0, T ];Rd). The energy dissipation in-
equality (1.14) is finally imposed by defining the interface normal velocities VIi,j through
restriction of Vi to Ii,j .

Conditional global-in-time existence results of such BV solutions to multiphase mean
curvature flow are established by Laux and Otto [98] as well as Laux and Simon [101] (see also
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Laux and Lelmi [96] for the case of arbitrary mobilities). These works study the convergence
of numerical schemes for multiphase mean curvature flow based on an additional energy
convergence assumption in the spirit of the seminal work of Luckhaus and Sturzenhecker [109]
on an implicit time-discretization for two-phase mean curvature flow. More precisely, the
work of Laux and Otto [98] is concerned with the convergence of the thresholding scheme of
Merriman, Bence and Osher ([113] and [114]), and is based on the minimizing movements
reformulation of this scheme due to Esedoğlu and Otto [58]. Laux and Simon [101] in contrast
establish the convergence of solutions of the vector-valued Allen–Cahn equation.

Laux and Otto [99] in addition show the convergence of the thresholding scheme (again
under an additional energy convergence assumption) towards a BV formulation of multiphase
mean curvature flow which is in the spirit of Brakke’s varifold solution concept with a localized
energy dissipation principle at its heart. More precisely, next to working with a family
of time-dependent indicator functions χi ∈ L∞(0, T ;BVloc(Rd; {0, 1})) as in the previous
formulation, their BV formulation of Brakke flow requires the existence of a single vector
field H: Rd×[0, T ]→ Rd, which on one side has the interpretation of a mean curvature vector
in form of the weak formulation

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

H · ϕdHd−1 dt

= −
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(Id−ni,j ⊗ ni,j) : ∇ϕdHd−1 dt

(1.18)

for all ϕ ∈ C∞cpt(Rd×[0, T ];Rd), and on the other side gives rise to a localized energy dissipa-
tion inequality

1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(T )

ζ(·, T ) dHd−1 − 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(0)

ζ(·, 0) dHd−1

≤ 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

−ζ|H|2 + (H · ∇)ζ + ∂tζ dHd−1 dt (1.19)

for all non-negative ζ ∈ C∞cpt(Rd×[0, T ]; [0,∞)).
For reviews on the BV formulation of multiphase mean curvature flow (either in the sense

of (1.16)–(1.17) or in the sense of (1.18)–(1.19)), we finally refer the reader to Laux [95] and
Laux and Otto [100].

1.2.3 The two-phase Stefan problem with isotropic Gibbs–Thomson law

Consider the problem

∂t(u+ χ) = ∆u in Rd × [0, T ], (1.20)

where χ = χ(·, t) again denotes the characteristic function of an evolving open set Ω(t) in Rd,
t ∈ [0, T ]. This PDE is referred to as the (two-phase) Stefan problem, which is a model for
liquid-solid interface evolution accounting for freezing and melting processes. Interpreting
the variable u = u(·, t) as the deviation from the melting temperature of the material, a
simple modeling assumption consists of imposing u = 0 along the liquid-solid interface I(t)
for all t ∈ [0, T ]. This boundary condition leads to the classical (two-phase) Stefan problem.

However, this model does not account, e.g., for the phenomenon of supercooling (resp.
superheating), meaning that the fluid (resp. the solid) withstands temperatures below its
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freezing point (resp. above its melting point). To accommodate for such effects, one incorpo-
rates surface tension in form of

u = σHI along the liquid-solid interface I(t), t ∈ [0, T ], (1.21)

which is referred to as the isotropic Gibbs–Thomson law. In this context, HI = HI(·, t)
denotes the mean curvature of the interface I(t) oriented with respect to the normal pointing
inside Ω(t). The energy functional for the evolution problem (1.20)–(1.21) is then given by

E[χ, u](t) :=

ˆ
1

2
|u(·, t)|2 dx+ σ

ˆ
I(t)

1 dHd−1, t ∈ [0, T ], (1.22)

and formally subject to the energy dissipation inequality

d

dt
E[χ, u](t) +

ˆ
|∇u(·, t)|2 dx ≤ 0. (1.23)

In terms of strong solutions, one expresses the distributional formulation (1.20)–(1.21) in
form of the free boundary problem

∂tu−∆u = 0 in Rd \ I(t), (1.24)
u = σHI along I(t), (1.25)

VI = −
[
(n · ∇)u

]
I(t)

n along I(t) (1.26)

for all t ∈ [0, T ], where VI = VI(·, t) again denotes the normal velocity vector of the inter-
face I(t), n = n(·, t) the unit normal along I(t) pointing inside Ω(t), and [·]I(t) the jump
across the interface I(t) in the direction of the normal n.

Local-in-time existence of strong solutions to (1.24)–(1.26) was first provided by Radke-
vich [129] in a Hölder space setting. However, uniqueness of solutions within the considered
function spaces was left open. Escher, Prüss and Simonett [55] took care of this issue es-
tablishing a local-in-time existence and uniqueness result, proving in particular for positive
times real analyticity of the interface as well as smoothness of u away from the interface.
Strictly speaking, the results of Escher, Prüss and Simonett [55] are restricted to a model
geometry at the initial time (i.e., that the initial interface is given by a graph over the flat
model interface Rd−1×{0}) and a smallness assumption on the initial data. The extension to
general geometries for the initial interface is announced in Escher, Prüss and Simonett [55];
however, the author of this thesis was not able to locate this paper in the literature. Both
works of Radkevich [129] and Escher, Prüss and Simonett [55] are based on the approach by
the Hanzawa transform.

Turning to global-in-time existence of weak solutions to (1.20)–(1.21), one way to pro-
ceed is to consider again a BV formulation. Consistent with the energy dissipation inequal-
ity (1.23), one tries to construct u ∈ L∞(0, T ;L2(Rd)) with ∇u ∈ L2(0, T ;L2(Rd;Rd)) as
well as χ ∈ L∞(0, T ;BV (Rd; {0, 1})) satisfying

ˆ
(u+χ)(·, T ′)φ(·, T ′) dx−

ˆ
(u+χ)(·, 0)φ(·, 0) dx =

ˆ T ′

0

ˆ
(u+χ)∂tφ−∇u · ∇φ dx dt

(1.27)

for almost every T ′ ∈ [0, T ] and all φ ∈ C∞cpt(Rd×[0, T ]), as well as

−σ
ˆ T ′

0

ˆ
I(t)

(Id−n⊗ n) : ∇ϕdHd−1 dt = −
ˆ T ′

0

ˆ
χ∇ · (uϕ) dx dt (1.28)

10



1.2. Curvature driven interface evolution: A small sample of mathematical models

for almost every T ′ ∈ [0, T ] and all ϕ ∈ C∞cpt(Rd×[0, T ];Rd). Recalling (1.5), the iden-
tity (1.28) indeed represents a weak formulation of the isotropic Gibbs–Thomson law (1.21).

In the context of thisBV formulation, Luckhaus ([107] and [108]) provides a global-in-time
existence result for general initial data by considering a suitable implicit time-discretization.
His scheme (cf. the discussion of Röger [131, Section 4]) avoids a loss of interfacial surface area
in the limit of vanishing time-step size, thus enabling to take the limit in the approximations
of (1.28) without the need to pass to a varifold solution concept. This in turn is achieved
by selecting in each approximation step a global minimizer to an associated time-discrete
functional. The resulting limit consequently enjoys additional regularity properties which, as
noted by Röger [131, Section 1], may render the resulting limit as too restrictive.

Motivated by this observation, Röger [131] proposes a varifold solution concept which
generalizes the BV formulation (1.28) of the isotropic Gibbs–Thomson law (cf. [131, Defini-
tion 1.1 and Proposition 3.1] for the interpretation of the mean curvature vector, and [131,
Proposition 3.3] for the consistency with the BV formulation). He then establishes a global-
in-time existence result for general initial data in this varifold context based on a suitable
modification of the scheme of Luckhaus [108]. The limit passage in the varifold formula-
tion of the isotropic Gibbs–Thomson law is facilitated by a geometric measure theory result
of Schätzle [135] concerning hypersurfaces whose mean curvature is represented through an
ambient Sobolev function (which precisely resembles the case of (1.21)).

We conclude this section by mentioning that an important variant of the Stefan problem
with isotropic Gibbs–Thomson law (1.20)–(1.21) consists of its quasi-static version

∂tχ = ∆u in Rd × [0, T ]. (1.29)

Amended with the isotropic Gibbs–Thomson law, the resulting evolution problem is typically
referred to as the Mullins–Sekerka flow. Energy for the Mullins–Sekerka flow is given by
interfacial surface area alone

E[χ, u](t) := σ

ˆ
I(t)

1 dHd−1, t ∈ [0, T ], (1.30)

which is formally dissipated in form of
d

dt
E[χ, u](t) +

ˆ
|∇u(·, t)|2 dx ≤ 0. (1.31)

The Mullins–Sekerka equation (1.29) with isotropic Gibbs–Thomson law (1.21) may in fact
be derived as the H−1-gradient flow of the interface energy functional (1.30), cf. the review
article of Garcke [72, Section 2.5].

For local-in-time existence and uniqueness of strong solutions for the Mullins–Sekerka
equation based on the Hanzawa transformation approach, we refer the reader to the works of
Bazalii [17], Chen, Hong and Yi [35], and Escher and Simonett ([56] and [57]). In the context
of strong solutions, one may even allow for contact point dynamics with a fixed-in-time
contact angle of 90◦ as the work of Abels, Rauchecker and Wilke [8] shows.

A BV formulation of the Mullins–Sekerka equation (1.29) with isotropic Gibbs–Thomson
law (1.21) is obtained by requiring next to (1.28) the following obvious modification of (1.27)

ˆ
χ(·, T ′)φ(·, T ′) dx−

ˆ
χ(·, 0)φ(·, 0) dx =

ˆ T ′

0

ˆ
χ∂tφ−∇u · ∇φ dx dt (1.32)

for almost every T ′ ∈ [0, T ] and all φ ∈ C∞cpt(Rd×[0, T ]). As Luckhaus and Sturzenhecker
remark in their seminal work [109], their implicit time-discretization scheme can be used to
provide a global-in-time existence result for general initial data in this setting. Convergence
towards (1.28) is facilitated by an additional energy convergence assumption. Without the
latter, Röger [132] establishes in the spirit of his work on the two-phase Stefan problem [131]
a global-in-time existence result for general initial data in a varifold solution context.
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1.3 Uniqueness of weak solution concepts: What is known?

The main aim of this section is to summarize what has been known so far concerning unique-
ness properties of weak solution concepts with respect to the three models considered in
Section 1.2. To the best of the author’s knowledge, this in fact restricts to the well-posedness
of the level set approach to (two-phase) mean curvature flow. Uniqueness of weak solutions
in this context heavily relies on the availability of a comparison principle as well as partly on
techniques which are specific to the problem of mean curvature flow. However,

• neither two-phase Navier–Stokes flow with surface tension (1.1a)–(1.1c),

• nor multiphase (i.e., P ≥ 3 phases) mean curvature flow (1.11),

• nor the two-phase Stefan problem with isotropic Gibbs–Thomson law (1.20)–(1.21) resp.
the two-phase Mullins–Sekerka equation (1.29) with isotropic Gibbs–Thomson law (1.21)

satisfy a comparison principle, which is one of the main reasons why for these curvature driven
interface evolution models no uniqueness result for any associated weak solution concept has
been established so far (to the best of the author’s knowledge).

We conclude this section presenting an interesting result due to Jerrard and Smets [85],
who derived a weak-strong uniqueness principle for binormal curvature flow of curves in R3.
Even though they consider a geometric evolution equation for a codimension two object
(hence, in this sense not an interface evolution problem), we decided to include their result in
this section since their approach is based on a quantitative “weak-strong stability estimate”
which turns out to be the analogue for curves in R3 of our approach to the question of
weak-strong uniqueness for curvature driven interface evolution as presented in Chapter 2.

1.3.1 Well-posedness of the level set approach to mean curvature flow

The formulation of the level set approach to evolution by (two-phase) mean curvature flow
is basically the following. Consider an initial compact interface I(0), and assume that there
exists a continuous g : Rd → R such that I(0) can be represented as the zero level set of g,
i.e., it holds

I(0) =
{
x ∈ Rd : g(x) = 0

}
. (1.33)

We then consider for a function u : Rd×[0,∞)→ R the PDE

∂tu =
(

Id− ∇u
|∇u|

⊗ ∇u
|∇u|

)
: ∇2u in Rd×(0,∞), (1.34)

u(·, 0) = g in Rd, (1.35)

and define for all t ∈ [0,∞)

I(t) :=
{
x ∈ Rd : u(x, t) = 0

}
. (1.36)

Neglecting for the moment technical issues due to the degeneracy of the parabolic equa-
tion (1.34) and even its lack of a meaning whenever ∇u = 0, let us first motivate why (1.34)
indeed encodes that the interfaces (1.36) given by the zero level sets of u evolve by their mean
curvature. To this end, a straightforward computation reveals that for smooth solutions u
of (1.34) satisfying ∇u 6= 0, we may rewrite the PDE (1.34) in form of

∂tu =
(

Id− ∇u
|∇u|

⊗ ∇u
|∇u|

)
: ∇2u = |∇u|∇ ·

( ∇u
|∇u|

)
. (1.37)
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Since the vector field ∇u(·,t)
|∇u(·,t)| restricted to I(t) represents a unit normal along I(t), and

since ∂tu(·,t)
|∇u(·,t)| represents the normal speed of I(t) with respect to this unit normal, we in-

deed obtain that (1.34) in form of (1.37) encodes evolution by mean curvature of the level
sets (1.36) for smooth u with ∇u 6= 0.

The level set approach (1.34)–(1.36) to mean curvature flow was first considered by Osher
and Sethian [122], who devised numerical algorithms based on this formulation to compute
the motion of interfaces propagating with normal speeds depending on their mean curvature.
A rigorous and well-posed weak solution concept for the level set approach (typically referred
to in the literature as viscosity solutions) was then developed independently in the seminal
works of Chen, Giga and Goto [36] and Evans and Spruck [60]. The problem of the degeneracy
of the PDE (1.34) is dealt with by treating the problem from the viewpoint of the theory
of viscosity solutions to second order nonlinear PDEs (cf. the user’s guide to this theory by
Crandall, Ishii and Lions [42]), which, however, also needs to be extended in order to provide
a weak meaning of (1.34) whenever ∇u = 0.

The main result of the works by Chen, Giga and Goto [36] and Evans and Spruck [60]
then consists of the construction of a global-in-time unique viscosity solution to the level set
approach (1.34), so that moreover (1.36) is indeed well-defined by showing that these sets are
independent of the choice of g for the initial condition (1.33). These results are established
as consequences of two cornerstone principles underlying the theory of viscosity solutions to
second order nonlinear PDEs: the availability of a comparison principle in terms of sub- and
supersolutions as well as stability of the viscosity formulation with respect to limit passages.
Apart from well-posedness of viscosity solutions, one can also show consistency with smooth
solutions in form of a weak-strong uniqueness principle, cf. for instance Evans and Spruck [60,
Theorem 6.1]. The latter relies on specific properties of the signed distance function for sets
whose boundary evolves smoothly by mean curvature flow.

Despite of providing a well-posed theory of viscosity solutions for the level set approach
to mean curvature flow (1.34), there is a well-known shortcoming of the solution concept of
Chen, Giga and Goto [36] and Evans and Spruck [60], respectively. The problem consists of
the fact that the level set (1.36) in general may develop a non-trivial interior and thus fails to
describe an actual interface in form of a hypersurface. Interestingly, this phenomenon, which
is typically referred to as the fattening of level sets in the literature, can be explained in terms
of non-uniqueness of evolutions for an intrinsic viscosity formulation of mean curvature flow
due to Soner [146]. More precisely, Soner [146] first develops a viscosity formulation which
is purely based on the signed distance function associated with the underlying evolving sets,
then provides a global-in-time existence result for a maximal viscosity solution in this intrinsic
sense [146, Theorem 10.4], next shows that his weak formulation in general allows for non-
unique evolution [146, Section 8] by providing specific examples, and finally establishes that
this non-uniqueness is directly related to the fattening of level sets [146, Corollary 11.2] of
viscosity solutions in the sense of Chen, Giga and Goto [36] and Evans and Spruck [60].

Yet another view on viscosity solutions of Chen, Giga and Goto [36] and Evans and
Spruck [60] is provided by Ilmanen’s notion of set-theoretic subsolutions to evolution by
mean curvature flow (cf. [81] or [82, Paragraph 10]). A family of closed subsets (I(t))t∈[0,∞)

of Rd is called a set-theoretic subsolution to mean curvature flow if an avoidance principle
with respect to smooth solutions holds true: for all t′ ∈ [0,∞), all s ∈ (0,∞) and all smoothly
evolving compact interfaces (S(t))t∈[t′,t′+s] moving by mean curvature flow it is required

I(t′) ∩ S(t′) = ∅ =⇒ I(t) ∩ S(t) = ∅ for all t ∈ [t′, t′+s]. (1.38)

Based on a comparison principle for set-theoretic subsolutions [82, Lemma 10.2], Ilmanen then
proceeds by showing that any viscosity solution in the sense of Chen, Giga and Goto [36] and
Evans and Spruck [60] is in fact a maximal set-theoretic subsolution, and vice versa (cf. [82,
Lemma 10.4]).

13



1. Introduction

Ilmanen also provides in his work [82] an inclusion principle stating that the support
of any codimension one Brakke flow, whose support at the initial time is contained in the
zero level set of a viscosity solution, remains contained in the zero level set of this viscosity
solution at all later times (cf. [82, Theorem 10.7]). The proof of this fact is based on an
avoidance principle for codimension one Brakke flows and that any codimension one Brakke
flow in fact is a set-theoretic subsolution to mean curvature flow (cf. [82, Lemma 10.5 and
Lemma 10.6]).

We conclude our discussion of the level set approach to mean curvature flow by mentioning
that the theory of Chen, Giga and Goto [36] and Evans and Spruck [60] can be generalized
to the setting of mean curvature flow of surfaces with arbitrary codimension, which is due to
Ambrosio and Soner [13]. Their work in particular includes the higher codimension analogue
of Ilmanen’s inclusion principle with respect to Brakke flows, as well as a consistency check
in form of a weak-strong uniqueness principle (the latter based on specific properties of the
squared distance function to the smoothly evolving surface).

1.3.2 Binormal curvature flow of curves in R3

Consider a finite time horizon T ∈ (0,∞) and a family of embedded arc-length parametrized
closed curves (γ(·, t) : R/LZ→ R3, s 7→ γ(s, t))t∈[0,T ] in R3 for some L > 0. For a smoothly
evolving family of such curves, the binormal curvature flow is represented by

∂tγ = ∂sγ × ∂ssγ, (1.39)

with × denoting the cross product of vectors in R3. Existence of solutions to (1.39) in the
parametrized setting can only be guaranteed for short times due to the possibility of the
formation of self-intersections and/or collisions in finite time (cf. the discussion of Jerrard
and Smets [85]). To account for evolutions past such singularities, a suitable weak formulation
of (1.39) has to be considered.

One way to proceed is based on the following identity satisfied by smooth solutions to
evolution by binormal curvature flow (1.39)

d

dt

ˆ L

0
ϕ
(
γ(s, t)

)
· ∂sγ(s, t) ds = −

ˆ L

0

(
∇(∇×ϕ)

)
(x)
∣∣
x=γ(s,t)

: ∂sγ(s, t)⊗ ∂sγ(s, t) ds

(1.40)

for all ϕ ∈ C∞cpt(R3;R3), cf. Jerrard and Smets [85, Lemma 1]. The importance of (1.40) stems
from the observation that it can be generalized to a varifold setting. To this end, one considers
oriented varifolds V (i.e., a finite Radon measure on the product space (x, τ) ∈ R3×S2)
satisfying the compatibility condition

ˆ
R3×S2

ϕ(x) · τ dV (x, τ) =
∞∑
j=1

ˆ L

0
ϕ
(
γj(s)

)
· ∂sγj(s) ds (1.41)

for a family (γj : R/LZ → R3)j≥1 of injective Lipschitz closed curves in R3 such that∑∞
j=1 length(γj) < ∞. In the language of Federer and Fleming, the previous identity as-

serts that the first moment of the oriented varifold with respect to the “tangential variable”
τ ∈ S2 represents a so-called finite mass integral one current without boundary in R3.

Jerrard and Smets (cf. [85, Definition 2]) then introduce a weak solution concept for
binormal curvature flow of curves in R3 in terms of a time-dependent family of oriented
varifolds (V (·, ·, t))t∈[0,∞) subject to the compatibility condition (1.41), for which it is required
that

d

dt

ˆ
R3×S2

ϕ(x) · τ dV (x, τ, t) = −
ˆ
R3×S2

(
∇(∇×ϕ)

)
(x) : τ ⊗ τ dV (x, τ, t) (1.42)

14



1.4. Informal statement of main results

holds true for all ϕ ∈ C∞cpt(R3;R3) in analogy to (1.40), as well as that for all t ∈ [0,∞)
the mass |V |(R3×S2, t) is bounded from above by the mass of the underlying finite mass
integral one current without boundary in R3 at the initial time t = 0. Jerrard and Smets
then proceed by establishing a global-in-time existence result for general initial data [85,
Theorem 1] for this weak solution concept of binormal curvature flow of curves in R3.

Apart from a global-in-time existence result, Jerrard and Smets also prove a weak-strong
uniqueness principle [85, Theorem 2] showing that as long as a smooth solution to binormal
curvature flow of curves in R3 in the sense of (1.39) exists, any weak solution in the above
varifold sense (1.42) starting from the same initial smooth curve has to coincide with this
smooth solution (in the sense of the identity (1.45) below). The interesting point in connec-
tion with the topics of this thesis is that their qualitative uniqueness result is derived as a
consequence of a quantitative “weak-strong stability estimate” [85, Theorem 3]. This stability
estimate is moreover formulated in terms of a “distance measure” between a smooth and a
varifold solution to binormal curvature flow of curves in R3, which in fact is an analogue for
curves of our approach to weak-strong uniqueness for curvature driven interface evolution (cf.
Section 2.1 for two-phase evolution problems as well as the second part of Section 2.3 for its
generalization to varifold solution concepts).

More precisely, Jerrard and Smets introduce for a given smooth solution Γ = (γ(·, t))t∈[0,T ]

and a given varifold solution V = (V (·, ·, t))t∈[0,∞) with associated initial finite mass inte-
gral one current without boundary T0 the functionals

E1[V |Γ](t) := |T0| −
ˆ
R3×S2

ξ(x, t) · τ dV (x, τ, t) (1.43)

≥
ˆ
R3×S2

1− ξ(x, t) · τ dV (x, τ, t) =: E2[V |Γ](t), (1.44)

where ξ : R3×[0, T ] → R3 is some vector field associated with the strong solution Γ, and
where the lower bound (1.44) is a consequence of the requirement for a varifold solution that
|V |(R3×S2, t) ≤ |T0| for all t ∈ [0,∞). For E1[V |Γ] resp. E2[V |Γ] to be a suitable error
functional, it is required that for each t ∈ [0, T ] the vector field ξ(·, t) at least represents an
extension of the tangent vector field ∂sγ(·, t) subject to the length constraints |ξ(·, t)| ≤ 1
in R3 and |ξ(x, t)| = 1 if and only if x = γ(s, t) for some s ∈ R/LZ. Indeed, the second con-
dition ensures that E2[V |Γ] ≥ 0, whereas the combination of the first and the last condition
guarantees that E1[V |Γ] = E2[V |Γ] = 0 implies that the varifold solution V is given by the
natural varifold lift of the smooth solution Γ, i.e.,ˆ

R3×S2

ψ(x, τ) dV (x, τ, t) =

ˆ L

0
ψ
(
γ(s, t), ∂sγ(s, t)

)
ds (1.45)

for almost every t ∈ [0, T ] and all ψ ∈ C∞cpt(R3×S2), cf. [85, Proof of Theorem 2].
With these definitions in place, the already mentioned “weak-strong stability estimate” of

Jerrard and Smets for binormal curvature flow of curves in R3 then takes the form (for some
suitably constructed vector field ξ)∣∣∣∣ d

dt
E1[V |Γ](t)

∣∣∣∣ . E2[V |Γ](t) ≤ E1[V |Γ](t), t ∈ [0, T ], (1.46)

so that an application of Gronwall’s inequality and the properties of the functionals E1[V |Γ]
resp. E2[V |Γ] imply the asserted qualitative weak-strong uniqueness.

1.4 Informal statement of main results

In general, global-in-time uniqueness can not be expected in the class of weak solutions
for curvature driven interface evolution problems due to singularities. An example in the
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context of multiphase mean curvature flow is already included in the work of Brakke [23,
Section C.4 and Figure 5], cf. also our work [65, Figure 3] or the work of Lira, Mazzeo, Pluda
and Saez [106, Figure 3], where the same example is discussed. The example more precisely
concerns the singular planar configuration at which four phases meet at a quadruple junction
with equal angles of 90◦, for which two possible continuations of the evolution exist (by
splitting the quadruple junction into two separate triple junctions at which the correct angle
condition holds). On the other side, uniqueness may not be guaranteed even prior to the first
topology change and the resulting singular configuration. The prime example for this consists
of Brakke’s notion of varifold solutions to multiphase mean curvature flow as discussed in
the second part of Section 1.2, for which a sudden and arbitrary loss of surface measure
at any stage of the time evolution is admissible with the definition of his solution concept.
In particular, one can enforce non-uniqueness by hand at any time by simply replacing the
evolving varifold with the empty varifold.

In summary, the best one can hope for in the context of weak solution concepts for
curvature driven interface evolution problems is a conditional uniqueness result. A way
to formalize this consists of so-called weak-strong uniqueness principles: prior to the onset
of geometric singularities due to topology changes, weak solutions are unique in the class
of strong solutions. In other words, in the presence of a weak-strong uniqueness principle
non-uniqueness of the weak solution concept under consideration may only arise at the first
singular time of the unique strong solution. For general initial data, the first singular time
of a strong solution is of course expected to be finite. For example, one could think of grain
boundaries in an annealing metal which may collapse, or a liquid drop which may pinch-off
into two separate drops.

As already remarked at the beginning of the preceding Section 1.3, for interface evolution
problems not admitting a geometric comparison principle, as it is for instance the case in
multiphase geometric evolution equations or two-phase fluid flow, the derivation of a weak-
strong uniqueness principle or a weak-strong stability estimate represented to the best of
the author’s knowledge an open problem. The works presented in this thesis are precisely
concerned with such problems, and thus, again to the best of the author’s knowledge, are the
first to provide a positive result in this direction. We summarize in the following theorem
the main results of this thesis.

Theorem (Weak-strong uniqueness and stability of evolutions for two-phase Navier–Stokes
flow with surface tension and multiphase mean curvature flow; joint works with Julian Fischer,
Tim Laux, and Theresa M. Simon). Energy dissipating weak solutions to

• two-phase Navier–Stokes flow with surface tension (1.1a)–(1.1c) in the sense of Abels’ [1]
varifold solutions (u, χ, V ),

• planar multiphase mean curvature flow (1.11) in the sense of BV solutions (χi,Vi)i∈{1,...,P}
of Laux and Otto [98] resp. Laux and Simon [101],

• multiphase mean curvature flow (1.11) of double bubbles in R3 in the sense of BV solu-
tions (χi,Vi)i∈{1,2,3} of Laux and Otto [98] resp. Laux and Simon [101],

satisfy a weak-strong uniqueness principle: for each of these three curvature driven interface
evolution problems, as long as a strong solution exists, any energy dissipating weak solution
in the above sense starting from the same initial data has to coincide with the unique strong
solution.

Moreover, these qualitative uniqueness results are derived as a consequence of an associ-
ated weak-strong stability estimate, which is formulated in terms of a novel distance measure
between a strong and a weak solution. This distance measure is capable of controlling the
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1.5. The relative entropy method: Classical setting

interface error between a strong and a weak solution in a sufficiently strong sense, and its
interfacial contribution has the structure of a relative entropy with respect to the energy func-
tional given by interfacial surface area.

Precise versions of this result with references to the specific formulations of the underlying
solution concepts are given in Theorem 3.1, Theorem 4.1 and Theorem 5.1, respectively. Let
us mention in this context that a similar result holds true for energy dissipating weak solutions
of the Mullins–Sekerka equation (1.29) with isotropic Gibbs–Thomson law (1.21) in the sense
of the BV formulation (1.32) and (1.28), for which we refer to our forthcoming work [67].

The remainder of this thesis is structured as follows. We conclude this introduction with
the upcoming Section 1.5 by briefly discussing the concept of relative entropies in the classical
setting of a strictly convex and dissipated energy functional. Chapter 2 then provides a rather
extensive account on our novel notion of relative entropies for a class of interface evolution
problems, and thus serves as a unified framework behind our strategy for the derivation of
the main results of this thesis. Chapter 3, Chapter 4 and Chapter 5 finally contain the proofs
of our main results in the order they are mentioned in the previous theorem (cf. in this regard
the List of Collaborators and Publications section in the preamble to this thesis).

1.5 The relative entropy method: Classical setting

Weak-strong uniqueness principles happen to be true in a lot of classical applications from
mathematical continuum mechanics, at least if the problem under consideration satisfies an
energy dissipation principle. (However, there are counterexamples to this rule-of-thumb as
the work of Colombo, De Lellis, and De Rosa [41] shows.) For instance, in the case of
the incompressible Navier–Stokes equations, weak-strong uniqueness for energy dissipating
weak solutions was established by Leray [105] and Serrin [142]. Many more examples for the
validity of a weak-strong uniqueness principle are known in the context of mathematical fluid
mechanics. For a survey, we refer to the review article of Wiedemann [149].

One common feature to most of these results is that they rely on the relative entropy
method, which in turn originates in the works of Dafermos [43] and DiPerna [53] on conser-
vation laws. A relative entropy is a nonlinear functional measuring the “distance” between a
weak (denoted for concreteness by u) and a fixed strong solution (say v). In the case where
the problem under consideration is equipped with a dissipated strictly convex energy (or
entropy) functional E[ · ], one may obtain such a distance measure by subtracting the first
order approximation to E[ · ] around the “base point” v

E[u|v] := E[u]−DE[v](u− v)− E[v]. (1.47)

Convexity of the energy E[ · ] implies non-negativity of the relative entropy E[u|v] ≥ 0,
whereas strict convexity of E[ · ] ensures on top that E[u|v] = 0 if and only if u = v. Finally,
in order to control the time evolution of the quantity E[u|v] one in principle relies on only
two ingredients: i) the dissipation of energy in form of d

dtE[u] ≤ −D[u] for a non-negative
dissipation functional D[u] ≥ 0, and ii) the possibility of using (in general nonlinear) func-
tionals of the more regular strong solution v as a test function in the weak formulation of the
weak solution u. In classical applications of the relative entropy method (e.g., conservation
laws or fluid mechanics), one then leverages on the properties of the functional E[u|v] to
deduce an estimate of the form

d

dt
E[u|v] ≤ C(v)E[u|v]. (1.48)
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An application of Gronwall’s lemma in turn allows to infer from (1.48) weak-strong uniqueness
and stability in form of the estimate

E[u|v](t) ≤ eC(v)tE[u|v](0). (1.49)

With the general structure (1.47)–(1.49) of the relative entropy approach in place, we
provide for illustration purposes three specific examples describing how the general structure
materializes in some classical problem settings:

• (Conservation laws) We consider a scalar conservation law in spatial dimension d = 1
with smooth and strictly convex flux function F : R→ R given by

∂tu+ ∂x
(
F (u)

)
= 0 in R×(0,∞). (1.50)

More precisely, we are interested in so-called entropy solutions (cf. for what follows the
book of Evans [59, Subsection 11.4.3]) whose main defining condition consists of requiring
in a distributional sense

∂t
(
η(u)

)
≤ −∂x

(
q(u)

)
in R×(0,∞) (1.51)

for all entropy/entropy-flux pairs (η, q), meaning that the map η is smooth, strictly
convex, and it holds

q′ = F ′η′, (1.52)

where f ′ denotes the derivative of a differentiable f : R → R. For an entropy solu-
tion u and a given entropy/entropy-flux pair (η, q), we define the associated entropy
functional Eη[u] :=

´
η(u) dx.

Following Dafermos [43] and DiPerna [53], we then introduce for each entropy/entropy-
flux pair (η, q) a relative entropy

η(u|v) := η(u)− η′(v)(u−v)− η(v), u, v ∈ R,

as well as a relative entropy-flux

q(u|v) := q(u)− η′(v)
(
F (u)−F (v)

)
− q(v), u, v ∈ R.

It is important to observe that, for each fixed v ∈ R, the pair (η(·|v), q(·|v)) represents
again an admissible entropy/entropy-flux pair of (1.50), which in view of the entropy
condition (1.51) is then a key ingredient for the computation of the time evolution of the
error functional

Eη[u|v] :=

ˆ
η(u|v) dx. (1.53)

Note also that for bounded entropic solutions u and bounded strong solutions v, the
relative entropy Eη[u|v] is comparable to the L2 distance between u and v thanks to the
entropy η being smooth and strictly convex.

As usual in the context of the relative entropy approach, some form of improved regu-
larity is required at the level of the strong solution v. For instance, a stability estimate
for Eη[u|v] holds true once v is at least Lipschitz continuous (cf. Serre and Vasseur [140,
Section 3]). However, once one allows for discontinuities in the solution v (e.g., due to
shock waves) an estimate of the form (1.48) for Eη[u|v] in general fails. We refer the
reader to Serre and Vasseur [140, Section 3.1] for a concrete counterexample.
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During the last decade, a refined version of the relative entropy method—the theory
of weak-strong stability up to a (time-dependent) shift—has been developed in order
to incorporate discontinuities in the strong solution v. The basic idea is to shift the
discontinuity of v by a (time-dependent) velocity adapted to the entropic solution u.
For results based on this idea in the context of conservation laws, we refer to the works
of Leger [103], Leger and Vasseur [104], Serre and Vasseur ([139] and [141]), Kang and
Vasseur [86], Krupa and Vasseur ([92] and [93]), and finally Krupa [91].

• (Incompressible viscous fluid flow) We consider the Navier–Stokes equations (Ω ⊂ Rd)

∂tu+ (u · ∇)u = µ∆u−∇p+ f in Ω×[0, T ], (1.54)
∇ · u = 0 in Ω×[0, T ]. (1.55)

Weak solutions in the sense of Leray [105] and Hopf [80] are required to satisfy an energy
inequality of the form (strictly speaking, the integral version of it)

d

dt
E[u] ≤ −

ˆ
Ω
µ|∇u|2 dx+

ˆ
Ω
f · u dx (1.56)

with respect to kinetic energy

E[u] :=

ˆ
Ω

1

2
|u|2 dx. (1.57)

In this setting, the relative entropy ansatz (1.47) then simply boils down to

E[u|v] :=

ˆ
Ω

1

2
|u−v|2 dx = E[u]−

ˆ
Ω
v · (u−v) dx− E[v]. (1.58)

As already mentioned, weak-strong uniqueness based on an estimate for the time evolu-
tion of the L2 distance is due to Leray [105] in the full space setting and due to Serrin [142]
for domains.
For the incompressible Euler equations, the situation is known to be drastically different.
Scheffer [136] was the first to construct nontrivial weak solutions which are compactly
supported in time, see also the work of Shnirelman [145]. This phenomenon for the Euler
equations was later studied by De Lellis and Székelyhidi [44] as an instance of Gromov’s
h-principle (see also [45]). Their insights and techniques paved the way for a series of
works establishing further striking non-uniqueness results in mathematical fluid mechan-
ics. E.g., the resolution of Onsager’s conjecture by Isett [84] and Buckmaster, De Lellis,
Székelyhidi, and Vicol [27], the non-uniqueness of distributional solutions with bounded
kinetic energy of the 3D incompressible Navier–Stokes equations due to Buckmaster and
Vicol [26], or the non-uniqueness of entropy solutions for the isentropic compressible Eu-
ler equations due to Chiodaroli [37] and Chiodaroli, De Lellis, and Kreml [38], to mention
just a few of them.

• (Compressible viscous fluid flow) As a third and last example, we consider the following
compressible Navier–Stokes system (Ω ⊂ Rd)

∂tρ+∇ · (ρu) = 0 in Ω×[0, T ], (1.59)
∂t(ρu) +∇ · (ρu⊗ u) = ∇ · S(∇u)−∇p(ρ) + ρf in Ω×[0, T ], (1.60)

with the viscous stress tensor defined by S(∇u) := µ
(
∇u+(∇u)T− 2

3(∇·u)Id
)
+η(∇·u)Id,

and the pressure p = p(ρ) ∈ C[0,∞) ∩C2(0,∞) being subject to the conditions (γ > 3
2)

p(0) = 0, p′ > 0 in (0,∞),
p′(ρ)

ργ−1
→ a > 0 as ρ→∞,

H(ρ) := ρ

ˆ ρ

0

p(z)

z2
dz <∞ for all ρ > 0.
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In this context, Feireisl, Jin, and Novotný [62] (see also the work of Germain [74]) provide
a weak-strong uniqueness principle for weak solutions of (1.59)–(1.60) with finite energy

E[ρ, u] :=

ˆ
Ω

1

2
ρ|u|2 +H(ρ) dx.

Defining the auxiliary quantity H(ρ|r) := H(ρ) − H ′(r)(ρ−r) − H(r), the associated
relative entropy for a given strong solution (r, v) is given by

E[ρ, u|r, v] :=

ˆ
Ω

1

2
ρ|u−v|2 +H(ρ|r) dx.

We conclude by mentioning that their analysis can be extended to the case of the full
Navier–Stokes–Fourier system, see the work of Feireisl and Novotný [63].

The main contribution of the works contained in this thesis consists of a suitable adap-
tation of the classical relative entropy ansatz (1.47) to a certain class of curvature driven
interface evolution equations. The next chapter is devoted to a detailed exposition of our
relative entropy approach for such problems, adopting in the process a viewpoint which is as
general as possible.
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CHAPTER 2
The relative entropy approach for a
class of interface evolution problems

To the best of the author’s knowledge, no analogue of the relative entropy method has
been used or developed for interface evolution problems in general. In our recent works [64]
and [65], we introduced a notion of a relative entropy for two-phase and multiphase evolution
problems, respectively, for which the total energy functional is dissipated and contains an
interfacial energy contribution being proportional to the surface area of the evolving interface.
(In the multiphase case, the constant of proportionality is allowed to vary for interfaces
corresponding to different pairs of phases.) In these works, our novel concept of a relative
entropy for interface evolution problems serves the crucial purpose of overcoming the lack of
a geometric comparison principle.

It is the aim of this chapter to give a rather precise and extensive account on the main
ideas and principles underlying our approach to the uniqueness problem for such curvature
driven interface evolution problems. In particular, we want to emphasize those parts of our
arguments which do not specifically rely on the precise formulation of the free boundary
problem at hand (i.e., an equation for the normal velocity vector). The ideas presented in
this chapter therefore constitute a unified framework connecting all the results on uniqueness
properties of weak solution concepts mentioned in Section 1.4 above.

For the purposes of most of this chapter, we put ourselves in the most simple situation
and consider only energy functionals given by the surface area of the evolving interface (up to
proportionality constants, which in the multiphase case may vary for interfaces corresponding
to different pairs of phases). In particular, we will neglect further contributions to the energy
functional (e.g., kinetic energy in two-phase fluid flow with sharp interface). We will also
exclude for the sake of the discussion the possibility that the evolving interface may intersect
the boundary of a given domain, and instead consider a full-space setting (under a finite mass
assumption for all except of one of the phases). The reader may keep in mind the case of
evolution by mean curvature as a prime example.

In light of these simplifying restrictions, we conclude this chapter by a discussion of the
robustness of our relative entropy approach to curvature driven interface evolution problems.
More precisely, we remark how the ideas and principles of the following two sections extend
and/or apply to other settings, including two-phase fluid flow driven by surface tension (in
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2. The relative entropy approach for a class of interface evolution problems

particular, the extension to varifold solution concepts), interface evolution in bounded do-
mains with the possibility of boundary contact of the interface with a fixed-in-time contact
angle, and finally the derivation of convergence rates for diffuse interface models to a sharp
interface limit. Parts of this discussion include an outlook on possible future projects.

2.1 The relative entropy method: The case of two phases

For the purposes of this section, we fix the following setup. Let T ∈ (0,∞) be a finite time
horizon, let Ω = (Ω(t))t∈[0,T ] be a family of sets of finite perimeter in Rd (modeling the phase
of a weak solution) with finite mass, and let the reduced boundary I(t) := ∂∗Ω(t) of Ω(t) be
the associated interface for all t ∈ [0, T ]. We are interested in interface evolution problems
with an interfacial energy contribution proportional to the surface area of the interface

E[Ω](t) := σ

ˆ
I(t)

1 dHd−1, t ∈ [0, T ], (2.1)

with the proportionality factor given by surface tension σ > 0. Moreover, consider a
“smoothly evolving” family of open and bounded sets Ω̄ = (Ω̄(t))t∈[0,T ] (modeling the phase
of a strong solution) with “smoothly evolving” interfaces Ī(t) := ∂Ω̄(t) for all t ∈ [0, T ].
(One way to encode a smooth evolution would be to assume that Ω̄(0) ⊂ Rd is an open and
bounded set with finitely many connected components and smooth boundary ∂Ω̄(0), and
that there exists a smooth space-time diffeomorphism Ψ: Rd×[0, T ] → Rd×[0, T ] such that
Ω̄(t)×{t} = Ψ(Ω̄(0), t) for all t ∈ [0, T ].)

We aim to introduce a quantity E[Ω|Ω̄] which is based on the energy functional (2.1),
mimics the structural properties of a classical relative entropy as in (1.47), and gives sufficient
control on the interface error between the two evolving interfaces (I(t))t∈[0,T ] and (Ī(t))t∈[0,T ].
To this end, we make use of duality to rewrite the energy (2.1) in form of

E[Ω](t) = sup
ξ∈C1

cpt(Rd;Rd), ‖ξ‖L∞≤1

ˆ
Ω(t)
∇ · σξ dx.

This in turn motivates the following ansatz

E[Ω|Ω̄](t) := σ

ˆ
I(t)

1− n(·, t) · ξ(·, t) dHd−1, t ∈ [0, T ], (2.2)

where n(·, t) denotes the (measure-theoretic) unit normal along the reduced boundary I(t)
pointing inside the phase Ω(t), and ξ is a smooth space-time vector field such that along the
smooth interface Ī(t) it coincides with the inward pointing unit normal vector field

ξ(·, t) = n̄(·, t) on Ī(t). (2.3)

Away from the interface, the length of ξ is moreover required to decrease quadratically in the
distance to the interface

|ξ(·, t)| ≤ 1− cmin{dist2(·, Ī(t)), 1} in Rd (2.4)

for some c ∈ (0, 1]. One should recall at this point that a similar construction to (2.2)
was already employed by Jerrard and Smets [85] for a codimension two problem, namely the
derivation of a weak-strong uniqueness principle for the evolution of curves in R3 by binormal
curvature flow.
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2.1. The relative entropy method: The case of two phases

The requirements on the vector field ξ are coercivity conditions in the sense that they
ensure non-negativity E[Ω|Ω̄] ≥ 0, and that the validity of E[Ω|Ω̄](t) = 0 for t ∈ [0, T ] implies
I(t) ⊂ Ī(t). Moreover, property (2.4) immediately entails that

ˆ
I(t)

min{dist2(·, Ī(t)), 1} dHd−1 ≤ c−1σ−1E[Ω|Ω̄](t). (2.5)

Note that E[Ω|Ω̄](t) also yields tilt-excess type control of the error in the interface normals
since trivially

ˆ
I(t)
|n(·, t)−ξ(·, t)|2 dHd−1 ≤ 2σ−1E[Ω|Ω̄](t). (2.6)

Finally, the ansatz (2.2) indeed resembles the structural form (1.47) of a classical relative
entropy as one may compute by an integration by parts and the properties of the vector
field ξ

E[Ω|Ω̄](t) = E[Ω](t) +

ˆ
Ω(t)

(∇ · σξ)(·, t) dx (2.7)

= E[Ω](t)−
ˆ

(χ−χ̄)(·, t)
(
∇ · (−σξ)

)
(·, t) dx− E[Ω̄](t),

where χ(·, t) and χ̄(·, t) denote the characteristic functions of the phases Ω(t) and Ω̄(t),
respectively.

In particular, in order to control the time evolution of the interface error functional
E[Ω|Ω̄], one in principle only relies on inserting ∇ · σξ as a test function into the evolution
equation for the time-evolving phase Ω(t) of the weak solution, and an energy dissipation
principle to control the contribution of the term d

dtE[Ω]. With respect to the former, we of
course need in addition an appropriate control on the time evolution of the vector field ξ. To
this end, it turns out to be beneficial (in the two-phase case mostly for clarity of exposition
and efficient organization of terms in the time evolution of the relative entropy) to introduce
a second vector field B, which shall represent a smooth space-time vector field whose normal
component along Ī equals the normal velocity VĪ of the smoothly evolving interface Ī:

((B · n̄) n̄)(·, t) = VĪ(·, t).

Since the vector field ξ extends the unit normal of the interface Ī, which itself gets transported
and rotated as a consequence of the motion of the interface, one may guess that the differential
operator ∂tξ+(B ·∇)ξ+(∇B)Tξ captures the evolution of the vector field ξ (up to admissible
error terms in the distance to the interface Ī). We refer to the next subsection for an
explanation of how to capitalize on the structure of this differential operator.

Of course, the arguments needed to eventually arrive at an estimate of the form (1.48) are
at some point specific to the geometric evolution equation under consideration. However, a
large part of the involved computations are in principle generic, and in order to underline this
fact, we will present in the next subsection the problem independent part of the computation
of the time evolution of the error functional E[Ω|Ω̄]. In this context, it is an interesting
observation that these computations will naturally lead to (the BV formulation of) the mean
curvature functional associated with the interface I(t) tested against B(·, t), i.e., formally

−
ˆ
I(t)

(Id−n⊗ n)(·, t) : ∇B(·, t) dHd−1 =

ˆ
I(t)

HI(·, t) ·B(·, t) dHd−1 (2.8)

with HI(·, t) denoting the mean curvature vector of the interface I(t), and where B is the
above mentioned velocity vector field. This may serve as one explanation why the relative
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2. The relative entropy approach for a class of interface evolution problems

entropy approach based on the error functional (2.2) is particularly well suited to curvature
driven interface evolution problems. In terms of the examples from Section 1.2, the left hand
side of (2.8) interpreted as the functional

C1
cpt(Rd;Rd) 3 ϕ 7→ −

ˆ
I(t)

(Id−n⊗ n)(·, t) : ∇ϕdHd−1 (2.9)

is naturally an integral constituent of the corresponding weak (i.e., BV ) formulation:

• In the case of evolution by mean curvature, the functional (2.9) is directly linked to
the normal velocity of the evolving interface I. For this example, the normal component
along Ī of the velocity vector field B is given by the mean curvature vector of the smoothly
evolving interface Ī.

• In the case of the Mullins–Sekerka equation, the functional (2.9) appears in the weak
formulation of the Gibbs–Thomson law, and the normal component along Ī of B may
be chosen as the jump across Ī of the Neumann data for the temperature field of the
smoothly evolving solution.

• In the case of two-phase Navier–Stokes flow with sharp interface, the functional (2.9) is
part of the weak formulation of the Young–Laplace law, and thus represents a coupling
term between the evolution equation for the domain occupied by one of the fluids and the
evolution equation for the fluid velocity. In this setting, one fixes the normal component
of B along Ī as the normal component of the fluid velocity of the smoothly evolving
solution.

2.1.1 The time evolution of the two-phase relative entropy

In the above setting, denote by χ(·, t) the indicator function of the phase Ω(t) for all t ∈
[0, T ]. We further write VI(·, t) for the normal velocity vector field of the associated evolving
interface I(t), i.e., it holds in a distributional sense

∂tχ+ (VI · ∇)χ = 0. (2.10)

Based on the representation (2.7) of the relative entropy functional (2.2), one may then
compute (we omit for notational convenience the dependence on the time variable)

d

dt
E[Ω|Ω̄] =

d

dt
E[Ω] +

d

dt

ˆ
χ(∇ · σξ) dx

=
d

dt
E[Ω]− σ

ˆ
I
(∇ · ξ)(VI · n) dHd−1 − σ

ˆ
I

n · ∂tξ dHd−1.

We next add zero to the last right hand side term of the previous display in order to generate
the proposed PDE for the time evolution of the vector field ξ, which yields after adding
another zero in a second step

−σ
ˆ
I

n · ∂tξ dHd−1 = −σ
ˆ
I

n ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
dHd−1

+ σ

ˆ
I

n · (B · ∇)ξ dHd−1 + σ

ˆ
I
ξ · (n · ∇)B dHd−1

= −σ
ˆ
I
(n−ξ) ·

(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
dHd−1

− σ
ˆ
I
ξ ·
(
∂tξ+(B · ∇)ξ

)
dHd−1

+ σ

ˆ
I
ξ ·
(
(n−ξ) · ∇

)
B dHd−1 + σ

ˆ
I

n · (B · ∇)ξ dHd−1.

24



2.1. The relative entropy method: The case of two phases

By an application of the product rule and by adding zero, one may rewrite the last right
hand side term of the previous display in a form which generates the BV formulation of the
mean curvature functional (2.9)

σ

ˆ
I

n · (B · ∇)ξ dHd−1 = σ

ˆ
I

n ·
(
∇ · (ξ ⊗B)

)
dHd−1 − σ

ˆ
I
(n · ξ − 1)(∇ ·B) dHd−1

− σ
ˆ
I
(Id−n⊗ n) : ∇B dHd−1 − σ

ˆ
I

n · (n · ∇)B dHd−1.

Moreover, due to an integration by parts in the first right hand side term of the previous
display, the symmetry relation ∇ · (∇ · (ξ ⊗ B)) = ∇ · (∇ · (B ⊗ ξ)), as well as the product
rule, we may also compute

σ

ˆ
I

n ·
(
∇ · (ξ ⊗B)

)
dHd−1 = −σ

ˆ
χ∇ · (∇ · (ξ ⊗B)) dx

= −σ
ˆ
χ∇ · (∇ · (B ⊗ ξ)) dx

= σ

ˆ
I

n ·
(
∇ · (B ⊗ ξ)

)
dHd−1

= σ

ˆ
I
(∇ · ξ)(n ·B) dHd−1 + σ

ˆ
I

n · (ξ · ∇)B dHd−1.

The combination of the previous four displays thus yields the following preliminary identity
for the time evolution of the relative entropy functional

d

dt
E[Ω|Ω̄] =

d

dt
E[Ω]− σ

ˆ
I
(∇ · ξ)

(
(VI−B) · n

)
dHd−1 (2.11)

− σ
ˆ
I
(Id−n⊗ n) : ∇B dHd−1

− σ
ˆ
I
(n−ξ) ·

(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
dHd−1

− σ
ˆ
I
ξ ·
(
∂tξ+(B · ∇)ξ

)
dHd−1

− σ
ˆ
I
(n · ξ − 1)(∇ ·B) dHd−1

− σ
ˆ
I
(n−ξ) ·

(
(n−ξ) · ∇

)
B dHd−1.

The first three right hand side terms of (2.11) are precisely those requiring a further
processing on an individual basis for a given specific two-phase free boundary problem. This
possibly involves further restrictions on the pair of vector fields (ξ,B) in addition to the
already stated properties. For instance, the reader may consult the first part of Section 4.2
for the argument in the context of evolution by mean curvature. There, the additional
condition (B · ξ +∇ · ξ)(·, t) = O(min{dist(·, Ī(t)), 1}) shows up, which is natural recalling
that ξ represents an extension of the unit normal of Ī.

The last four right hand side terms of (2.11), however, can already be dealt with in the
general setting of this subsection as follows. Under the assumption of a uniform bound on the
gradient of the velocity vector field B it is a trivial consequence of the definition (2.2) and the
coercivity property (2.6) that the last two right hand side terms of (2.11) are controlled by the
two-phase relative entropy E[Ω|Ω̄]. Appealing in addition to the coercivity property (2.5),
and provided that the following error bounds hold true for the time evolution of the vector
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2. The relative entropy approach for a class of interface evolution problems

field ξ as well as its length(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
(·, t) = O

(
min

{
dist(·, Ī(t)), 1

})
in Rd, (2.12)(

∂t|ξ|2+(B · ∇)|ξ|2
)
(·, t) = O

(
min

{
dist2(·, Ī(t)), 1

})
in Rd, (2.13)

also the fourth and fifth right hand side term of (2.11) are controlled by the two-phase relative
entropy E[Ω|Ω̄].

It thus remains to argue how to establish the estimates (2.12) and (2.13), which in turn
requires to provide an explicit construction of the pair of vector fields (ξ,B) given a smoothly
evolving phase (Ω̄(t))t∈[0,T ] with smoothly evolving interface (Ī(t))t∈[0,T ]. In the two-phase
setting, this is rather straightforward and essentially a consequence of the assumed regu-
larity of the interface. More precisely, we may appeal first to the tubular neighborhood
theorem in order to fix a scale r̄ ∈ (0, 1) such that within the space-time tubular neighbor-
hood

⋃
t∈[0,T ]{x ∈ Rd : dist(x, Ī(t)) < r̄}×{t} the associated signed distance function sĪ(·, t)

to Ī(t) (with its orientation fixed by requiring ∇sĪ(·, t) = n̄(·, t) along Ī(t)) and the projec-
tion PĪ(·, t) onto the nearest point on Ī(t) are smooth space-time functions. Denoting further
by η a smooth quadratic cut-off satisfying min{r2, 1} ≤ 1− η(r) ≤ C min{r2, 1} for all r ∈ R
and some constant C > 1 as well as supp η ⊂ [−1, 1], and by VĪ(·, t) the normal velocity
vector field of the smoothly evolving interface Ī(t) for all t ∈ [0, T ], we then simply define for
all (x, t) ∈ Rd×[0, T ]

ξ(x, t) := η
(
r̄−1sĪ(x, t)

)
∇sĪ(x, t), (2.14)

B(x, t) := η
(
r̄−1sĪ(x, t)

)
VĪ

(
PĪ(x, t), t

)
. (2.15)

Note that (2.3) and (2.4) are immediate consequences of the definition (2.14). The esti-
mate (2.12) follows from the properties of the cut-off η, the definitions (2.14) resp. (2.15),
the chain rule, and differentiating with respect to the spatial variable the identity

∂tsĪ(x, t) +
(
VĪ

(
PĪ(x, t), t

)
· ∇)sĪ(x, t) = 0, (x, t) : dist(x, Ī(t)) < r̄, (2.16)

which in turn is a well-known property for smooth evolutions. The estimate (2.13) finally
follows from |ξ(x, t)|2 = η2

(
r̄−1sĪ(x, t)

)
, the properties of η, the definition (2.15), the chain

rule, and the evolution equation for the signed distance from the previous display. Observe
carefully that this argument even works when including a smooth “tangential component” in
the definition (2.15) of the velocity B, which may prove helpful in applications.

2.1.2 Control in the limit of vanishing interface measure: The bulk error

Once one succeeded in providing a stability estimate in form of (1.48) with respect to the
relative entropy (2.2), one may deduce from it a “weak-strong inclusion principle” for the
underlying interface evolution problem:

I(0) ⊂ Ī(0) up to Hd−1 null sets

=⇒ I(t) ⊂ Ī(t) up to Hd−1 null sets for a.e. t ∈ [0, T ]. (2.17)

In words, the property of the interface of the weak solution being contained in the interface
of the strong solution is stable with respect to the flow.

However, it is clear that any argument which is solely based on the error functional (2.2)
can not provide a full weak-strong uniqueness principle in form of

Ω(0) = Ω̄(0) up to a Lebesgue null set
=⇒ Ω(t) = Ω̄(t) up to a Lebesgue null set for a.e. t ∈ [0, T ]. (2.18)

26



2.1. The relative entropy method: The case of two phases

For example, it holds E[Ω|Ω̄](t) = 0 if Ω(t) = ∅ whereas (2.18) is obviously violated for
non-trivial evolution of the strong solution.

This observation motivates to introduce a second error functional which directly controls
the L1 error between the two solutions Ω and Ω̄, and thus takes care of the lack of coercivity
of the relative entropy (2.2) in the limit of vanishing interface measure for the weak solution.
To this end, denoting again by χ(·, t) (resp. χ̄(·, t)) the indicator function of the phase Ω(t)
of the weak solution (resp. the phase Ω̄(t) of the strong solution) one defines for all t ∈ [0, T ]

Ebulk[Ω|Ω̄](t) :=

ˆ
(χ−χ̄)(·, t)ϑ(·, t) dx, (2.19)

where ϑ : Rd×[0, T ] → [−1, 1] is a smooth weight subject to (at least) the following require-
ments:

min{dist(·, Ī(t)), 1} ≤ |ϑ(·, t)| ≤ C min{dist(·, Ī(t)), 1}, (2.20)

ϑ(·, t) < 0 in Ω̄(t), ϑ(·, t) > 0 in Rd \ Ω̄(t) (2.21)

for some C ≥ 1 and all t ∈ [0, T ], where Ω̄(t) denotes the closure of Ω̄(t). Note that the
sign conditions of (2.21) are precisely what is needed to ensure non-negativity of the error
functional (2.19)

Ebulk[Ω|Ω̄](t) =

ˆ
|(χ−χ̄)(·, t)| |ϑ(·, t)|dx =

ˆ
Ω(t)∆Ω̄(t)

|ϑ(·, t)| dx ≥ 0. (2.22)

The second equality of the previous display together with (2.20) moreover show that the error
functional (2.19) is a slight modification of the well-known distance functional employed in
the famous works of Almgren, Taylor and Wang [10] and Luckhaus and Sturzenhecker [109],
respectively. In particular, for any t ∈ [0, T ]

Ebulk[Ω|Ω̄](t) = 0 =⇒ Ω(t) = Ω̄(t) up to a Lebesgue null set. (2.23)

In order to deduce a weak-strong uniqueness principle of the form (2.18), the goal therefore
is to establish a stability estimate à la Gronwall in terms of Ebulk[Ω|Ω̄]. In the spirit of the
previous subsection, we briefly discuss the part of the argument which is independent of
the specific geometric evolution equation under consideration. Appealing to the evolution
equation (2.10) of the phase of the weak solution, and noting that (2.21) implies ϑ(·, t) = 0
along Ī(t) for all t ∈ [0, T ], it follows (we again omit the dependence on the time variable)

d

dt
Ebulk[Ω|Ω̄] = −

ˆ
I
(VI · n)ϑ dHd−1 +

ˆ
(χ−χ̄)∂tϑ dx

= −
ˆ
I
(VI · n)ϑ dHd−1 −

ˆ
(χ−χ̄)(B · ∇)ϑ dx

+

ˆ
(χ−χ̄)

(
∂tϑ+(B · ∇)ϑ

)
dx,

where B denotes the velocity vector field from the computation of the time evolution of the
two-phase relative entropy (2.2). By an application of the product rule, an integration by
parts, and again using that ϑ(·, t) = 0 along Ī(t) for all t ∈ [0, T ], we further compute

−
ˆ

(χ−χ̄)(B · ∇)ϑ dx =

ˆ
(χ−χ̄)(∇ ·B)ϑ dx−

ˆ
(χ−χ̄)∇ · (ϑB) dx

=

ˆ
(χ−χ̄)(∇ ·B)ϑ dx+

ˆ
I
(B · n)ϑ dHd−1.
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Hence, the previous two displays imply

d

dt
Ebulk[Ω|Ω̄] = −

ˆ
I

(
(VI−B) · n

)
ϑ dHd−1 +

ˆ
(χ−χ̄)

(
∂tϑ+(B · ∇)ϑ

)
dx (2.24)

+

ˆ
(χ−χ̄)(∇ ·B)ϑ dx.

Under the assumptions that(
∂tϑ+(B · ∇)ϑ

)
(·, t) = O

(
min{dist(·, Ī(t)), 1}

)
in Rd (2.25)

and that the gradient of the velocity vector field B is uniformly bounded, the last two right
hand side terms of (2.24) are immediately controlled by the error functional (2.19) due to its
definition and (2.20). Realizing (2.25) in the two-phase setting is in turn straightforward by
means of the following procedure. Fixing a smooth truncation of the identity ϑ̄ : R→ [−1, 1]
satisfying min{|r|, 1} ≤ |ϑ̄(r)| ≤ C min{|r|, 1} for some C ≥ 1 and all r ∈ [−1, 1], |ϑ̄(r)| = 1
for all r ∈ R \ [−1, 1], as well as ϑ̄(r) < 0 for r > 0 resp. ϑ̄(r) > 0 for r < 0, we define for all
(x, t) ∈ Rd×[0, T ]

ϑ(x, t) := ϑ̄
(
r̄−1sĪ(x, t)

)
, (2.26)

where the tubular neighborhood scale r̄ ∈ (0, 1] and the signed distance function sĪ are chosen
as in the previous subsection. Note that the conditions (2.20)–(2.21) are obviously satisfied
due to the definition (2.26). Validity of the approximate evolution equation (2.25) is in turn
a consequence of the properties of the smooth truncation of the identity ϑ̄, the chain rule,
the evolution equation (2.16) of the signed distance function, and the choice (2.15) of the
velocity vector field B from the previous subsection.

Post-processing the first right hand side term of (2.24) again has to be performed on
a case-by-case basis for each specific free boundary problem at hand. This may require
additional restrictions on the weight ϑ. It is furthermore expected that one relies on an
already closed stability estimate for the interfacial relative entropy (2.2) in order to close the
Gronwall argument for the bulk error functional (2.19). (This is indeed the case for all the
results of this thesis.)

2.2 The relative entropy method: The case of multiple phases

Let P ≥ 3, and consider for the case of multiple phases a time-evolving partition Ω =
(Ω1(t), . . . ,ΩP (t))t∈[0,T ] of Rd such that for all t ∈ [0, T ] each phase Ω1(t), . . . ,ΩP (t) is a
set of finite perimeter, and all phases except for, say, the P th phase have finite mass. For
distinct phases i, j ∈ {1, . . . , P} and all t ∈ [0, T ], we denote by Ii,j(t) := ∂∗Ωi(t) ∩ ∂∗Ωj(t)
the interface between the ith and the jth phase. We also write ni,j(·, t) for the (measure-
theoretic) unit normal along Ii,j(t) pointing from the ith to the jth phase, i.e., the restriction
to Ii,j(t) of the (measure-theoretic) unit normal n∂∗Ωj(t) along the reduced boundary ∂∗Ωj(t)
pointing inside Ωj(t). We are then interested in multiphase interface evolution problems with
an interfacial energy contribution given by

E[Ω](t) :=
1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(t)

1 dHd−1, t ∈ [0, T ], (2.27)

with proportionality factors given by a (symmetric) matrix of surface tensions σ ∈ Rd×d>0 . We
also consider a smoothly evolving partition Ω̄ = (Ω̄1(t), . . . , Ω̄P (t))t∈[0,T ] of Rd, with all the
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phases except for the P th phase having finite mass, and the interfaces Īi,j(t) := ∂Ω̄i(t)∩∂Ω̄j(t)
being smooth for all t ∈ [0, T ] and all distinct i, j ∈ {1, . . . , P}.

The multiphase analogue for the interface error functional (2.2) is simply given by the
ansatz

E[Ω|Ω̄](t) :=
1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(t)

1− ni,j(·, t) · ξi,j(·, t) dHd−1, t ∈ [0, T ]. (2.28)

Basic coercivity of this error functional follows from requiring the smooth vector fields ξi,j
to coincide along the interface Īi,j(t) with the unit normal n̄i,j(·, t) pointing from Ω̄i(t) to
Ω̄j(t) for all t ∈ [0, T ], and to satisfy away from the interface Īi,j(t) the length constraint
|ξi,j(·, t)| ≤ 1 − cmin{dist2(·, Īi,j(t)), 1} for all t ∈ [0, T ] and some c ∈ (0, 1]. However,
without further conditions on the family of vector fields (ξi,j)i 6=j we can not simply proceed
by an integration by parts as in (2.7) to rewrite the ansatz (2.28) into a form structurally
resembling the one of classical relative entropies (1.47).

The additional necessary ingredient in the multiphase case is given by the following alge-
braic relation: we assume that there exists a family of smooth vector fields (ξi)i∈{1,...,P} such
that

σi,jξi,j = ξi − ξj . (2.29)

Provided the structural requirement (2.29) is satisfied, one may then use the skew-symmetry
relation ni,j = −nj,i to rewrite the multiphase relative entropy (2.28) as follows

E[Ω|Ω̄](t) = E[Ω](t)− 1

2

P∑
i,j=1,i 6=j

ˆ
Ii,j(t)

ni,j(·, t) · (ξi−ξj)(·, t) dHd−1

= E[Ω](t) +
P∑
i=1

ˆ
∂∗Ωi(t)

n∂∗Ωi(t) · ξi(·, t) dHd−1.

Instead of surface integrals over individual interfaces (with weights depending on the asso-
ciated pairs of phases), the second term on the right hand side of the previous display now
involves surface integrals over the phase boundaries. Hence, performing first an integration
by parts and adding zero in a second step (exploiting also the fact that (Ω1(t), . . . ,ΩP (t))
resp. (Ω̄1(t), . . . , Ω̄P (t)) are partitions of Rd for all t ∈ [0, T ]) yields

E[Ω|Ω̄](t) = E[Ω](t)−
P∑
i=1

ˆ
Ωi(t)
∇ · ξi(·, t) dx (2.30)

= E[Ω](t)−
P∑

i,j=1,i 6=j

ˆ
Ωi(t)∩Ω̄j(t)

∇ · (ξi−ξj)(·, t) dx− E[Ω̄](t), (2.31)

which is the multiphase generalization of (2.7). Again, the merit of having the representa-
tion (2.30) is that, on top of requiring an energy dissipation principle, we only rely on testing
the evolution equation of the ith phase Ωi(t) of the weak solution with the test function ∇·ξi
in order to compute the time derivative of the error functional E[Ω|Ω̄].

2.2.1 The time evolution of the multiphase relative entropy

We briefly argue how to produce the multiphase analogue of (2.11). To this end, let us
denote by χi(·, t) the indicator function of the ith phase Ωi(t) for all t ∈ [0, T ]. We further

29



2. The relative entropy approach for a class of interface evolution problems

write Vi(·, t) for the normal velocity vector field of the associated evolving phase bound-
ary ∂∗Ωi(·, t), i.e., it holds in a distributional sense

∂tχi + (Vi · ∇)χi = 0. (2.32)

Starting point for the computation of the time evolution of the multiphase relative en-
tropy (2.28) is the representation (2.30), which together with the evolution equations (2.32)
implies (we again omit the dependence on the time variable)

d

dt
E[Ω|Ω̄] =

d

dt
E[Ω]−

P∑
i=1

d

dt

ˆ
χi(∇ · ξi) dx

=
d

dt
E[Ω] +

P∑
i=1

ˆ
∂∗Ωi

(∇ · ξi)(Vi · n∂∗Ωi) dHd−1 +
P∑
i=1

ˆ
∂∗Ωi

n∂∗Ωi · ∂tξi dHd−1.

By the same argument which allowed to proceed from (2.28) to (2.30) based on the condi-
tion (2.29) and the skew-symmetry relation ni,j = −nj,i, it holds

P∑
i=1

ˆ
∂∗Ωi

n∂∗Ωi · ∂tξi dHd−1 = −1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

ni,j · ∂tξi,j dHd−1.

Defining along Ii,j the interface velocity VIi,j := (Vi · ni,j)ni,j for all distinct phases i, j ∈
{1, . . . , P}, we also obtain for the same reasons

P∑
i=1

ˆ
∂∗Ωi

(∇ · ξi)(Vi · n∂∗Ωi) dHd−1 = −1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

(∇ · ξi,j)(VIi,j · ni,j) dHd−1,

so that the combination of the previous three displays entails

d

dt
E[Ω|Ω̄] =

d

dt
E[Ω]− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

ni,j · ∂tξi,j dHd−1

− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

(∇ · ξi,j)(VIi,j · ni,j) dHd−1.

The next step consists of introducing a single velocity vector field B, which shall represent
a smooth space-time vector field whose normal component along Īi,j equals the normal veloc-
ity of the smoothly evolving interface Īi,j for all distinct phases i, j ∈ {1, . . . , P}. Noting then
that (2.29) together with the skew-symmetry relation ni,j = −nj,i again enables to switch
back and forth between surface integrals over individual interfaces and volume integrals over
individual phases, this time in form of

1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

ni,j ·
(
∇ · (ξi,j ⊗B)

)
dHd−1 = −

P∑
i=1

ˆ
χi∇ ·

(
∇ · (ξi ⊗B)

)
dx

= −
P∑
i=1

ˆ
χi∇ ·

(
∇ · (B ⊗ ξi)

)
dx

=
1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

ni,j ·
(
∇ · (B ⊗ ξi,j)

)
dHd−1,
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2.2. The relative entropy method: The case of multiple phases

one may otherwise simply follow the exact same arguments leading to (2.11) (with obvious
notational modifications) in order to produce the identity

d

dt
E[Ω|Ω̄] =

d

dt
E[Ω]− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

(∇ · ξi,j)
(
(VIi,j−B) · ni,j

)
dHd−1 (2.33)

− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

(Id−ni,j ⊗ ni,j) : ∇B dHd−1

− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

(ni,j−ξi,j) ·
(
∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

)
dHd−1

− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

ξi,j ·
(
∂tξi,j+(B · ∇)ξi,j

)
dHd−1

− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

(ni,j · ξi,j − 1)(∇ ·B) dHd−1

− 1

2

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

(ni,j−ξi,j) ·
(
(ni,j−ξi,j) · ∇

)
B dHd−1.

As in the two-phase setting, the further processing of the first three right hand side terms
is subject to the specific evolution problem under consideration, and may in particular put
further conditions on the vector fields ((ξi,j)i 6=j , B). We refer to the second part of Section 4.2
for the example of evolution by multiphase mean curvature flow.

For the remaining four right hand side terms, provided that the gradient of B is uniformly
bounded and it holds for all distinct i, j ∈ {1, . . . , P}

|ξi,j(·, t)| ≤ 1− cmin{dist2(·, Īi,j(t)), 1} in Rd, (2.34)(
∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

)
(·, t) = O

(
min

{
dist(·, Īi,j(t)), 1

})
in Rd, (2.35)(

∂t|ξi,j |2+(B · ∇)|ξi,j |2
)
(·, t) = O

(
min

{
dist2(·, Īi,j(t)), 1

})
in Rd, (2.36)

one immediately observes that these four terms are directly controlled by the multiphase
relative entropy E[Ω|Ω̄] from (2.28). However, in contrast to the two-phase setting, the actual
construction of a family of vector fields ((ξi,j)i 6=j , B) satisfying at least (2.29) as well as (2.34)–
(2.36) is a substantially more difficult task. This is due to the—even on the level of strong
solutions—inherent singular structure of the underlying network of interfaces (e.g., triple
and/or higher-order junctions will be present in general), and thus requires additional ideas.
For a realization of such a construction in the context of multiphase mean curvature flow of
networks in R2, or mean curvature flow of a double bubble in R3, we refer to Sections 4.4–4.6
and Sections 5.2–5.4, respectively.

2.2.2 Relation to the method of paired calibrations

The crucial algebraic requirement (2.29) provides an interesting connection to a well-known
notion from minimal surface theory (see, e.g., Harvey and Lawson [79] or Morgan [118]) resp.
the theory of the partition problem (see, e.g., Lawlor and Morgan [102] or Brakke [24]): the
concept of calibrations resp. paired calibrations.

In the context of the partition problem and employing the language of Lawlor and Mor-
gan [102], a family of (time-independent) vector fields (ξi)i∈{1,...,P} is called a paired cali-
bration for a (time-independent) partition Ω̄ = (Ω̄1, . . . , Ω̄P ) of a bounded domain D ⊂ Rd
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2. The relative entropy approach for a class of interface evolution problems

if—next to the algebraic requirement (2.29), the extension property ξi,j = n̄i,j along Īi,j , and
the global length constraint |ξi,j | ≤ 1—it satisfies the divergence constraint ∇ · (ξi − ξj) = 0
throughout D for all distinct i, j ∈ {1, . . . , P}. The interest in this concept stems from the
classical fact that the existence of a paired calibration implies global minimality of the inter-
facial energy (2.27) for the underlying partition amongst all partitions of D with the same
boundary data, see again Lawlor and Morgan [102].

Indeed, thanks to the additional constraint on the divergence of ξi−ξj , the argument
leading to the identity (2.31) shows that for all other partitions Ω = (Ω1, . . . ,ΩP ) of the
domain D ⊂ Rd with the same boundary data along ∂D as the calibrated partition Ω̄, it
holds

E[Ω] = E[Ω̄] + E[Ω|Ω̄] +
P∑

i,j=1,i 6=j

ˆ
Ωi∩Ω̄j

∇ · (ξi−ξj) dx (2.37)

= E[Ω̄] + E[Ω|Ω̄],

so that the claim follows from recalling that E[Ω|Ω̄] ≥ 0.
The above reasoning towards global minimality does not rely on any of the properties

of the relative entropy functional E[Ω|Ω̄] except for its non-negativity. We develop in a
forthcoming work [66] a local analogue of the concept of paired calibrations, and leverage
on the local version of this concept to show that flat partitions of a bounded domain in the
plane (i.e., interfaces are straight line segments joining at triple junctions with the correct
angle condition) are local Dirichlet minimizer for the interface energy functional with respect
to the L1 topology (for given boundary data). The idea behind this result stems from
the observation that for local minimality it may suffice to enforce the divergence constraint
∇ · (ξi − ξj) = 0 only in a small neighborhood around the interface Īi,j . For the remaining
contributions from the bulk terms

´
Ωi∩Ω̄j

∇ · (ξi−ξj) dx appearing on the right hand side
of (2.37), we then argue that, at least for sufficiently small perturbations of the phases in L1,
they can be absorbed by the relative entropy functional exploiting its coercivity properties.

2.2.3 The bulk error functional in the multiphase regime

In analogy to the two-phase setting, a stability estimate of the form (1.48) for the multiphase
relative entropy (2.28) implies a “weak-strong inclusion principle”

Ii,j(0) ⊂ Īi,j(0) up to Hd−1 null sets for all i 6= j ∈ {1, . . . , P}
=⇒ Ii,j(t) ⊂ Īi,j(t) up to Hd−1 null sets for a.e. t ∈ [0, T ] and all i 6= j ∈ {1, . . . , P},

but in general does not yet imply a weak-strong uniqueness principle

Ωi(0) = Ω̄i(0) up to Lebesgue null sets for all i ∈ {1, . . . , P}
=⇒ Ωi(t) = Ω̄i(t) up to Lebesgue null sets for a.e. t ∈ [0, T ] and all i ∈ {1, . . . , P}.

For the latter, one again relies on a stability estimate with respect to a bulk error func-
tional, which in the multiphase regime may be defined by means of

Ebulk[Ω|Ω̄](t) :=
P∑
i=1

ˆ
(χi−χ̄i)(·, t)ϑi(·, t) dx. (2.38)

Here, ϑi : Rd×[0, T ] → [−1, 1] represents for each phase i ∈ {1, . . . , P} a smooth and inte-
grable weight subject to (at least) the following conditions:

ϑi(·, t) < 0 in Ω̄i(t), ϑi(·, t) > 0 in Rd \ Ω̄i(t), (2.39)
min{dist(·, ∂Ω̄i(t)), 1} ≤ |ϑi(·, t)| ≤ C min{dist(·, ∂Ω̄i(t)), 1}, (2.40)(

∂tϑi+(B · ∇)ϑi
)
(·, t) = O

(
min{dist(·, Ω̄i(t)), 1}

)
(2.41)

32



2.3. Robustness of the relative entropy approach

for some C ≥ 1, all t ∈ [0, T ] and all i ∈ {1, . . . , P}, and where B denotes the velocity vector
field from the computation of the time evolution of the multiphase relative entropy (2.28).
Constructing such a family of weights is slightly more involved than the corresponding argu-
ment from the two-phase setting because the phase boundaries ∂Ω̄i will in general contain
lower-dimensional boundaries in form of, e.g., corners. We refer to Section 4.7 or Section 5.5
for an explicit construction in the context of networks of interfaces in R2 or double bubbles
in R3, respectively. (The flow rule being evolution by mean curvature is in fact not essential
for the construction of the weights.)

We conclude the discussion of the multiphase regime stating a preliminary representation
for the time evolution of the multiphase bulk error functional (2.38). In analogy to the
argument in the two-phase setting leading to the identity (2.24), one obtains the formula

d

dt
Ebulk[Ω|Ω̄] =

P∑
i,j=1,i 6=j

ˆ
Ii,j

ϑi
(
(VIi,j−B) · ni,j

)
dHd−1 (2.42)

+
P∑
i=1

ˆ
(χi−χ̄i)

(
∂tϑi+(B · ∇)ϑi

)
dx

+

P∑
i=1

ˆ
(χi−χ̄i)ϑi(∇ ·B) dx.

The last two right hand side terms are directly controlled by Ebulk[Ω|Ω̄] due to (2.40)–(2.41),
whereas further computations for the first right hand side term depend on the specific problem
at hand.

2.3 Robustness of the relative entropy approach

The relative entropy approach to curvature driven interface evolution problems outlined in the
previous two sections turns out to be sufficiently robust to apply it to more general settings
than the ones considered before. We discuss in this section applications and/or extensions
of the previously developed ideas to i) two-phase Navier–Stokes flow with sharp interface, ii)
varifold solution concepts, iii) interface evolution equations incorporating boundary contact
energies allowing for contact point dynamics with fixed-in-time contact angles, and finally,
leaving the realm of sharp interface models, iv) the rigorous derivation of convergence rates
for diffuse interface approximations.

2.3.1 Application to two-phase Navier–Stokes flow with sharp interface

We start by recalling that the energy for a weak solution (Ω, u) of the free boundary problem
for the flow of two viscous, incompressible and immiscible fluids with surface tension in Rd,
d ∈ {2, 3}, is given by

E[Ω, u] := Ekin[Ω, u] + E[Ω], (2.43)

where E[Ω] represents the interfacial energy contribution due to surface tension defined
by (2.1), and where the kinetic energy contribution Ekin[Ω, u] is given by

Ekin[Ω, u] :=

ˆ
ρ(χ)

2
|u|2 dx. (2.44)

Here, for each t ∈ [0, T ] we again denoted by χ(·, t) the characteristic function of the
phase Ω(t), and given the two densities ρ± of the two fluids, we defined ρ(χ) := ρ+χ+ρ−(1−χ).
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2. The relative entropy approach for a class of interface evolution problems

Assuming for simplicity that the two shear viscosities of the two fluids are the same
(for a discussion of the highly non-trivial problem of different shear viscosities, we refer the
reader to the fourth subsection of Section 3.2), and denoting by (Ω̄, v) a strong solution for
the two-phase Navier–Stokes system with surface tension, the ansatz for the relative entropy
functional splits into two contributions (mimicking the structure (2.43) of the total energy
functional)

E[Ω, u|Ω̄, v] :=
(
Ekin[Ω, u]−DEkin[Ω, v]

(
(Ω, u)−(Ω, v)

)
−Ekin[Ω, v]

)
+ E[Ω|Ω̄]. (2.45)

The second contribution of (2.45) is precisely the two-phase relative entropy from (2.2),
whereas the contribution based on the kinetic energy functional (2.44) fits into the classical
framework (1.47) with

Ekin[Ω, u]−DEkin[Ω, v]
(
(Ω, u)−(Ω, v)

)
−Ekin[Ω, v]

=

ˆ
ρ(χ)

2
|u− v|2 dx = Ekin[Ω, u]−

ˆ
ρ(χ)u · v dx+

ˆ
ρ(χ)

1

2
|v|2 dx.

Making use of the identity from the previous display as well as the identity (2.11) in com-
bination with the subsequent discussion, we consequently obtain the following preliminary
representation for the time evolution of the total relative entropy (2.45)

d

dt
E[Ω, u|Ω̄, v] =

d

dt
E[Ω, u]− d

dt

ˆ
ρ(χ)u · v dx+

d

dt

ˆ
ρ(χ)

1

2
|v|2 dx (2.46)

− σ
ˆ
I
(∇ · ξ)

(
(VI−B) · n

)
dHd−1 − σ

ˆ
I
(Id−n⊗ n) : ∇B dHd−1

+O
(
E[Ω|Ω̄]

)
.

In the context of the free boundary problem for the flow of two viscous, incompressible
and immiscible fluids with surface tension, one then proceeds as follows. The structure of
the second and third right hand side term of (2.46) suggests to use the vector field v as a
test function in the evolution equation for ρ(χ)u and the scalar field 1

2 |v|
2 in the evolution

equation for ρ(χ), respectively. After plugging in the energy dissipation inequality at the level
of the weak solution, one then tries to combine the resulting terms with the remaining fourth
and fifth right hand side term of (2.46). For the rigorous implementation of this argument,
we refer the reader to Section 3.6.

2.3.2 Application to a class of varifold solution concepts

As we already explained in some detail in Section 1.2, without imposing additional assump-
tions (e.g., an energy convergence assumption) one may only guarantee, if at all, the existence
of so-called varifold solutions to a given interface evolution problem. For a prominent instance
of such a varifold solution concept relating to the results of this thesis, we refer to Abels’
notion of generalized solutions for two-phase Navier–Stokes flow with sharp interface [1]. We
aim to make the point here that for a certain class of varifold solution concepts (i.e., for
which a natural compatibility condition holds true, cf. (2.47) below), the two-phase relative
entropy approach (2.2) extends naturally. To this end, recall that an oriented varifold is
a finite Radon measure V ∈ M(Rd×Sd−1), and we write |V | ∈ M(Rd) for its local mass
density: |V |(U) := V (U×Sd−1) for all Borel measurable U ⊂ Rd.

For what follows, we assume that we are given a time-dependent family of oriented vari-
folds (V (·, ·, t))t∈[0,T ], which is coupled to the evolving phase (Ω(t))t∈[0,T ] of the weak solution
by means of the compatibility conditionˆ

Rd×Sd−1

s · ψ(x) dV (x, s, t) =

ˆ
I(t)

n(x, t) · ψ(x) dHd−1(x) (2.47)
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for all t ∈ [0, T ] and all ψ ∈ C∞cpt(Rd;Rd). The energy functional is then given by

E[Ω, V ](t) := σ

ˆ
Rd×Sd−1

1 dV (x, s, t) = σ

ˆ
Rd

1 d|V |(x, t). (2.48)

It is a direct consequence of the compatibility condition (2.47) that for all t ∈ [0, T ] the
Radon–Nikodým derivative θ(·, t) := dHd−1 I(t)

d|V |(·,t) exists and satisfies |V |(·, t) a.e. θ(·, t) ∈ [0, 1].
In particular, we may define a non-negative error functional by means of

E[Ω, V |Ω̄](t) := σ

ˆ
Rd×Sd−1

1− s · ξ(·, t) dV (x, s, t) (2.49)

= E[Ω, V ](t)− σ
ˆ
I(t)

n(·, t) · ξ(·, t) dHd−1

= E[Ω|Ω̄](t) + σ

ˆ
Rd

1− θ(·, t) d|V |(x, t),

where E[Ω|Ω̄] denotes the two-phase relative entropy defined by (2.2).
The definition itself of E[Ω, V |Ω̄] ensures tilt-excess type control on the level of the “var-

ifold normal” in form of
ˆ
Rd×Sd−1

|s−ξ|2 dV (x, s, t) ≤ 2σ−1E[Ω, V |Ω̄](t), (2.50)

whereas the third line of the previous display guarantees that E[Ω, V |Ω̄] inherits the coercivity
properties of the two-phase relative entropy (2.2) and that it controls the multiplicity error
(or in other words, the difference between being a BV solution or a varifold solution). The
second line of the previous display in turn allows for a computation of the time evolution of
the error functional E[Ω, V |Ω̄].

In terms of a precise representation of the time evolution, we claim that it holds (omitting
again the dependence on the time variable)

d

dt
E[Ω, V |Ω̄] =

d

dt
E[Ω, V ]− σ

ˆ
I
(∇ · ξ)

(
(VI−B) · n

)
dHd−1 (2.51)

− σ
ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇B dV (x, s)

− σ
ˆ
I
(n−ξ) ·

(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
dHd−1

− σ
ˆ
I
ξ ·
(
∂tξ+(B · ∇)ξ

)
dHd−1

− σ
ˆ
I
(n · ξ − 1)(∇ ·B) dHd−1

− σ
ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
B dV (x, s)

− σ
ˆ
Rd

(θ−1)(∇ ·B) d|V |(x)

− σ
ˆ
Rd

(θ−1)
(
ξ · (ξ · ∇)B

)
d|V |(x).

Note that the last three right hand side terms do not involve any new difficulties as these
are directly controlled by the error functional E[Ω, V |Ω̄] (provided the gradient of B is uni-
formly bounded). In view of the second line of (2.49) and the identity (2.11), the asserted
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representation (2.51) is a consequence of

− σ
ˆ
I
(Id−n⊗ n) : ∇B dHd−1 − σ

ˆ
I
(n−ξ) ·

(
(n−ξ) · ∇

)
B dHd−1

= −σ
ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇B dV (x, s)− σ
ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
B dV (x, s)

− σ
ˆ
Rd

(θ−1)(∇ ·B) d|V |(x)− σ
ˆ
Rd

(θ−1)
(
ξ · (ξ · ∇)B

)
d|V |(x).

The identity of the previous display, however, follows from straightforward computations
making use of the compatibility condition (2.47) and the definition of the Radon–Nikodým
derivative θ.

2.3.3 Application to interface evolution with boundary contact

We next turn to two-phase interface evolution within a bounded domain D ⊂ Rd with
smooth boundary ∂D. We aim to outline a potential strategy to incorporate into our general
framework a class of boundary contact energies allowing for contact point dynamics with
fixed-in-time contact angles α ∈ (0, π). The rigorous implementation of the following argu-
ments in the context of evolution by mean curvature will be the subject of future work (in
ambient spatial dimension d ∈ {2, 3}). In the special case of α = π

2 in the setting of planar
two-phase Navier–Stokes flow with sharp interface, we refer to the forthcoming work [68]
which will be a part of the PhD thesis of Alice Marveggio.

At the level of the weak solution, we consider a time-dependent family Ω = (Ω(t))t∈[0,T ]

of subsets Ω(t) ⊂ D, t ∈ [0, T ], which are of finite perimeter in D. For each t ∈ [0, T ],
we denote by I(t) := ∂∗Ω(t) the reduced boundary of Ω(t) in Rd. Surface tension along
the interface I(t) ∩ D is again accounted for by σ > 0, whereas we denote by γ+ and γ−
the analogs for the “interfaces” I(t) ∩ ∂D and ∂∗(D \ Ω(t)) ∩ ∂D, respectively. We assume
for these parameters that Young’s relation γ+−γ−

σ ∈ (−1, 1) holds true, and that the fixed-
in-time contact angle α ∈ (0, π), formally formed by the intersection of the tangent spaces
to ∂D and I(t)∩D at a contact point through the region D \Ω(t), is determined by Young’s
equation

σ cosα = γ+ − γ−. (2.52)

We then consider the energy functional defined as the sum of an interfacial energy con-
tribution in the bulk and a boundary contact energy in form of

E[Ω](t) := σ

ˆ
I(t)∩D

1 dHd−1 + σ

ˆ
I(t)∩∂D

cosα dHd−1. (2.53)

For the definition of a relative entropy in this context, we first consider a time dependent
family Ω̄ = (Ω̄(t))t∈[0,T ] of open subsets Ω̄(t) ⊂ D, t ∈ [0, T ], with finitely many connected
components. Defining for each t ∈ [0, T ] the set Ī(t) := ∂Ω̄(t), we assume that the clo-
sure Ī(t) ∩D of Ī(t) ∩D and the closure Ī(t) ∩ ∂D of Ī(t) ∩ ∂D are smooth manifolds with
common smooth boundary ∂(Ī(t) ∩ D) ⊂ ∂D along which the contact angle is given by α.
One shall think of the data (Ω̄(t))t∈[0,T ] and (Ī(t))t∈[0,T ] as a strong solution of the under-
lying interface evolution problem. We next assume that we already constructed a pair of
continuous vector fields (ξ,B) on the closure of the domain D satisfying at least

ξ(·, t) = n̄(·, t) along Ī(t) ∩D, (2.54)

|ξ(·, t)| ≤ 1− cmin{dist2(·, Ī(t) ∩D), 1} in D, (2.55)(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
(·, t) = O

(
min

{
dist(·, Ī(t) ∩D), 1

})
in D, (2.56)(

∂t|ξ|2+(B · ∇)|ξ|2
)
(·, t) = O

(
min

{
dist2(·, Ī(t) ∩D), 1

})
in D, (2.57)
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for all t ∈ [0, T ] and some c ∈ (0, 1]. We finally define for all t ∈ [0, T ]

E[Ω|Ω̄](t) := σ

ˆ
I(t)∩D

1− n(·, t) · ξ(·, t) dHd−1, (2.58)

where n(·, t) denotes the measure theoretic unit normal along the interface I(t)∩D pointing
inside the phase Ω(t).

Before we derive the analogue of (2.11) in the present context of a fixed-in-time contact
angle, we first motivate the natural boundary condition for the pair of vector fields (ξ,B)
along the domain boundary ∂D. The boundary condition for the extension ξ(·, t) of the
unit normal n̄(·, t) along the interface Ī(t) ∩ D is chosen in such a way to ensure that the
definition (2.58) of the error functional E[Ω|Ω̄](t) again mimics the properties of classical
relative entropies. More precisely, we impose for all t ∈ [0, T ] the condition

ξ(·, t) · n∂D(·) = cosα along ∂D, (2.59)

where n∂D denotes the inward pointing unit normal along the domain boundary ∂D. Based
on the boundary condition (2.59), we may add zero in a first step and then integrate by parts
in a second step to rewrite the definition (2.58) in form of

E[Ω|Ω̄](t) = E[Ω]− σ
ˆ
∂∗Ω(t)

n∂∗Ω(t) · ξ(·, t) dHd−1 = E[Ω] +

ˆ
Ω(t)

(∇ · σξ)(·, t) dx. (2.60)

This structure is again precisely what is needed in order to evaluate the time evolution
of E[Ω|Ω̄] based only on an energy dissipation inequality and testing the evolution equation
of the weak solution against the test function ∇ · σξ.

For the boundary condition of the velocity vector field B, we impose for all t ∈ [0, T ]

B(·, t) · n∂D(·) = 0 along ∂D. (2.61)

This condition is indeed natural since the evolution of contact points is restricted to the
domain boundary ∂D, so that the associated velocity has to be tangential to ∂D. Note that
in the case of α 6= π

2 , this inevitably necessitates a non-trivial tangential component of B(·, t)
at contact points (tangential meaning with respect to the interface Ī(t) ∩ D). Recall from
the remark below (2.16) that the construction of B in principle allows for such flexibility.

We proceed with the computation of the time evolution of E[Ω|Ω̄], pursuing the goal of
arriving at a preliminary representation analogous to (2.11). Denoting for every t ∈ [0, T ]
by χ(·, t) the indicator function of the phase Ω(t), and denoting by VI∩D(·, t) an associated
velocity vector field for the interface I(t) ∩D so that it holds (in a distributional sense)

∂tχ = −(VI∩D · n) dHd−1
(
I ∩D

)
, (2.62)

we again first compute by means of (2.60) and (2.62), omitting the dependence on the time
variable,

d

dt
E[Ω|Ω̄] =

d

dt
E[Ω]− σ

ˆ
I∩D

(∇ · ξ)(VI∩D · n) dHd−1

− σ
ˆ
I∩D

n · ∂tξ dHd−1 − σ
ˆ
I∩∂D

n∂D · ∂tξ dHd−1.
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The last two right hand side terms of the previous display may be equivalently expressed—
based on by now routine arguments—as follows

− σ
ˆ
I∩D

n · ∂tξ dHd−1 − σ
ˆ
I∩∂D

n∂D · ∂tξ dHd−1

= −σ
ˆ
I∩D

(n−ξ) ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
dHd−1 − σ

ˆ
I∩D

ξ ·
(
∂tξ+(B · ∇)ξ

)
dHd−1

− σ
ˆ
I∩∂D

n∂D ·
(
∂tξ+(B · ∇)ξ

)
dHd−1 + σ

ˆ
I∩D

ξ ·
(
(n−ξ) · ∇

)
B dHd−1

+ σ

ˆ
I∩D

n · (B · ∇)ξ dHd−1 + σ

ˆ
I∩∂D

n∂D · (B · ∇)ξ dHd−1.

Recalling the fact that the tangential gradient of n∂D satisfies (n∂D · ∇tan)n∂D = 0 and
(∇tann∂D)Tn∂D = 0 along ∂D, it follows from an application of the product rule, the bound-
ary condition (2.61), the time-independence of n∂D, and finally the boundary condition (2.59)

−σ
ˆ
I∩∂D

n∂D ·
(
∂tξ+(B · ∇)ξ

)
dHd−1 = σ

ˆ
I∩∂D

(
(Id−n∂D ⊗ n∂D)ξ

)
· (B · ∇)n∂D dHd−1.

Appealing to the product rule and adding zero twice moreover entails

σ

ˆ
I∩D

n · (B · ∇)ξ dHd−1 + σ

ˆ
I∩∂D

n∂D · (B · ∇)ξ dHd−1

= σ

ˆ
I∩D

n ·
(
∇ · (ξ ⊗B)

)
dHd−1 + σ

ˆ
I∩∂D

n∂D ·
(
∇ · (ξ ⊗B)

)
dHd−1

− σ
ˆ
I∩D

(Id−n⊗ n) : ∇B dHd−1 − σ
ˆ
I∩∂D

(n∂D · ξ)(∇ ·B) dHd−1

− σ
ˆ
I∩D

(n · ξ − 1)(∇ ·B) dHd−1 − σ
ˆ
I∩D

n · (n · ∇)B dHd−1.

Based on the by now routine procedure, using in addition only the boundary condition (2.61),
we further rewrite the first two right hand side terms of the previous display in form of

σ

ˆ
I∩D

n ·
(
∇ · (ξ ⊗B)

)
dHd−1 + σ

ˆ
I∩∂D

n∂D ·
(
∇ · (ξ ⊗B)

)
dHd−1

= σ

ˆ
D
χ∇ ·

(
∇ · (B ⊗ ξ)

)
dx

= σ

ˆ
I∩D

(∇ · ξ)(B · n) dHd−1 + σ

ˆ
I∩D

n · (ξ · ∇)B dHd−1

+ σ

ˆ
I∩∂D

n∂D · (ξ · ∇)B dHd−1.

Splitting the vector field ξ along ∂D into tangential and normal components, applying the
product rule, exploiting another time the boundary condition (2.61), as well as making use
of the symmetry of ∇tann∂D, we infer

σ

ˆ
I∩∂D

n∂D · (ξ · ∇)B dHd−1 = σ

ˆ
I∩∂D

(n∂D · ξ) n∂D · (n∂D · ∇)B dHd−1

− σ
ˆ
I∩∂D

B ·
(
(Id−n∂D ⊗ n∂D)ξ · ∇

)
n∂D dHd−1

= σ

ˆ
I∩∂D

(n∂D · ξ) n∂D · (n∂D · ∇)B dHd−1

− σ
ˆ
I∩∂D

(
(Id−n∂D ⊗ n∂D)ξ

)
· (B · ∇)n∂D dHd−1.
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Finally, it holds due to the boundary conditions (2.59) and (2.61)

−σ
ˆ
I∩∂D

(n∂D · ξ)(∇ ·B) dHd−1 = −σ
ˆ
I∩∂D

cosα (∇tan ·B) dHd−1

− σ
ˆ
I∩∂D

(n∂D · ξ) n∂D · (n∂D · ∇)B dHd−1.

The combination of the previous seven displays in total implies the following clean pre-
liminary identity for the time evolution of the relative entropy (2.58)

d

dt
E[Ω|Ω̄] =

d

dt
E[Ω]− σ

ˆ
I∩D

(∇ · ξ)
(
(VI∩D−B) · n

)
dHd−1 (2.63)

− σ
ˆ
I∩D

(Id−n⊗ n) : ∇B dHd−1 − σ
ˆ
I∩∂D

cosα (∇tan ·B) dHd−1

− σ
ˆ
I∩D

(n−ξ) ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
dHd−1

− σ
ˆ
I∩D

ξ ·
(
∂tξ+(B · ∇)ξ

)
dHd−1

− σ
ˆ
I∩D

(n · ξ − 1)(∇ ·B) dHd−1

− σ
ˆ
I∩D

(n−ξ) ·
(
(n−ξ) · ∇

)
B dHd−1.

The last four right hand side terms are again already controlled by E[Ω|Ω̄] thanks to the
requirements (2.55)–(2.57) and the definition (2.58).

We conclude our discussion of a potential relative entropy approach to interface evolution
problems incorporating an energy contribution of the form (2.53) by some remarks. The first
concerns the claim that the functional{
C1

cpt(Rd;Rd) 3 ϕ
ϕ · n∂D = 0 along ∂D

7→ −
ˆ
I∩D

(Id−n⊗ n) : ∇ϕdHd−1 −
ˆ
I∩∂D

cosα (∇tan · ϕ) dHd−1

appearing on the right hand side of (2.63) represents a weak formulation of the mean curvature
functional in the BV setting when allowing for boundary contact of the interface with contact
angle α ∈ (0, π). To this end, we show in the smooth setting that
ˆ
Ī∩D

HĪ∩D · ϕdHd−1 = −
ˆ
Ī∩D

(Id−n̄⊗ n̄) : ∇ϕdHd−1 −
ˆ
Ī∩∂D

cosα (∇tan · ϕ) dHd−1

(2.64)

for all ϕ ∈ C1
cpt(Rd;Rd) such that ϕ · n∂D = 0 along ∂D, where HĪ∩D denotes the mean

curvature vector of the interface Ī ∩D. For simplicity, we assume that the interface Ī ∩D is
connected. Along the smooth contact manifold ∂(Ī ∩D) ⊂ ∂D, we choose two unit normal
vector fields τĪ∩D and τ∂D, which in addition are tangential to Ī ∩D and ∂D, respectively,
and finally satisfy τĪ∩D · τ∂D = cosα along ∂(Ī ∩ D). There is a unique choice of these
unit length vector fields by requiring τĪ∩D to point inside D (i.e., in the direction of the
interface Ī ∩D), and in that case τ∂D then points away from Ī ∩∂D. By means of the surface
divergence theorem for smooth manifolds with boundary, we then obtain

ˆ
Ī∩D

HĪ∩D · ϕdHd−1 = −
ˆ
Ī∩D

(Id−n̄⊗ n̄) : ∇ϕdHd−1 −
ˆ
∂(Ī∩D)

τĪ∩D · ϕdHd−1.

Since ϕ is tangential to ∂D, we obtain by the properties of τĪ∩D and τ∂D that τĪ∩D · ϕ =
(τĪ∩D ·τ∂D)(τ∂D ·ϕ) = cosα(τ∂D ·ϕ). Hence, by another application of the surface divergence
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theorem for smooth manifolds with boundary (recalling that τ∂D points away from Ī ∩ ∂D),
using in the process that ϕ is tangential to ∂D, we deduce

−
ˆ
∂(Ī∩D)

τĪ∩D · ϕdHd−1 = −
ˆ
∂(Ī∩D)

cosα(τ∂D · ϕ) dHd−1 = −
ˆ
Ī∩∂D

cosα (∇tan · ϕ) dHd−1

so that the claim (2.64) follows.
It is clear from the boundary conditions (2.59) and (2.61) that, for a given specific in-

terface evolution problem, the actual construction of a pair of vector fields (ξ,B) satisfying
at least (2.54)–(2.57) as well as (2.59) and (2.61) requires a careful argument in a tubular
neighborhood of the contact manifold ∂(Ī ∩ D) ⊂ ∂D. (A further processing of the first
four right hand side terms of (2.63) possibly puts additional constraints on the pair of vector
fields (ξ,B).) We will carry out this task in the context of evolution by mean curvature in a
future work.

However, for a satisfying weak-strong uniqueness result one should also at least be able to
say something about the existence of weak solutions in the BV setting. Assuming evolution
by mean curvature, the BV formulation consists roughly speaking of the evolution equa-
tion (2.62) and an additional condition which directly links the velocity VI∩D with the weak
formulation of the mean curvature functional, cf. the right hand side of (2.64). A potential
strategy for an existence proof would be to study the Allen–Cahn equation on the domain D
together with an appropriate non-linear Robin boundary condition along ∂D. The latter
shall be formulated in a way which formally ensures that in the sharp interface limit one
indeed obtains two-phase mean curvature flow with a fixed-in-time contact angle α ∈ (0, π).
Imposing an energy convergence assumption in the spirit of the classical work by Luckhaus
and Sturzenhecker [109] (cf. also the closely related work by Laux and Simon [101] for the
vector-valued Allen–Cahn approximation of a BV formulation of multiphase mean curvature
flow with periodic boundary data), it is tempting to ask whether one can provide a rigor-
ous convergence proof towards the above sketched BV formulation. Investigations in this
direction will be part of future work as well.

2.3.4 Phase field models: Convergence rates to sharp interface limits

Phase field models represent an alternative approach to describe the evolution of interfaces
past topology changes and geometric singularities. In contrast to sharp interface models,
where the evolution of a phase and its interface is, e.g., modeled by means of a characteristic
function χ and the corresponding sharp phase boundary ∂{χ=1}, the phase field approach
is based on a smooth order function taking values in the continuum [−1, 1]. For most parts,
the order function is required to take values close to 1 or −1, representing the bulk of the
phase and its complement, respectively. The interface in turn is characterized as the region
where the order function (rapidly) transitions from −1 to 1.

Such behavior may be enforced by introducing the Ginzburg–Landau energy functional

Eε[ϕε] :=

ˆ
Rd

ε

2
|∇ϕε|2 +

1

ε
W (ϕε) dx, (2.65)

with, say, a double well potential W (r) := C(1 − r2)2 and C > 0 being a normalization
constant. For order functions ϕε with small energy Eε[ϕε], the heuristic is that the energy
contribution coming from the potential forces ϕε to be close to ±1 throughout most of Rd,
whereas the Dirichlet energy contribution forces the interfacial region to have finite (nonzero)
extent. Moreover, it turns out that the typical width of the interfacial region scales linearly
in the parameter ε.

Recall that important examples of sharp interface evolution equations arise (formally) as
the gradient flow of the sharp interface energy functional (2.1): two-phase mean curvature flow
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being the gradient flow with respect to the L2 scalar product, whereas the Mullins–Sekerka
equation may be identified as the gradient flow with respect to the H−1 scalar product.
It is thus natural to consider the corresponding gradient flows for the Ginzburg–Landau
energy (2.65). The by a factor of 1

ε accelerated L2 scalar product yields the Allen–Cahn
equation

∂tϕε = ∆ϕε −
1

ε2
W ′(ϕε), (2.66)

whereas the H−1 scalar product gives rise to the Cahn–Hilliard equation

∂tϕε = ∆uε, uε = −ε∆ϕε +
1

ε
W ′(ϕε). (2.67)

The relation of the Ginzburg–Landau energy (2.65) with the sharp interface energy (2.1)
is classical: it was shown by Modica and Mortola [117] and Modica [115] that the energy
functional (2.65) converges as ε → 0 in the precise sense of Γ-convergence to the energy
functional (2.1) with surface tension

σW =

ˆ 1

−1

√
2W (r) dr. (2.68)

The multiphase analogue of this statement is due to Baldo [16]. This in turn clearly motivates
to study the convergence of the solutions to the underlying gradient flow equations. For
instance, it was shown by Chen [33] and De Mottoni and Schatzman [46] that solutions to
the Allen–Cahn equation (2.66) converge to strong solutions of two-phase mean curvature
flow in arbitrary ambient dimension d ≥ 2, assuming for the latter the existence of a (local-
in-time) smooth solution starting from well-prepared initial data (essentially meaning that a
diffuse interface of width ∼ ε has already developed). Contact point dynamics with a fixed-
in-time 90◦ contact angle can be handled in the planar case d = 2 as was recently shown
by Abels and Moser [7]. An extension to arbitrary ambient dimension d ≥ 2 and fixed-in-
time contact angle in a perturbative regime close to 90◦ can be found in the PhD thesis of
Moser [119]. Convergence of solutions to the Cahn–Hilliard equation (2.67) to solutions of
the Mullins–Sekerka problem was established by Alikakos, Bates and Chen [9] for arbitrary
ambient dimension d ≥ 2 but excluding contact points. Generalization to more complex
phase field models are possible as well. For example, the case of a Stokes/Allen–Cahn system
is treated by Abels and Liu [4], and the case of a Stokes/Cahn–Hilliard system in the very
recent works of Abels and Marquardt [5] and [6] (all placed in the planar regime d = 2
without allowing boundary contact for the sharp interface in the limit).

Essentially all of the previously mentioned rigorous convergence results are facilitated
by the principles of a well-established method due to De Mottoni and Schatzman [46] and
Chen [34]: the combination of rigorous asymptotic expansions with a linear stability anal-
ysis for the Allen–Cahn or the Cahn–Hilliard operator, respectively. A completely different
approach, however, was recently proposed by Fischer, Laux and Simon [69] in the simplest
setting of the Allen–Cahn equation (2.66). For their derivation of optimal-order convergence
rates towards strong solutions of two-phase mean curvature flow, they rely on a phase field
analogue of the two-phase relative entropy method for sharp interface evolution problems as
described above. The aim of the following discussion is to summarize their approach and to
highlight parallels in the argument by adopting the general viewpoint from this chapter. To
this end, we will derive the corresponding “phase field analogue” of (2.11) (cf. [69, Lemma 5]).

In terms of the underlying strong solution, we again fix a finite time horizon T > 0
and consider a “smoothly evolving” family of open and bounded sets Ω̄ = (Ω̄(t))t∈[0,T ] with
“smoothly evolving” interfaces Ī(t) := ∂Ω̄(t) for all t ∈ [0, T ]. Moreover, we assume that
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there exists a pair of vector fields (ξ,B) which is at least subject to the conditions (2.3)–
(2.4) and (2.12)–(2.13). In order to define a phase field analogue of the two-phase relative
entropy (2.2), we follow [69] and define for all (x, t) ∈ Rd × [0, T ]

ψε(x, t) :=

ˆ ϕε(x,t)

−1

√
2W (r) dr, (2.69)

which serves (up to a multiplicative factor of σW ) as a proxy for the characteristic function
of the phase Ω̄(t) in each fixed time slice t ∈ [0, T ]. We also introduce a normal nε by

nε :=

{
∇ϕε
|∇ϕε| if ∇ϕε 6= 0,

s else,
(2.70)

with s ∈ Sd−1 a fixed but otherwise arbitrary unit vector. Note that because of the previous
two definitions we always have

nε|∇ϕε| = ∇ϕε and nε|∇ψε| = ∇ψε. (2.71)

Based on the Ginzburg–Landau energy (2.65), one may then define an error functional by
means of

Eε[ϕε|Ω̄] := Eε[ϕε]−
ˆ
Rd
ξ · ∇ψε dx (2.72)

=

ˆ
Rd

1

2

(√
ε|∇ϕε| −

1√
ε

√
2W (ϕε)

)2
dx+

ˆ
Rd

(1− ξ · nε)|∇ψε|dx.

Note that the Modica–Mortola trick played the decisive role in order to proceed from the
definition of Eε[ϕε|Ω̄] to the alternative representation from the second line of the previous
display. The latter in combination with (2.4) in turn implies the main coercivity properties
of the error functional Eε[ϕε|Ω̄], cf. [69, Lemma 4].

For a suitable representation of the time evolution of Eε[ϕε|Ω̄], we first compute based
on the definitions (2.72) and (2.69), the chain rule, as well as an integration by parts

d

dt
Eε[ϕε|Ω̄] =

d

dt
Eε[ϕε] +

ˆ
(∇ · ξ)

√
2W (ϕε)∂tϕε dx−

ˆ
∇ψε · ∂tξ dx.

We next rewrite the term involving the time derivative of the vector field ξ by appealing to
the second identity of (2.71) and adding zero several times

−
ˆ
∇ψε · ∂tξ dx = −

ˆ
nε · ∂tξ |∇ψε| dx

= −
ˆ

(nε−ξ) ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
|∇ψε|dx

−
ˆ
ξ ·
(
∂tξ+(B · ∇)ξ

)
|∇ψε|dx

+

ˆ
ξ ·
(
(nε−ξ) · ∇

)
B |∇ψε| dx

+

ˆ
nε · (B · ∇)ξ |∇ψε|dx.
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We further compute based on the second identity of (2.71) as well as adding zero several
times ˆ

nε · (B · ∇)ξ |∇ψε| dx =

ˆ
∇ψε ·

(
∇ · (ξ ⊗B)

)
dx

−
ˆ

(nε · ξ − 1)(∇ ·B) |∇ψε| dx

−
ˆ

(Id− nε ⊗ nε) : ∇B |∇ψε| dx

−
ˆ

nε ⊗ nε : ∇B |∇ψε| dx,

and moreover by two integration by parts, the product rule, and again the the second identity
of (2.71)

ˆ
∇ψε ·

(
∇ · (ξ ⊗B)

)
dx = −

ˆ
ψε∇ ·

(
∇ · (ξ ⊗B)

)
dx

= −
ˆ
ψε∇ ·

(
∇ · (B ⊗ ξ)

)
dx

=

ˆ
∇ψε ·

(
∇ · (B ⊗ ξ)

)
dx

=

ˆ
nε ·

(
ξ · ∇

)
B |∇ψε|dx+

ˆ
(∇ · ξ)(nε ·B) |∇ψε|dx.

Together with the first identity of (2.71) and |∇ψε| =
√

2W (ϕε)|∇ϕε|, the previous four
displays in combination imply

d

dt
Eε[ϕε|Ω̄] =

d

dt
Eε[ϕε] +

ˆ
(∇ · ξ)

√
2W (ϕε)

(
∂tϕε+(B · ∇)ϕε

)
dx (2.73)

−
ˆ

(Id− nε ⊗ nε) : ∇B |∇ψε| dx

−
ˆ

(nε−ξ) ·
(
∂tξ+(B · ∇)ξ+(∇B)Tξ

)
|∇ψε|dx

−
ˆ
ξ ·
(
∂tξ+(B · ∇)ξ

)
|∇ψε|dx

−
ˆ

(nε−ξ) ·
(
(nε−ξ) · ∇

)
B |∇ψε| dx

−
ˆ

(nε · ξ − 1)(∇ ·B) |∇ψε|dx,

which is exactly the already mentioned phase field analogue of (2.11).
In the specific context of the Allen–Cahn equation (2.66), Fischer, Laux and Simon [69]

proceed from (2.73) by a suitable post-processing of the first three right hand side terms
of (2.73), cf. again [69, Lemma 5]. The derived stability estimate in terms of Eε[ϕε|Ω̄]
is then a key input for the derivation of a stability estimate of a “phase field version” of
the Luckhaus–Sturzenhecker type error functional (2.22). More precisely, given a weight ϑ
associated with the smoothly evolving phase Ω̄ and (at least) subject to the conditions (2.20)–
(2.21) and (2.25), one may define

Ebulk[ψε|Ω̄] :=

ˆ
(ψε − σW χ̄)ϑ dx. (2.74)

By the sign condition (2.21) and the definition (2.69), this again yields a non-negative
functional provided ψε ∈ [0, σW ], or equivalently ϕε ∈ [−1, 1]. The latter, however, can be
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2. The relative entropy approach for a class of interface evolution problems

ensured in the context of the Allen–Cahn equation (2.66) thanks to a maximum principle
argument (provided the values of the initial phase field satisfy the same restriction, which we
of course assume). With the definition (2.74) in place, let us briefly describe how to obtain
the analogue of the representation (2.24). To this end, one first computes by means of the
chain rule, the definition (2.69), and the fact that ϑ(·, t) = 0 along Ī(t) for all t ∈ [0, T ],

d

dt
Ebulk[ψε|Ω̄] =

ˆ
ϑ
√

2W (ϕε)∂tϕε dx+

ˆ
(ψε − σW χ̄)∂tϑ dx.

Adding zero, applying the product rule, and integrating by parts (using again in the process
that ϑ(·, t) = 0 along Ī(t) for all t ∈ [0, T ]) furthermore yields

ˆ
(ψε − σW χ̄)∂tϑ dx =

ˆ
(ψε − σW χ̄)

(
∂tϑ+(B · ∇)ϑ

)
dx

−
ˆ

(ψε − σW χ̄)
(
∇ · (Bϑ)

)
dx

+

ˆ
(ψε − σW χ̄)ϑ(∇ ·B) dx

=

ˆ
ϑ
√

2W (ϕε)(B · ∇)ϕε dx

+

ˆ
(ψε − σW χ̄)

(
∂tϑ+(B · ∇)ϑ

)
dx

+

ˆ
(ψε − σW χ̄)ϑ(∇ ·B) dx,

where for the precise representation of the first right hand side term of the second identity
we also used the first identity of (2.71) and |∇ψε| =

√
2W (ϕε)|∇ϕε|. The combination of

the previous two displays finally entails the following analogue of (2.24)

d

dt
Ebulk[ψε|Ω̄] =

ˆ
ϑ
√

2W (ϕε)
(
∂tϕε+(B · ∇)ϕε

)
dx+

ˆ
(ψε − σW χ̄)

(
∂tϑ+(B · ∇)ϑ

)
dx

+

ˆ
(ψε − σW χ̄)ϑ(∇ ·B) dx. (2.75)

In the specific context of the Allen–Cahn equation (2.66), Fischer, Laux and Simon [69]
suitably post-process the first right hand side term of the previous display in order to derive
by a Gronwall argument a stability estimate for the error functional Ebulk[ψε|Ω̄], cf. [69,
Step 2, Proof of Theorem 1]. We stress again that their argument requires to appeal to an
already established stability estimate for Eε[ϕε|Ω̄], as expected.

As already noted by Fischer, Laux and Simon [69], the above outlined alternative approach
to convergence rates of diffuse interface approximations neither relies on the comparison
principle (in an essential way) nor on asymptotic expansions techniques and a linear stability
analysis of the Allen–Cahn operator. This may raise the hope that their approach can also
be successfully applied to more general or different types of phase field models. We conclude
this subsection by providing a short list of examples in this direction:

• We start by mentioning the recent result of Laux and Liu [97], who employ, amongst
other techniques, the principles of the above outlined approach in their study of nematic-
isotropic phase transitions in the context of Landau–De Gennes theory of liquid crystals.

• It is by no means trivial to extend the techniques of Fischer, Laux and Simon [69] to
the setting of the vector-valued Allen–Cahn problem. This is highly relevant since the
sharp interface limit is given by multiphase mean curvature flow. We already men-
tioned in this context the work of Baldo [16] proving Γ-convergence of the associated
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energy functionals. A formal convergence result employing formally matched asymp-
totic expansions is due to Bronsard and Reitich [25], whereas a rigorous (qualitative)
convergence result (under an energy convergence assumption) towards the BV for-
mulation of multiphase mean curvature flow is the content of the work of Laux and
Simon [101].

To the best of the author’s knowledge, there is currently no rigorous convergence result
available in the literature establishing convergence rates towards a strong solution of
multiphase mean curvature flow; at least in settings which allow for the occurrence
of triple junctions in the sharp interface limit (otherwise, the reader may consult the
PhD thesis of Moser [119]). It would be interesting to see whether some of the princi-
ples and ideas of our multiphase relative entropy approach could prove helpful in the
investigation of this open problem.

• In his PhD thesis, Moser [119] established for the first time a rigorous convergence
result in the ε→ 0 limit for the Allen–Cahn equation with non-linear Robin boundary
condition towards two-phase mean curvature flow in a bounded domain, for which a
fixed-in-time contact angle is prescribed at points where the sharp interface intersects
the boundary of the domain. A formal result based on formally matched asymptotic
expansions is due to Owen and Sternberg [123], whereas the Γ-convergence result for
the underlying energy functionals is due to Modica [116].

The results of Moser [119] hold true in ambient spatial dimension d = 2 on the time
interval of existence of a strong solution of the sharp interface limit model (with well-
prepared initial data). Moreover, his arguments are based on the classical approach due
to De Mottoni and Schatzman [46], and so far are “limited” to a perturbative regime
around the case of a fixed-in-time 90◦ contact angle. It is an intriguing question whether
one can perform a suitable extension of the approach by Fischer, Laux and Simon [69]
in order to derive convergence rates in a non-perturbative regime for the contact angle
(possibly in a first step under rather restrictive assumptions on the structure of the
boundary contact energy at the level of the diffuse interface approximation, cf. the
setting of Moser [119, Section 1.3]). An investigation of this problem will be the subject
of future work.

• Let us next consider the example of Navier–Stokes/Allen–Cahn systems in Rd, where
d ∈ {2, 3}, in their simplest form given by

∂tvε + (vε · ∇)vε = ∆vε −∇pε −∇ ·
(
nε ⊗ nε ε|∇ϕε|2

)
in Rd × (0, T ),

∇ · vε = 0 in Rd × (0, T ),

∂tϕε + (vε · ∇)ϕε = m0ε
θ
(

∆ϕε −
1

ε2
W ′(ϕε)

)
in Rd × (0, T ),

with mobility constant m0 > 0 and exponent θ ∈ {0, 1}. Formally matched asymptotic
expansions suggest convergence of the above diffuse interface models to a two-phase
Navier–Stokes problem with sharp interface. More precisely, and focusing only on the
equation for the normal velocity vector VĪ of the sharp interface Ī in the limit, one
formally obtains in the case of θ = 0

VĪ = (n̄ · v)n̄ +m0HĪ on Ī , (2.76)

whereas in the case of θ = 1 one obtains pure transport along the fluid flow

VĪ = (n̄ · v)n̄ on Ī . (2.77)
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2. The relative entropy approach for a class of interface evolution problems

In the former case of (2.76), there is the already mentioned work of Abels and Liu [4]
proving a rigorous convergence result (including convergence rates in strong norms)
in a simplified setting where the full Navier–Stokes system is replaced by the (quasi-
stationary) Stokes system. Even in this setting, their analysis requires substantial
efforts and is again based on methods in the spirit of the work of De Mottoni and
Schatzman [46]. At the time of this writing, a rigorous convergence result (in either
case of θ = 0 or θ = 1) addressing the full Navier–Stokes system remains an open issue.

• We finally mention that any rigorous convergence result based on a relative entropy
technique à la Fischer, Laux and Simon [69] establishing convergence rates for diffuse
interface models incorporating the Cahn–Hilliard equation (2.67) would be of interest.
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CHAPTER 3
Weak-strong uniqueness for two-phase

Navier–Stokes flow

Abstract. We consider the evolution of two fluids separated by a sharp interface
in the presence of surface tension – like, for example, the evolution of oil bubbles
in water. Our main result is a weak-strong uniqueness principle for the corre-
sponding free boundary problem for the incompressible Navier-Stokes equation:
As long as a strong solution exists, any varifold solution must coincide with it. In
particular, in the absence of physical singularities the concept of varifold solutions
– whose global in time existence has been shown by Abels [1] for general initial
data – does not introduce a mechanism for non-uniqueness. The key ingredient
of our approach is the construction of a relative entropy functional capable of
controlling the interface error. If the viscosities of the two fluids do not coincide,
even for classical (strong) solutions the gradient of the velocity field becomes dis-
continuous at the interface, introducing the need for a careful additional adaption
of the relative entropy.

3.1 Main results & definitions

The main result of the present work is the derivation of a weak-strong uniqueness principle
for varifold solutions to the free boundary problem for the Navier–Stokes equation for two
immiscible incompressible fluids with surface tension: As long as a strong solution to the
free boundary problem (1.1a)-(1.1c) exists, any varifold solution must coincide with it. In
particular, the concept of varifold solutions developed by Abels [1] (see Definition 3.2 below
for a precise definition) does not introduce an additional mechanism for non-uniqueness, at
least as long as a classical solution exists. At the same time, the concept of varifold solutions
of Abels allows for the construction of globally existing solutions [1], while any concept of
strong solutions is limited to the absence of geometric singularities and therefore – at least
in three spatial dimensions d = 3 – to short-time existence results.

Furthermore, we prove a quantitative stability result (3.1) for varifold solutions with
respect to changes in the data: As long as a classical solution exists, any varifold solution
with slightly perturbed initial data remains close to it.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

Theorem 3.1 (Weak-strong uniqueness principle). Let d ∈ {2, 3}. Let (χu, u, V ) be a varifold
solution to the free boundary problem for the incompressible Navier–Stokes equation for two
fluids (1.1a)-(1.1c) in the sense of Definition 3.2 on some time interval [0, Tvari). Let (χv, v)
be a strong solution to (1.1a)-(1.1c) in the sense of Definition 3.6 on some time interval
[0, Tstrong) with Tstrong ≤ Tvari. Let the relative entropy E[χu, u, V |χv, v](t) be defined as in
Proposition 3.10.

Then there exist constants C, c > 0 such that the stability estimate

E
[
χu, u, V

∣∣χv, v](T ) ≤ C(E[χu, u, V |χv, v](0))e
−CT

(3.1)

holds for almost every T ∈ [0, Tstrong), provided that the initial relative entropy satisfies
E[χu, u, V |χv, v](0) ≤ c. The constants c > 0 and C > 0 depend only on the data and the
strong solution.

In particular, if the initial data of the varifold solution and the strong solution coincide,
the varifold solution must be equal to the strong solution in the sense that

χu(·, t) = χv(·, t) and u(·, t) = v(·, t)

hold almost everywhere for almost every t ∈ [0, Tstrong), and the varifold is given for almost
every t ∈ [0, Tstrong) by

dVt = δ ∇χv
|∇χv |

d|∇χv|.

We emphasize that our main result in Theorem 3.1 remains valid if we allow for a density-
dependent bulk force like gravity, i.e., if we add a term of the form ρ(χ)g on the right-hand
side of (1.1b). Details are provided in Remark 3.35.

The following notion of varifold solutions for the free boundary problem associated with
the flow of two immiscible incompressible viscous fluids with surface tension has been in-
troduced by Abels [1]. For Newtonian fluids, the global-in-time existence of such varifold
solutions has been proven for quite general initial data in two and three spatial dimensions
in [1]. For the notion of an oriented varifold, see the section on notation just prior to Sec-
tion 3.2.

Definition 3.2 (Varifold solution for the two-phase Navier–Stokes equation). Let a surface
tension constant σ > 0, the densities and shear viscosities of the two fluids ρ±, µ± > 0, a
finite time Tvari > 0, a solenoidal initial velocity profile v0 ∈ L2(Rd;Rd), and an indicator
function of the volume occupied initially by the first fluid χ0 ∈ BV(Rd) be given.

A triple (χ, v, V ) consisting of a velocity field v, an indicator function χ of the volume
occupied by the first fluid, and an oriented varifold V with

v ∈ L2([0, Tvari];H
1(Rd;Rd)) ∩ L∞([0, Tvari];L

2(Rd;Rd)),
χ ∈ L∞([0, Tvari]; BV(Rd; {0, 1})),
V ∈ L∞w ([0, Tvari];M(Rd×Sd−1)),

is called a varifold solution to the free boundary problem for the Navier-Stokes equation for
two fluids with initial data (χ0, v0) if the following conditions are satisfied:
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3.1. Main results & definitions

i) The velocity field v has vanishing divergence ∇·v = 0 and the equation for the momentum
balance

ˆ
Rd
ρ(χ(·, T ))v(·, T ) · η(·, T ) dx−

ˆ
Rd
ρ(χ0)v0 · η(·, 0) dx

=

ˆ T

0

ˆ
Rd
ρ(χ)v · ∂tη dx dt+

ˆ T

0

ˆ
Rd
ρ(χ)v ⊗ v : ∇η dx dt (3.2a)

−
ˆ T

0

ˆ
Rd
µ(χ)(∇v +∇vT ) : ∇η dx dt

− σ
ˆ T

0

ˆ
Rd×Sd−1

(Id− s⊗ s) : ∇η dVt(x, s) dt

is satisfied for almost every T ∈ [0, Tvari) and every smooth vector field η ∈ C∞cpt(Rd ×
[0, Tvari);Rd) with ∇ · η = 0. For the sake of brevity, we have used the abbreviations
ρ(χ) := ρ+χ+ ρ−(1− χ) and µ(χ) := µ+χ+ µ−(1− χ).

ii) The indicator function χ of the volume occupied by the first fluid satisfies the weak formu-
lation of the transport equation
ˆ
Rd
χ(·, T )ϕ(·, T ) dx−

ˆ
Rd
χ0ϕ(·, 0) dx =

ˆ T

0

ˆ
Rd
χ (∂tϕ+ (v · ∇)ϕ) dx dt (3.2b)

for almost every T ∈ [0, Tvari) and all ϕ ∈ C∞cpt(Rd × [0, Tvari)).

iii) The energy dissipation inequality
ˆ
Rd

1

2
ρ(χ(·, T ))|v(·, T )|2 dx+ σ|VT |(Rd × Sd−1)

+

ˆ T

0

ˆ
Rd

µ(χ)

2

∣∣∇v +∇vT
∣∣2 dx dt (3.2c)

≤
ˆ
Rd

1

2
ρ(χ0(·))|v0(·)|2 dx+ σ|∇χ0(·)|(Rd)

is satisfied for almost every T ∈ [0, Tvari), and the energy

E[χ, v, V ](t) :=

ˆ
Rd

1

2
ρ(χ(·, t))|v(·, t)|2 dx+ σ|Vt|(Rd × Sd−1) (3.2d)

is a nonincreasing function of time.

iv) The phase boundary ∂{χ(·, t) = 0} and the varifold V satisfy the compatibility condition
ˆ
Rd×Sd−1

ψ(x)s dVt(x, s) =

ˆ
Rd
ψ(x) d∇χ(x) (3.2e)

for almost every T ∈ [0, Tvari) and every smooth function ψ ∈ C∞cpt(Rd).

Let us continue with a few comments on the relation between the varifold Vt and the
interface described by the indicator function χ(·, t).

Remark 3.3. Let Vt ∈ M(Rd×Sd−1) denote the non-negative measure representing (at
time t) the varifold associated to a varifold solution (χ, v, V ) to the free boundary problem for
the incompressible Navier-Stokes equation for two fluids. The compatibility condition (3.2e)
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

entails that |∇χu(t)| is absolutely continuous with respect to |Vt|Sd−1. Hence, we may define
the Radon–Nikodym derivative

θt :=
d|∇χu(t)|
d|Vt|Sd−1

, (3.3)

which is a |Vt|Sd−1-measurable function with |θt(x)| ≤ 1 for |Vt|Sd−1-almost every x ∈ Rd. In
particular, we have

ˆ
Rd
f(x) d|∇χ(·, t)|(x) =

ˆ
Rd
θt(x)f(x) d|Vt|Sd−1(x) (3.4)

for every f ∈ L1(Rd, |∇χ(·, t)|) and almost every t ∈ [0, Tvari).

The compatibility condition between the varifold Vt and the interface described by the
indicator function χ(·, t) has the following consequence.

Remark 3.4. Consider a varifold solution (χ, v, V ) to the free boundary problem for the
incompressible Navier-Stokes equation for two fluids. Let Et be the measurable set {x ∈
Rd : χ(x, t) = 1}. Note that for almost every t ∈ [0, Tvari) this set is then a Caccioppoli set
in Rd. Let n(·, t) = ∇χ

|∇χ| denote the measure theoretic unit normal vector field on the reduced
boundary ∂∗Et. By means of the compatibility condition (3.2e) and the definition (3.3) we
obtain

d
´
Sd−1 sdVt(·, s)
d|Vt|Sd−1(·)

=

{
θt(x)n(x, t) for x ∈ ∂∗Et,
0 else,

(3.5)

for almost every t ∈ [0, Tvari) and |Vt|Sd−1-almost every x ∈ Rd.

In order to define a notion of strong solutions to the free boundary problem for the flow
of two immiscible fluids, let us first define a notion of smoothly evolving domains.

Definition 3.5 (Smoothly evolving domains and surfaces). Let Ω+
0 be a bounded domain

of class C3 and consider a family (Ω+
t )t∈[0,Tstrong) of open sets in Rd. Let I(t) = ∂Ω+

t and
Ω−t = Rd \ (Ω+

t ∪ I(t)) for every t ∈ [0, Tstrong].
We say that Ω+

t , Ω−t are smoothly evolving domains and that I(t) are smoothly evolving
surfaces if we have Ω+

t = Ψt(Ω+
0 ), Ω−t = Ψt(Ω−0 ), and I(t) = Ψt(I(0)) for a map Ψ: Rd ×

[0, Tstrong)→ Rd, (x, t) 7→ Ψ(x, t) = Ψt(x), subject to the following conditions:

i) We have Ψ0 = Id.

ii) For any fixed t ∈ [0, Tstrong), the map Ψt : Rd → Rd is a C3-diffeomorphism. Moreover,
we assume ‖Ψ‖

L∞t W
3,∞
x

<∞.

iii) We have ∂tΨ ∈ C0([0, Tstrong);C
2(Rd;Rd)) and ‖∂tΨ‖L∞t W 2,∞

x
<∞.

Moreover, we assume that there exists rc ∈ (0, 1
2 ] with the following property: For all t ∈

[0, Tstrong) and all x ∈ I(t) there exists a function g : B1(0) ⊂ Rd−1 → R with ∇g(0) = 0
such that after a rotation and a translation, I(t) ∩ B2rc(x) is given by the graph {(x, g(x)) :
x ∈ Rd−1}. Furthermore, for any of these functions g the pointwise bounds |∇mg| ≤ r−(m−1)

c

hold for all 1 ≤ m ≤ 3.

We have everything in place to give the definition of a strong solution to the free bound-
ary problem for the Navier–Stokes equation for two fluids. For a discussion of the condi-
tions (3.6a)–(3.6c) we refer to Remark 3.36 in the “Appendix”.
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Definition 3.6 (Strong solution for the two-phase Navier–Stokes equation). Let a surface
tension constant σ > 0, the densities and shear viscosities of the two fluids ρ±, µ± > 0, a
finite time horizon Tstrong > 0, a domain Ω+

0 occupied initially by the first fluid with interface
Iv(0) := ∂Ω+

0 , and an initial velocity profile v0 be given which are subject to the following
regularity and compatibility conditions:

v0 ∈W 2− 2
q
,q

(Rd \ Iv(0)) for some q > d+ 2, sup
Rd\Iv(0)

|v0|+ |∇v0| <∞, (3.6a)

[[v0]] = 0 on Iv(0), ∇ · v0 = 0 in Rd, (3.6b)

(Id−nIv(0) ⊗ nIv(0))[[µ(χ0)(∇v0+∇vT0 )]]nIv(0) = 0 on Iv(0). (3.6c)

Let the initial interface between the fluids Iv(0) be a compact C3-manifold.
A pair (χ, v) consisting of a velocity field v and an indicator function χ of the volume

occupied by the first fluid with

v ∈ H1([0, Tstrong];L
2(Rd;Rd)) ∩ L∞([0, Tstrong];H

1(Rd;Rd)),
∇v ∈ L1([0, Tstrong]; BV(Rd;Rd×d)),
χ ∈ L∞([0, Tstrong]; BV(Rd; {0, 1})),

is called a strong solution to the free boundary problem for the Navier–Stokes equation for
two fluids with initial data (χ0, v0) if the volume occupied by the first fluid Ω+

t := {x ∈ Rd :
χ(x, t) = 1} is a smoothly evolving domain and the interface Iv(t) := ∂Ω+

t is a smoothly
evolving surface in the sense of Definition 3.5, and if additionally the following conditions
are satisfied:

i) The velocity field v has vanishing divergence ∇·v = 0 and the equation for the momentum
balance

ˆ
Rd
ρ(χ(·, T ))v(·, T ) · η(·, T ) dx−

ˆ
Rd
ρ(χ0)v0 · η(·, 0) dx

=

ˆ T

0

ˆ
Rd
ρ(χ)v · ∂tη dx dt+

ˆ T

0

ˆ
Rd
ρ(χ)v ⊗ v : ∇η dx dt (3.7a)

−
ˆ T

0

ˆ
Rd
µ(χ)(∇v +∇vT ) : ∇η dx dt

+ σ

ˆ T

0

ˆ
Iv(t)

H · η dS dt

is satisfied for almost every T ∈ [0, Tstrong) and every smooth vector field η ∈ C∞cpt(Rd ×
[0, Tstrong);Rd) with ∇·η = 0. Here, H denotes the mean curvature vector of the interface
Iv(t). For the sake of brevity, we have used the abbreviations ρ(χ) := ρ+χ + ρ−(1 − χ)
and µ(χ) := µ+χ+ µ−(1− χ).

ii) The indicator function χ of the volume occupied by the first fluid satisfies the weak formu-
lation of the transport equation

ˆ
Rd
χ(·, T )ϕ(·, T ) dx−

ˆ
Rd
χ0ϕ(·, 0) dx =

ˆ T

0

ˆ
Rd
χ (∂tϕ+ (v · ∇)ϕ) dx dt (3.7b)

for almost every T ∈ [0, Tstrong] and all ϕ ∈ C∞cpt(Rd × [0, Tstrong)).
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

iii) In the set
⋃
t∈[0,Tstrong ](Ω

+
t ∪ Ω−t ) × {t} all spatial derivatives up to third order, the time

derivative ∂tv, as well as the mixed derivative ∂t∇v of the velocity field exist, and they
satisfy the estimate

sup
t∈[0,Tstrong ]

sup
x∈Ω+

t ∪Ω−t

sup
k∈{0,1,2,3}

|∇kv(x, t)|+ |∂tv(x, t)|+ |∂t∇v(x, t)| <∞. (3.7c)

We continue with a remark on the existence of strong solutions in the functional framework
of the previous definition.

Remark 3.7. Local-in-time existence of such strong solutions (starting with smooth initial
data subject to the above compatibility conditions) is essentially shown in [89, Theorem 2], up
to two details: The authors only consider the system (1.1) in a bounded domain (instead of
Rd), and they do not state smoothness up to initial time with the corresponding bound (3.7c).
The former restriction is just a technicality and the methods extend to unbounded domains,
see [126]. The regularity up to initial time with the corresponding bound (3.7c), on the other
hand, can be deduced by regularity theory, using the transformed formulation of the problem in
[89]; this however requires higher-order regularity and compatibility conditions for the initial
data in the following sense. Let p0 be an initial pressure field. Then we assume that

v0 ∈W 4− 2
q
,q

(Rd \ Iv(0)) for some q > d+ 2, sup
k∈{0,1,2,3}

sup
Rd\Iv(0)

|∇kv0| <∞, (3.8a)

nIv(0)[[µ(χ0)(∇v0+∇vT0 )−p0Id]]nIv(0) = σH(0) · nIv(0) on Iv(0). (3.8b)

[[ρ(χ0)−1(µ(χ0)∆v0−∇p0)]] = 0 on Iv(0), (3.8c)

∇ ·G0 = 0 in Rd \ Iv(0) (3.8d)

for G0 := ρ(χ0)−1
(
µ(χ0)∆v0−ρ(χ0)

(
(Id−nIv(0) ⊗ nIv(0))v0 · ∇

)
v0−∇p0

)
(Id−nIv(0) ⊗ nIv(0))[[µ(χ0)(∇G0+∇GT0 )]]nIv(0) = 0 on Iv(0). (3.8e)

We refer to Remark 3.36 in the “Appendix” for a discussion of these conditions; we also
give a brief discussion concerning the existence of strong solutions in the precise functional
framework of Definition 3.6 under these additional regularity and compatibility conditions in
Remark 3.37 in the “Appendix”.

Before we state the main ingredient for the proof of Theorem 3.1, we proceed with two
further remarks on the notion of strong solutions. The first concerns the consistency with
the notion of varifold solutions due to Abels [1].

Remark 3.8. Every strong solution (χ, v) to the free boundary problem for the incompressible
Navier–Stokes equation for two fluids (1.1a)-(1.1c) in the sense of Definition 3.6 canonically
defines a varifold solution in the sense of Definition 3.2. Indeed, we can define the varifold V
by means of dVt = δ ∇χ

|∇χ|
d|∇χ|. Due to the regularity requirements on the family of smoothly

evolving surfaces I(t), see Definition 3.5, it then follows
ˆ T

0

ˆ
I(t)

H · ϕdS dt = −
ˆ T

0

ˆ
Rd

(Id− n⊗ n) : ∇ϕd|∇χ(·, t)| dt

= −
ˆ T

0

ˆ
Rd×Sd−1

(Id− s⊗ s) : ∇ϕdVt(x, s) dt,

for almost every T ∈ [0, Tstrong) and all ϕ ∈ C∞cpt(Rd × [0, Tvari);Rd), see for instance [3,
Lemma 3.4]. Moreover, it follows from the regularity requirements of a strong solution that
the velocity field v also satisfies the energy dissipation inequality (3.2c). This proves the
claim.
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The second remark concerns the validity of the kinematic condition of the interface being
transported with the fluid flow in its strong formulation.

Remark 3.9. Let (χ, v) be a strong solution to the free boundary problem for the incompress-
ible Navier–Stokes equation for two fluids (1.1a)-(1.1c) in the sense of Definition 3.6 on some
time interval [0, Tstrong). Let Vn(x, t) denote the normal speed of the interface at x ∈ Iv(t),
i.e., the normal component of ∂tΨ(x, t) where Ψ: Rd × [0, Tstrong)→ Rd is the family of dif-
feomorphisms from the definition of a family of smoothly evolving domains (Definition 3.5).
Furthermore, let ϕ ∈ C∞cpt(Rd × (0, Tstrong)). Due to the regularity requirements on a family
of smoothly evolving domains, see Definition 3.5, we obtain (see for instance [3, Theorem
2.6])

ˆ Tstrong

0

ˆ
Rd
χ∂tϕdx dt = −

ˆ Tstrong

0

ˆ
Iv(t)

VnϕdS dt.

On the other side, subtracting from the former identity the equation (3.7b) satisfied by the
indicator function χ and making use of the incompressibility of the velocity field v we deduce

ˆ Tstrong

0

ˆ
Iv(t)

(Vn − n · v)ϕdS dt = 0.

Since ϕ ∈ C∞cpt(Rd × (0, Tstrong)) was arbitrary we recover the identity

Vn = n · v on
⋃

t∈(0,Tstrong)

Iv(t)× {t},

that is to say, the kinematic condition of the interface being transported with the flow is
satisfied in its strong formulation.

Our weak-strong uniqueness result in Theorem 3.1 relies on the following relative entropy
inequality. The regime of equal shear viscosities µ+ = µ− corresponds to the choice of w = 0
in the statement below. Note also that in this case the viscous stress term Rvisc disappears
due to µ(χu)− µ(χv) = 0.

Proposition 3.10 (Relative entropy inequality). Let d ≤ 3. Let (χu, u, V ) be a varifold
solution to the free boundary problem for the incompressible Navier–Stokes equation for two
fluids (1.1a)-(1.1c) in the sense of Definition 3.2 on some time interval [0, Tvari). Let (χv, v)
be a strong solution to (1.1a)-(1.1c) in the sense of Definition 3.6 on some time interval
[0, Tstrong) with Tstrong ≤ Tvari and let

w ∈ L2([0, Tstrong);H
1(Rd;Rd)) ∩H1([0, Tstrong);L

4/3(Rd;Rd) + L2(Rd;Rd))

be a solenoidal vector field with bounded spatial derivative ‖∇w‖L∞ < ∞. Suppose further-
more that for almost every t ≥ 0, for every x ∈ Rd either x is a Lebesgue point of ∇w(·, t)
or there exists a half-space Hx such that x is a Lebesgue point for both ∇w(·, t)|Hx and
∇w(·, t)|Rd\Hx .

For a point (x, t) such that dist(x, Iv(t)) < rc, denote by PIv(t)x the projection of x onto
the interface Iv(t) of the strong solution. Introduce the extension ξ of the unit normal nv of
the interface of the strong solution defined by

ξ(x, t) := nv(PIv(t)x)(1− dist(x, Iv(t))
2)η(dist(x, Iv(t)))

for some cutoff η with η(s) = 1 for s ≤ 1
2rc and η ≡ 0 for s ≥ rc. Let

V̄n(x, t) := (n(PIv(t)x, t) · v(PIv(t)x, t))n(PIv(t)x, t)
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be an extension of the normal velocity of the interface of the strong solution Iv(t) to an rc-
neighborhood of Iv(t). Let θ be the density θt = d|∇χu(·,t)|

d|Vt|Sd−1
as defined in (3.3) and let β : R→ R

be a truncation of the identity with β(r) = r for |r| ≤ 1
2 , |β

′| ≤ 1, |β′′| ≤ C, and β′(r) = 0
for |r| ≥ 1.

Then the relative entropy

E
[
χu, u, V

∣∣χv, v](T ) := σ

ˆ
Rd

1− ξ(·, T ) · ∇χu(·, T )

|∇χu(·, T )|
d|∇χu(·, T )| (3.9)

+

ˆ
Rd

1

2
ρ
(
χu(·, T )

)∣∣u− v − w∣∣2(·, T ) dx

+

ˆ
Rd

∣∣χu(·, T )− χv(·, T )
∣∣ ∣∣∣β(dist±(·, Iv(T ))

rc

)∣∣∣ dx

+ σ

ˆ
Rd

1− θT d|VT |Sd−1

is subject to the relative entropy inequality

E
[
χu, u, V

∣∣χv, v](T ) +

ˆ T

0

ˆ
Rd

2µ(χu)
∣∣Dsym(u− v − w)

∣∣2 dx dt

≤ E
[
χu, u, V

∣∣χv, v](0) +RsurTen +Rdt +Rvisc +Radv +RweightV ol

+Avisc +Adt +Aadv +AsurTen +AweightV ol

for almost every T ∈ (0, Tstrong), where we made use of the abbreviations

RsurTen :=

− σ
ˆ T

0

ˆ
Rd×Sd−1

(s− ξ) ·
(
(s− ξ) · ∇

)
v dVt(x, s) dt

+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T

0

ˆ
Rd

(χu − χv)
(
(u− v − w) · ∇

)
(∇ · ξ) dx dt

− σ
ˆ T

0

ˆ
Rd

(
ξ · ∇χu
|∇χu|

)
nv(PIv(t)x) ·

(
nv(PIv(t)x) · ∇

)
v − ξ · (ξ · ∇)v d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

∇χu
|∇χu|

·
(
(Id−nv(PIv(t)x)⊗ nv(PIv(t)x))(∇V̄n−∇v)T · ξ

)
d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

∇χu
|∇χu|

·
(
(V̄n − v) · ∇

)
ξ d|∇χu| dt

and

Rdt :=−
ˆ T

0

ˆ
Rd

(
ρ(χu)− ρ(χv)

)
(u− v − w) · ∂tv dx dt,

Rvisc :=−
ˆ T

0

ˆ
Rd

2
(
µ(χu)− µ(χv)

)
Dsymv : Dsym(u− v) dx dt,

Radv :=−
ˆ T

0

ˆ
Rd

(
ρ(χu)− ρ(χv)

)
(u− v − w) · (v · ∇)v dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) ·

(
(u− v − w) · ∇

)
v dx dt,
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as well as

RweightV ol :=ˆ T

0

ˆ
Rd

(χu−χv)
((
V̄n−(v · nv(PIv(t)x))nv(PIv(t)x)

)
· ∇
)
β
(dist±(·, Iv)

rc

)
dx dt

+

ˆ T

0

ˆ
Rd

(χu−χv)
(
(u−v−w) · ∇

)
β
(dist±(·, Iv)

rc

)
dx dt.

Moreover, we have abbreviated

Avisc :=

ˆ T

0

ˆ
Rd

2
(
µ(χu)− µ(χv)

)
Dsymv : Dsymw dx dt

−
ˆ T

0

ˆ
Rd

2µ(χu)Dsymw : Dsym(u− v − w) dx dt,

and

Adt :=−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · ∂tw dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · (v · ∇)w dx dt,

Aadv :=−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · (w · ∇)(v + w) dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) ·

(
(u− v − w) · ∇

)
w dx dt,

AweightV ol :=

ˆ T

0

ˆ
Rd

(χu−χv)(w · ∇)β
(dist±(·, Iv)

rc

)
dx dt,

as well as

AsurTen :=− σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
w dVt(x, s) dt

+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)w d|Vt|Sd−1(x) dt

+ σ

ˆ T

0

ˆ
Rd

(χu − χv)(w · ∇)(∇ · ξ) dx dt

+ σ

ˆ T

0

ˆ
Rd

(χu − χv)∇w : ∇ξT dx dt

− σ
ˆ T

0

ˆ
Rd
ξ ·
(
(nu − ξ) · ∇

)
w d|∇χu| dt.

If we additionally allow for a density-dependent bulk force ρ(χ)f acting on the fluid –
such as gravity – , only one additional term appears on the right-hand side of the relative
entropy inequality of Proposition 3.10, see (3.212). We will comment in Remark 3.35 on the
minor changes that occur in the proof of the relative entropy inequality due to the additional
bulk force.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

Notation

We use a ∧ b (respectively a ∨ b) as a shorthand notation for the minimum (respectively
maximum) of two numbers a, b ∈ R.

Let Ω ⊂ Rd be open. For a function u : Ω × [0, T ] → R, we denote by ∇u its distribu-
tional derivative with respect to space and by ∂tu its derivative with respect to time. For
p ∈ [1,∞] and an integer k ∈ N0, we denote by Lp(Ω) and W k,p(Ω) the usual Lebesgue and
Sobolev spaces. In the special case p = 2 we use as usual Hk(Ω) := W k,2(Ω) to denote the
Sobolev space. For integration of a function f with respect to the d-dimensional Lebesgue
measure respectively the d−1-dimensional surface measure, we use the usual notation

´
Ω fdx

respectively
´
I fdS. For measures other than the natural measure (the Lebesgue measure

in case of domains Ω and the surface measure in case of surfaces I), we denote the corre-
sponding Lebesgue spaces by Lp(Ω, µ). The space of all compactly supported and infinitely
differentiable functions on Ω is denoted by C∞cpt(Ω). The closure of C∞cpt(Ω) with respect to
the Sobolev norm ‖ · ‖Wk,p(Ω) is W k,p

0 (Ω), and its dual will be denoted by W−1,p′(Ω) where
p′ ∈ [0,∞] is the conjugated Hölder exponent of p, i.e. 1/p + 1/p′ = 1. For vector-valued
fields, say with range in Rd, we use the notation Lp(Ω;Rd), and so on. For a Banach space X,
a finite time T > 0 and a number p ∈ [1,∞] we denote by Lp([0, T ];X) the usual Bochner–
Lebesgue space. If X itself is a Sobolev space W k,q, we denote the norm of Lp([0, T ];X) as
‖ · ‖

LptW
k,q
x

. When writing L∞w ([0, T ];X ′) we refer to the space of bounded and weak-∗ mea-
surable maps f : [0, T ]→ X ′, where X ′ is the dual space of X. By Lp(Ω) +Lq(Ω) we denote
the normed space of all functions u : Ω → R which may be written as the sum of two func-
tions v ∈ Lp(Ω) and w ∈ Lq(Ω). The space Ck([0, T ];X) contains all k-times continuously
differentiable and X-valued functions on [0, T ].

In order to give a suitable weak description of the evolution of the sharp interface, we
have to recall the concepts of Caccioppoli sets as well as varifolds. To this end, let Ω ⊂ Rd
be open. We denote by BV(Ω) the space of functions with bounded variation in Ω. A
measurable subset E ⊂ Ω is called a set of finite perimeter in Ω (or a Caccioppoli subset of
Ω) if its characteristic function χE is of bounded variation in Ω. We will write ∂∗E when
referring to the reduced boundary of a Caccioppoli subset E of Ω; whereas n denotes the
associated measure theoretic (inward pointing) unit normal vector field of ∂∗E. For detailed
definitions of all these concepts from geometric measure theory, we refer to [61, 39]. In case
Ω has a C2 boundary, we denote by H(x) the mean curvature vector at x ∈ ∂Ω. Recall
that for a convex function g : Rd → R the recession function grec : Rd → R is defined as
grec(x) := limτ→∞ τ

−1g(τx).

An oriented varifold is simply a non-negative measure V ∈ M(Ω×Sd−1), where Ω ⊂ Rd
is open and Sd−1 denotes the (d−1)-dimensional sphere. For a varifold V , we denote by
|V |Sd−1 ∈ M(Ω) its local mass density given by |V |Sd−1(A) := V (A × Sd−1) for any Borel
set A ⊂ Ω. For a locally compact separable metric space X we writeM(X) to refer to the
space of (signed) finite Radon-measures on X. If A ⊂ X is a measurable set and µ ∈M(X),
we let µ A be the restriction of µ on A. The k-dimensional Hausdorff measure on Rd will
be denoted by Hk, whereas we write Ld(A) for the d-dimensional Lebesgue measure of a
Lebesgue measurable set A ⊂ Rd.

Finally, let us fix some tensor notation. First of all, we use (∇v)ij = ∂jvi as well as
∇· v =

∑
i ∂ivi for a Sobolev vector field v : Rd → Rd. The symmetric gradient is denoted by

Dsymv := 1
2(∇v+∇vT ). For time-dependent fields v : Rd× [0, T )→ Rn we denote by ∂tv the

partial derivative with respect to time. Tensor products of vectors u, v ∈ Rd will be given by
(u⊗ v)ij = uivj . For tensors A = (Aij) and B = (Bij) we write A : B =

∑
ij AijBij .

56



3.2. Outline of the strategy

{χv = 1}

{χv = 0}

ξ

Figure 3.1: An illustration of the vector field ξ.

3.2 Outline of the strategy

3.2.1 The relative entropy

The basic idea of the present work is to measure the “distance” between a varifold solution
to the two-phase Navier-Stokes equation (χu, u, V ) and a strong solution to the two-phase
Navier-Stokes equation (χv, v) by means of the relative entropy functional

E
[
χu, u, V

∣∣χv, v](t) :=σ

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|+
ˆ
Rd

ρ(χu)

2
|u− v − w|2 dx

+ σ

ˆ
Rd

1− θt d|Vt|Sd−1 (3.10)

+

ˆ
Rd
|χu − χv|

∣∣∣∣β(dist±(x, Iv(t))

rc

)∣∣∣∣ dx

where ξ : Rd × [0, Tstrong)→ Rd is a suitable extension of the unit normal vector field of the
interface of the strong solution and where w is a vector field that will be constructed below
and that vanishes in case of equal viscosities µ+ = µ−. More precisely, we choose ξ as

ξ(x, t) := nv(PIv(t)x)(1− dist(x, Iv(t))
2)η(dist(x, Iv(t)))

for some cutoff η with η(s) = 1 for s ≤ 1
2rc and η ≡ 0 for s ≥ rc, where PIv(t)x denotes for

each t ≥ 0 the projection of x onto the interface Iv(t) of the strong solution and where the
unit normal vector field nv of the interface of the strong solution is oriented to point towards
{χv(·, t) = 1}. For an illustration of the vector field ξ, see Figure 3.1.

Rewriting the relative entropy functional in the form

E
[
χu, u, V

∣∣χv, v](t)
= E[χu, u, V ](t) +

ˆ
Rd
χu∇ · ξ dx−

ˆ
Rd
ρ(χu)u · (v + w) dx

+

ˆ
Rd

1

2
ρ(χu)|v + w|2 dx+

ˆ
Rd

(χu − χv)β
(dist±(x, Iv(t))

rc

)
dx

with the energy (3.2d), we see that we may estimate the time evolution of the relative en-
tropy E

[
χu, u, V

∣∣χv, v](t) by exploiting the energy dissipation property (3.2c) of the varifold
solution and by testing the weak formulation of the two-phase Navier-Stokes equation (3.2a)
and (3.2b) against the (sufficiently regular) test functions v+w respectively 1

2 |v+w|2, ∇ · ξ,
and β(dist±(x,Iv(t))

rc
).
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

As usual in the derivation of weak-strong uniqueness results by the relative entropy
method of Dafermos [43] and Di Perna [53], in the case of equal viscosities µ+ = µ− the
goal is the derivation of an estimate of the form

E
[
χu, u, V

∣∣χv, v](T ) + c

ˆ T

0

ˆ
Rd
|∇u−∇v|2 dx dt (3.11)

≤ C(v, Iv, data)

ˆ T

0
E
[
χu, u, V

∣∣χv, v](t) dt

which implies uniqueness and stability by means of the Gronwall lemma and by the coercivity
properties of the relative entropy functional discussed in the next section.

In the case of different viscosities µ+ 6= µ−, we will derive a slightly weaker (but still
sufficient) result of roughly speaking the form

E
[
χu, u, V

∣∣χv, v](T ) + c

ˆ T

0

ˆ
Rd
|∇u−∇v −∇w|2 dx dt (3.12)

≤ C(v, Iv, data)

ˆ T

0
E
[
χu, u, V

∣∣χv, v](t) ∣∣logE
[
χu, u, V

∣∣χv, v](t)∣∣ dt,

along with estimates on w which include in particular the bound
ˆ
Rd
|w(·, T )|2 dx ≤ C(v, Iv, data)E

[
χu, u, V

∣∣χv, v](T ).

3.2.2 The error control provided by the relative entropy functional

The relative entropy functional (3.10) provides control of the following quantities (up to
bounded prefactors):

Velocity error control. The relative entropy E[χu, u, V |χv, v](t) controls the square of
the velocity error in the L2 norm

ˆ
Rd
|u(·, t)− v(·, t)|2 dx

at any given time t. In the case of equal viscosities, this is immediate from (3.10) by
w ≡ 0, while in the case of different viscosities this follows by the estimate

´
Rd |w|

2 dx ≤
C‖∇v‖L∞

´
Rd 1 − ξ · ∇χu|∇χu| d|∇χu| which is a consequence of the construction of w and the

choice of ξ, see below.
Interface error control. The relative entropy provides a tilt-excess type control of the

error in the interface normal ˆ
Rd

1− ξ · nu d|∇χu|.

In particular, it controls the squared error in the interface normal
ˆ
Rd
|nu − ξ|2 d|∇χu|.

The term also controls the total length respectively area (for d = 2 respectively d = 3) of the
part of the interface Iu which is not locally a graph over Iv, see Figure 3.2. For example, in
the region around the left purple half-ray the interface of the weak solution is not a graph over
the interface of the weak solution. Furthermore, the term controls the length respectively
area (for d = 2 respectively d = 3) of the part of the interface with distance to Iv(t) greater
than the cutoff length rc, as there we have ξ ≡ 0.
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h+(x){χu = 1}
{χu = 0}

{χv = 1}
{χv = 0}

Figure 3.2: An illustration of the interface error. The red and the blue region (separated
by the black solid curve) correspond to the regions occupied by the two fluids in the strong
solution. The shaded area corresponds to the region occupied by the blue fluid in the varifold
solution, the interface in the varifold solution corresponds to the dotted curve.

To give another heuristic explanation of the interface error control and also introduce some
notation for subsequent use (for the proof in the case of different viscosities in Section 3.5
and its explanation in Section 3.2.4), we attempt to write the interface of the weak solution
as a graph over the interface of the strong solution (at least, to the extent to which this is
possible): Denote the local height of the one-sided interface error by h+ : Iv(t) → R+

0 as
measured along orthogonal rays originating on Iv(t) (with some cutoff applied away from the
interface Iv(t) of the strong solution); denote by h− the corresponding height of the interface
error as measured in the other direction. For example, in Figure 3.2 the quantity h+(x) for
some base point x ∈ Iv(t) would correspond to the accumulated length of the solid segments
in each of the purple rays, the dotted segments not being counted. Note that the rays are
orthogonal on Iv(t). Then the tilt-excess type term in the relative entropy also controls the
gradient of the one-sided interface error heightsˆ

Iv(t)
min{|∇h±|2, |∇h±|} dS.

Note that wherever Iu(t) is locally a graph over Iv(t) and is not too far away from Iv(t), it
must be the graph of the function h+ − h−. Here, the graph of a function g over the curved
interface Iv(t) is defined by the set of points obtained by shifting the points of Iv(t) by the
corresponding multiple of the surface normal, i. e. {x+ g(x)nv(x) : x ∈ Iv(t)}.

Varifold multiplicity error control. For varifold solutions, the relative entropy con-
trols the multiplicity error of the varifoldˆ

Rd
1− θt(x) d|Vt|Sd−1

(note that 1
θt(x) corresponds to the multiplicity of the varifold), which in turn by the compat-

ibility condition (3.2e) and the definition of θt (see (3.3)) controls the squared error in the
normal of the varifold ˆ

Rd

ˆ
Sd−1

|s− nu|2 dVt(s, x).

Weighted volume error control. Furthermore, the error in the volume occupied by
the two fluids weighted with the distance to the interface of the strong solutionˆ

Rd
|χu − χv|min{dist(x, Iv), 1} dx
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he(t)(x)

h+(x){χu = 1}
{χu = 0}

{χv = 1}
{χv = 0}

Figure 3.3: An illustration of the approximation of the interface error by the mollified height
function h+

e(t).

is controlled. Note that this term is the only term in the relative entropy which is not
obtained by the usual relative entropy ansatz E[x|y] = E[x]−DE[y](x− y)−E[y]. We have
added this lower-order term – as compared to the term

´
Rd 1−ξ · ∇χu|∇χu| d|∇χu| which provides

tilt-excess-type control – to the relative entropy in order to remove the lack of coercivity
of the term

´
Rd 1 − ξ · ∇χu|∇χu| d|∇χu| in the limit of vanishing interface length of the varifold

solution.
Control of velocity gradient error by dissipation. By means of Korn’s inequality,

the dissipation term controls the L2-error in the gradient

ˆ T

0

ˆ
Rd
|∇u−∇v −∇w|2 dx dt.

3.2.3 The case of equal viscosities

For equal viscosities µ+ = µ−, one may choose w ≡ 0. As a consequence, the right-hand side
in the relative entropy inequality – see Proposition 3.10 above – may be estimated to yield
the Gronwall-type inequality (3.11). The details are provided in Section 3.4.

3.2.4 Additional challenges in the case of different viscosities

In the case of different viscosities µ1 6= µ2 of the two fluids, even for strong solutions the
normal derivative of the tangential velocity features a discontinuity at the interface: By
the no-slip boundary condition, the velocity is continuous across the interface [v] = 0 and
the same is true for its tangential derivatives [(t · ∇)v] = 0. As a consequence of this, the
discontinuity of µ(χv) across the interface and the equilibrium condition for the stresses at
the interface

[[µ(χ)t · (n · ∇)v + µ(χ)n · (t · ∇)v]] = 0

entail for generic data a discontinuity of the normal derivative of the tangential velocity
t · (n · ∇)v across the interface.

As a consequence, it becomes impossible to establish a Gronwall estimate for the standard
relative entropy (3.10) with w ≡ 0. To see this, consider in the two-dimensional case d = 2
two strong solutions u and v with coinciding initial velocities u(·, 0) = v(·, 0) = u0(·), but
slightly different initial interfaces χv(·, 0) = χ{|x|≤1} and χu(·, 0) = χ{|x|≤1−ε} for some ε > 0.
The initial relative entropy is then of the order ∼ ε2. Suppose that (in polar coordinates)
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3.2. Outline of the strategy

the initial velocity u0 has a profile near the interface like

u0(x, y) =

{
µ−(r − 1)eφ for r =

√
x2 + y2 < 1,

µ+(r − 1)eφ for r > 1.

Note that this velocity profile features a kink at the interface. As one verifies readily, as far as
the viscosity term is concerned this corresponds to a near-equilibrium profile for the solution
(χv, v) (in the sense that the viscosity term is bounded). However, in the solution (χu, u)
the interface is shifted by ε and the profile is no longer an equilibrium profile. By the scaling
of the viscosity term, the timescale within which the profile u0 equilibrates in the annulus of
width ε towards a near-affine profile is of the order of ε2. After this timescale, the velocity
u will have changed by about ε in a layer of width ∼ ε around the interface; at the same
time, due to the mostly parallel transport at the interface the solution will not have changed
much otherwise. As a consequence, the term

´
1
2ρ(χu)|u − v|2 dx will be of the order of at

least cε3 after a time T ∼ ε2, while the other terms in the relative entropy are essentially the
same. Thus, the relative entropy has grown by a factor of 1 + cε within a timescale ε2, which
prevents any Gronwall-type estimate.

At the level of the relative entropy inequality (see Proposition 3.10), the derivation of the
Gronwall inequality is prevented by the viscosity terms, which read for w ≡ 0

−
ˆ
µ(χu)

2

∣∣∇u+∇uT − (∇v +∇vT )
∣∣2 dx

+

ˆ
(µ(χv)− µ(χu))∇v :

(
∇u+∇uT − (∇v +∇vT )

)
dx.

The latter term prevents the derivation of a dissipation estimate: While it is formally
quadratic in the difference of the two solutions (χu, u) and (χv, v), due to the (expected)
jump of the velocity gradients ∇v and ∇u at the respective interfaces it is in fact only linear
in the interface error.

The key idea for our weak-strong uniqueness result in the case of different viscosities is to
construct a vector field w which is small in the L2 norm but whose gradient compensates for
most of the problematic term (µ(χv)−µ(χu))(∇v+∇vT ). To be precise, it is only the normal
derivative of the tangential component of v which may be discontinuous at the interface; the
tangential derivatives are continuous by the no-slip boundary condition, while the normal
derivative of the normal component is continuous by the condition ∇ · v = 0.

Let us explain our construction of the vector field w at the simple two-dimensional example
of a planar interface of the strong solution Iv = {(x, 0) : x ∈ R}. In this setting, we would
like to set for y > 0

w+(x, y, t) :=c(µ+, µ−)

ˆ y∧h+(x)

0
(ex · ∂yv)(x, ỹ)ex dỹ

(where ex just denotes the first vector of the standard basis). Note that due to the bounded
integrand, this vector field w+(x, y) is bounded by Ch+(x), i. e. it is bounded by the interface
error. As we shall see in the proof, the time derivative of w+ is also bounded in terms of other
error terms. The tangential spatial derivative of this vector field ∂xw+(x, y, t) is given (up to
a constant factor) by

´ y∧h+(x)
0 (ex · ∂x∂yv)(x, ỹ)ex dỹ+χy≥h+(x)(ex · ∂yv)(x, h+(x))∂xh

+(x)ex
which is also a term controlled by Ch+(x) + C|∂xh+(x)|. The normal derivative, on the
other hand, is given by ∂yw+(x, y, t) = c(µ+, µ−)χ{0≤y≤h+(x)}(ex · ∂yv)(x, y)ex which (upon
choosing c(µ+, µ−)) would precisely compensate the discontinuity of ∂y(ex · v) in the region
in which the interface of the weak solution is a graph of a function over Iv. Note that our
relative entropy functional provides a higher-order control of the size of the region in which
the interface of the weak solution is not a graph over the interface of the strong solution.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

However, with this choice of vector field w+(x, y, t), two problems occur: First, the vector
field is not solenoidal. For this reason, we introduce an additional Helmholtz projection.
Second – and constituting a more severe problem – , the vector field would not necessarily
be (spatially) Lipschitz continuous (as the derivative contains a term with ∂xh+(x) which is
not necessarily bounded), which due to the surface tension terms would be required for the
derivation of a Gronwall-type estimate. For this reason, we first regularize the height function
h+ by mollification on a scale of the order of the error. See Proposition 3.26 and Proposi-
tion 3.27 for details of our construction of the regularized height function, and Figure 3.3 for
an illustration of it. The actual construction of our compensation function w is performed in
Proposition 3.28. We then derive an estimate in the spirit of (3.12) in Proposition 3.34.

3.3 Time evolution of geometric quantities and further
coercivity properties

3.3.1 Time evolution of the signed distance function

In order to describe the time evolution of various constructions, we need to recall some well-
known properties of the signed distance function. Let us start by introducing notation. For a
family (Ω+

t )t∈[0,Tstrong) of smoothly evolving domains with smoothly evolving interfaces I(t)
in the sense of Definition 3.5, the associated signed distance function is given by

dist±(x, I(t)) :=

{
dist(x, I(t)), x ∈ Ω+

t ,

−dist(x, I(t)), x /∈ Ω+
t .

(3.13)

From Definition 3.5 of a family of smoothly evolving domains it follows that the family of
maps Φt : I(t)×(−rc, rc)→ Rd given by Φt(x, y) := x+yn(x, t) are C2-diffeomorphisms onto
their image {x ∈ Rd : dist(x, I(t)) < rc} subject to the bounds

|∇Φt| ≤ C, |∇Φ−1
t | ≤ C. (3.14)

The signed distance function (resp. its time derivative) to the interface of the strong solution is
then of class C0

t C
3
x (resp. C0

t C
2
x) in the space-time tubular neighborhood

⋃
t∈[0,Tstrong) im(Φt)×

{t} due to the regularity assumptions in Definition 3.5. We also have the bounds

|∇k+1 dist±(x, I(t))| ≤ Cr−kc , k = 1, 2, (3.15)

and in particular for the mean curvature vector

|H| ≤ Cr−1
c . (3.16)

Moreover, the projection PI(t)x of a point x onto the nearest point on the manifold I(t) is
well-defined and of class C0

t C
2
x in the same tubular neighborhood.

After having introduced the necessary notation we study the time evolution of the signed
distance function to the interface of the strong solution. Because of the kinematic condition
that the interface is transported with the flow, we obtain the following statement.

Lemma 3.11. Let χv ∈ L∞([0, Tstrong); BV(Rd; {0, 1})) be an indicator function such that
Ω+
t := {x ∈ Rd : χv(x, t) = 1} is a family of smoothly evolving domains and Iv(t) :=

∂Ω+
t is a family of smoothly evolving surfaces in the sense of Definition 3.5. Let v ∈

L2
loc([0, Tstrong];H

1
loc(Rd;Rd)) be a continuous solenoidal vector field such that χv solves the

equation ∂tχv = −∇·(χvv). The time evolution of the signed distance function to the interface
Iv(t) is then given by

∂t dist±(x, Iv(t)) = −
(
V̄n(x, t) · ∇

)
dist±(x, Iv(t)) (3.17)
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3.3. Time evolution of geometric quantities and further coercivity properties

for any t ∈ [0, Tstrong] and any x ∈ Rd with dist(x, Iv(t)) ≤ rc, where V̄n is the extended
normal velocity of the interface given by

V̄n(x, t) =
(
v(PIv(t)x, t) · nv(PIv(t)x, t)

)
nv(PIv(t)x, t). (3.18)

Moreover, the following formulas hold true

∇ dist±(x, Iv(t)) = nv(PIv(t)x, t), (3.19)

∇ dist±(x, Iv(t)) · ∂t∇ dist±(x, Iv(t)) = 0, (3.20)
∇ dist±(x, Iv(t)) · ∂j∇ dist±(x, Iv(t)) = 0, j = 1, . . . , d, (3.21)

∂t dist±(x, Iv(t)) = ∂t dist±(y, Iv(t))
∣∣
y=PIv(t)x

, (3.22)

for all (x, t) such that dist(x, Iv(t)) ≤ rc. The gradient of the projection onto the nearest
point on the interface Iv(t) is given by

∇PIv(t)x = Id− nv(PIv(t)x)⊗ nv(PIv(t)x)− dist±(x, Iv(t))∇2 dist±(x, Iv(t)). (3.23)

In particular, we have the bound

|∇PIv(t)x| ≤ C (3.24)

for all (x, t) such that dist(x, Iv(t)) ≤ rc.

Proof. Recall that ∇ dist±(x, Iv(t)) for a point x ∈ Iv(t) on the interface equals the inward
pointing normal vector nv(x, t) of the interface Iv(t). This also extends away from the inter-
face in the sense that

∇ dist±(y, Iv(t))
∣∣
y=PIv(t)x

= nv(PIv(t)x, t) = ∇ dist±(y, Iv(t))
∣∣
y=x

(3.25)

for all (x, t) such that dist(x, Iv(t)) < rc, i. e. (3.19) holds. Hence, we also have the formula
PIv(t)x = x − dist±(x, Iv(t))∇ dist±(x, Iv(t)). Differentiating this representation of the pro-
jection onto the interface and using the fact that nv is a unit vector we obtain using also
(3.26)

∇ dist±(y, Iv(t))
∣∣
y=PIv(t)x

· ∂tPIv(t)x

= −∂t dist±(x, Iv(t))− dist±(x, Iv(t))∇ dist±(PIv(t)x, Iv(t)) · ∂t∇ dist±(x, Iv(t))

= −∂t dist±(x, Iv(t))− dist±(x, Iv(t))∂t

(1

2
|∇ dist±(x, Iv(t))|2

)
= −∂t dist±(x, Iv(t)).

Hence, we obtain in addition to (3.25) the formula

∂t dist±(x, Iv(t)) = ∂t dist±(y, Iv(t))
∣∣
y=PIv(t)x

.

On the other side, on the interface the time derivative of the signed distance function equals
up to a sign the normal speed. In our case, the latter is given by the normal component
of the given velocity field v evaluated on the interface, see Remark 3.9. This concludes
the proof of (3.17). Moreover, (3.20) as well as (3.21) follow immediately from differentiat-
ing |∇ dist±(x, Iv(t))|2 = 1. Finally, (3.23) and (3.24) follow immediately from (3.15) and
PIv(t)x = x− dist±(x, Iv(t))nv(PIv(t)x).

In the above considerations, we have made use of the following result: Consider the aux-
iliary function g(x, t) = dist±(PIv(t)x, Iv(t)) for (x, t) such that dist(x, Iv(t)) < rc. Since this
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

function vanishes on the space-time tubular neighborhood of the interface
⋃
t∈(0,Tstrong){x ∈

Rd : dist(x, Iv(t)) < rc} × {t} we compute

0 =
d

dt
g(x, t) = ∂t dist±(y, Iv(t))

∣∣
y=PIv(t)x

+∇ dist±(y, Iv(t))
∣∣
y=PIv(t)x

· ∂tPIv(t)x. (3.26)

This concludes the proof.

Remark 3.12. Consider the situation of Lemma 3.11. We proved that

∂t dist±(x, Iv(t)) = −v(PIv(t)x, t) · nv(PIv(t)x, t).

The right hand side of this identity is of class L∞t W
2,∞
x , as the normal component nv(PIv(t)) ·

∇v of the velocity gradient ∇v of a strong solution is continuous across the interface Iv(t).
To see this, one first observes that the tangential derivatives ((Id−nv(PIv(t))⊗nv(PIv(t)))∇)v
are naturally continuous across the interface; one then uses the incompressibility constraint
∇ · v = 0 to deduce that nv(PIv(t)) · (nv(PIv(t)) · ∇)v is also continuous across the interface.

3.3.2 Properties of the vector field ξ

The vector field ξ – as defined in Proposition 3.10 and illustrated in Figure 3.1 – is an
extension of the unit normal vector field nv associated to the family of smoothly evolving
domains occupying the first fluid of the strong solution. We now provide a more detailed
account of its definition. The construction in fact consists of two steps. First, we extend the
normal vector field nv to a (space-time) tubular neighborhood of the evolving interfaces Iv(t)
by projecting onto the interface. Second, we multiply this construction with a cutoff which
decreases quadratically in the distance to the interface of the strong solution (see (3.33)).

Definition 3.13. Let χv ∈ L∞([0, Tstrong); BV(Rd; {0, 1})) be an indicator function such that
Ω+
t := {x ∈ Rd : χv(x, t) = 1} is a family of smoothly evolving domains and Iv(t) := ∂Ω+

t is
a family of smoothly evolving surfaces in the sense of Definition 3.5. Let η be a smooth cutoff
function with η(s) = 1 for s ≤ 1

2 and η ≡ 0 for s ≥ 1. Define another smooth cutoff function
ζ : R→ [0,∞) as follows:

ζ(r) = (1− r2)η(r), r ∈ [−1, 1], (3.27)

and ζ ≡ 0 for |r| > 1. Then, we define a vector field ξ : Rd × [0, Tstrong)→ Rd by

ξ(x, t) :=

{
ζ
(

dist±(x,Iv(t))
rc

)
nv(PIv(t)x, t) for (x, t) with dist(x, Iv(t)) < rc,

0 else.
(3.28)

The definition of ξ has the following consequences.

Remark 3.14. Observe that the vector field ξ is indeed well-defined in the space-time domain
Rd × [0, Tstrong) due to the action of the cut-off function ζ; it also satisfies |ξ| ≤ 1 or, more
precisely, the sharper inequality |ξ| ≤ (1 − dist(x, Iv(t))

2)+. Furthermore, the extension ξ
inherits its regularity from the regularity of the signed distance function to the interface Iv(t).
More precisely, it follows that the vector field ξ (resp. its time derivative) is of class L∞t W

2,∞
x

(resp. W 1,∞
t W 1,∞

x ) globally in Rd× [0, Tstrong), and the restrictions to the domains {χv = 0}
and {χv = 1} are of class L∞t C2

x. This turns out to be sufficient for our purposes.

The time derivative of our vector field ξ is given as follows.
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Lemma 3.15. Let χv ∈ L∞([0, Tstrong); BV(Rd; {0, 1})) be an indicator function such that
Ω+
t := {x ∈ Rd : χv(x, t) = 1} is a family of smoothly evolving domains and Iv(t) :=

∂Ω+
t is a family of smoothly evolving surfaces in the sense of Definition 3.5. Let v ∈

L2
loc([0, Tstrong];H

1
loc(Rd;Rd)) be a continuous solenoidal vector field such that χv solves the

equation ∂tχv = −∇ · (χvv). Let V̄n be the extended normal velocity of the interface (3.18).
Then the time evolution of the vector field ξ from Definition 3.13 is given by

∂tξ = −(V̄n · ∇)ξ −
(
Id−nv(PIv(t)x)⊗ nv(PIv(t)x)

)
(∇V̄n)T ξ (3.29)

in the space-time domain dist(x, Iv(t)) < rc, where we abbreviated nv(PIv(t)x) = nv(PIv(t)x, t).

Proof. We start by deriving a formula for the time evolution of the normal vector field
nv(PIv(t)x, t) in the space-time tubular neighborhood dist(x, Iv(t)) < rc. By (3.19), we may
use the formula for the time evolution of the signed distance function from Lemma 3.11.
More precisely, due to the regularity of the signed distance function to the interface of the
strong solution and the regularity of the vector field V̄ (Remark 3.12), we can interchange
the differentiation in time and space to obtain

∂t∇ dist±(x, Iv(t)) = ∇∂t dist±(x, Iv(t))

(3.17)
= −∇

(
(V̄n · ∇) dist±(x, Iv(t))

)
= −(V̄n · ∇)nv(PIv(t)x)− (∇V̄n)T · nv(PIv(t)x).

Next, we show that the normal-normal component of ∇V̄n vanishes. Observe that by Re-
mark 3.12 and (3.19) it holds

V̄n(x, t) = −∂t dist±(x, Iv(t))∇ dist±(x, Iv(t)).

Hence, by (3.19)–(3.22) and this formula we obtain

(∇V̄n)T (x, t) : nv(PIv(t)x)⊗ nv(PIv(t)x)

= ∇V̄n(x, t)∇ dist±(x, Iv(t)) · ∇ dist±(x, Iv(t))

= −∇ dist±(x, Iv(t)) · ∂t∇ dist±(x, Iv(t))

+ V̄n(x, t)⊗∇ dist±(x, Iv(t)) : ∇2 dist±(x, Iv(t))

= 0

as desired. In summary, we have proved so far that

∂tnv(PIv(t)x) = −(V̄n · ∇)nv(PIv(t)x) (3.30)

−
(
Id−nv(PIv(t)x)⊗ nv(PIv(t)x)

)
(∇V̄n)T · nv(PIv(t)x),

which holds in the space-time domain dist(x, Iv(t)) < rc. However, applying the chain rule
to the cut-off function r 7→ ζ(r) from (3.27) together with the evolution equation (3.17) for
the signed distance to the interface shows that the cut-off away from the interface is also
subject to a transport equation:

∂tζ
(dist±(x, Iv(t))

rc

)
= −(V̄n(x, t) · ∇)ζ

(dist±(x, Iv(t))

rc

)
.

By the definition of the vector field ξ, see (3.28), and the product rule, this concludes the
proof.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

3.3.3 Properties of the weighted volume term

We next discuss the weighted volume contribution
´
Rd |χu−χv| dist(x, Iv(t)) dx to the relative

entropy in more detail.

Remark 3.16. Let β be a truncation of the identity as in Proposition 3.10. Let χv ∈
L∞([0, Tstrong); BV(Rd; {0, 1})) be an indicator function such that Ω+

t := {x ∈ Rd : χv(x, t) =
1} is a family of smoothly evolving domains, and Iv(t) := ∂Ω+

t is a family of smoothly evolving
surfaces, in the sense of Definition 3.5. The map

Rd × [0, Tstrong) 3 (x, t) 7→ β
(

dist±(x, Iv(t))/rc
)

inherits the regularity of the signed distance function to the interface Iv(t). More precisely,
this map (resp. its time derivative) is of class C0

t C
3
x (resp. C0

t C
2
x).

Lemma 3.17. Let χv ∈ L∞([0, Tstrong); BV(Rd; {0, 1})) be an indicator function such that
Ω+
t := {x ∈ Rd : χv(x, t) = 1} is a family of smoothly evolving domains and Iv(t) :=

∂Ω+
t is a family of smoothly evolving surfaces in the sense of Definition 3.5. Let v ∈

L2
loc([0, Tstrong];H

1
loc(Rd;Rd)) be a continuous solenoidal vector field such that χv solves the

equation ∂tχv = −∇ · (χvv). Let V̄n be the extended normal velocity of the interface (3.18).
Then the time evolution of the weight function β composed with the signed distance function
to the interface Iv(t) is given by the transport equation

∂tβ
(dist±(·, Iv)

rc

)
= −

(
V̄n · ∇

)
β
(dist±(·, Iv)

rc

)
(3.31)

for space-time points (x, t) such that dist(x, Iv(t)) < rc.

Proof. This is immediate from the chain rule and the time evolution of the signed distance
function to the interface of the strong solution, see Lemma 3.11.

3.3.4 Further coercivity properties of the relative entropy

We collect some further coercivity properties of the relative entropy functionalE
[
χu, u, V

∣∣χv, v]
as defined in (3.9). These will be of frequent use in the estimation of the terms occurring
on the right hand side of the relative entropy inequality from Proposition 3.10. We start
for reference purposes with trivial consequences of our choices of the vector field ξ and the
weight function β.

Lemma 3.18. Consider the situation of Proposition 3.10. In particular, let β be the trun-
cation of the identity from Proposition 3.10. By definition, it holds

min
{dist(x, Iv(t))

rc
, 1
}
≤
∣∣∣β(dist±(x, Iv(t))

rc

)∣∣∣. (3.32)

Let ξ be the vector field from Definition 3.13 with cutoff multiplier ζ as given in (3.27). By
the choice of the cutoff ζ, it holds

| dist±(x, Iv(t))|2

r2
c

≤ 1− ζ
(dist±(x, Iv(t))

rc

)
. (3.33)

We will also make frequent use of the fact that for any unit vector b ∈ Rd we have

1− ζ
(dist±(x, Iv(t))

rc

)
≤ 1− b · ξ and |b− ξ|2 ≤ 2(1− b · ξ). (3.34)
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We also want to emphasize that the relative entropy functional controls the squared error
in the normal of the varifold.

Lemma 3.19. Consider the situation of Proposition 3.10. We then have
ˆ
Rd×Sd−1

1

2
|s− ξ|2 dVt(x, s) ≤ E

[
χu, u, V

∣∣χv, v](t) (3.35)

for almost every t ∈ [0, Tstrong).

Proof. Observe first that by means of the compatibility condition (3.2e) we have
ˆ
Rd×Sd−1

(1− s · ξ ) dVt(x, s) =

ˆ
Rd×Sd−1

1 dVt(x, s)−
ˆ
Rd

nu · ξ d|∇χu(·, t)|

=

ˆ
Rd

1 d|Vt|Sd−1 −
ˆ
Rd

nu · ξ d|∇χu(·, t)|,

which holds for almost every t ∈ [0, Tstrong). In addition, due to (3.4) one obtains
ˆ
Rd

1− θt d|Vt|Sd−1 =

ˆ
Rd

1 d|Vt|Sd−1 −
ˆ
Rd

1 d|∇χu(·, t)|

for almost every t ∈ [0, Tstrong). This in turn entails the following identity
ˆ
Rd

(
1− nu · ξ

)
d|∇χu|+

ˆ
Rd

1− θt d|Vt|Sd−1

=

ˆ
Rd×Sd−1

(1− s · ξ ) dVt(x, s),

which holds true for almost every t ∈ [0, Tstrong). However, the functional on the right hand
side controls the squared error in the normal of the varifold: |s − ξ|2 ≤ 2(1 − s · ξ). This
proves the claim.

We will also refer multiple times to the following bound. In the regime of equal shear
viscosities µ+ = µ− we may apply this result with the choice w = 0. In the general case, we
have to include the compensation function w for the velocity gradient discontinuity at the
interface.

Lemma 3.20. Let (χu, u, V ) be a varifold solution to (1.1a)-(1.1c) in the sense of Defi-
nition 3.2 on a time interval [0, Tvari) with initial data (χ0

u, u0). Let (χv, v) be a strong
solution to (1.1a)-(1.1c) in the sense of Definition 3.6 on a time interval [0, Tstrong) with
Tstrong ≤ Tvari and initial data (χ0

v, v0). Let w ∈ L2([0, Tstrong);H
1(Rd;Rd)) be an arbitrary

vector field, and let F ∈ L∞(Rd × [0, Tstrong);Rd) be a bounded vector field. Then∣∣∣∣ˆ T

0

ˆ
Rd

(χu−χv)(u− v − w) · F dx dt

∣∣∣∣
≤ δ
ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt+ C

1 + ‖F‖2L∞
δ

ˆ T

0

ˆ
Rd
ρ(χu)|u−v−w|2 dx dt

+
C‖F‖L∞

δ

ˆ T

0

ˆ
Rd
|χu−χv|

∣∣∣β(dist±(·, Iv)
rc

)∣∣∣ dx dt

for almost every T ∈ [0, Tstrong) and all 0 < δ ≤ 1. The absolute constant C > 0 only depends
on the densities ρ±.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

Proof. We first argue how to control the part away from the interface of the strong solution,
i.e., outside of {(x, t) : dist(x, Iv(t)) ≥ rc}. A straightforward estimate using Hölder’s and
Young’s inequality yields∣∣∣∣ ˆ T

0

ˆ
{dist(x,Iv(t))≥rc}

(χu−χv)(u−v−w) · F dx dt

∣∣∣∣
≤ ‖F‖L

∞

2

ˆ T

0

ˆ
{dist(x,Iv(t))≥rc}

|χu − χv| dx dt

+
‖F‖L∞

2

ˆ T

0

ˆ
{dist(x,Iv(t))≥rc}

|u− v − w|2 dx dt.

Note that by the properties of the truncation of the identity β, see Proposition 3.10, it follows
that |β(dist±(x, Iv(t))/rc)| ≡ 1 on {(x, t) : dist(x, Iv(t)) ≥ rc}. Hence, we obtain∣∣∣∣ˆ T

0

ˆ
{dist(x,Iv(t))≥rc}

(χu−χv)(u−v−w) · F dx dt

∣∣∣∣
≤ ‖F‖L

∞

2

ˆ T

0

ˆ
Rd
|χu − χv| ·

∣∣∣β(dist±(·, Iv)
rc

)∣∣∣ dx dt

+
‖F‖L∞

2(ρ+ ∧ ρ−)

ˆ T

0

ˆ
Rd
ρ(χu)|u− v − w|2 dx dt,

(3.36)

which is indeed a bound of required order.
We proceed with the bound for the contribution in the vicinity of the interface of the strong

solution. To this end, recall that we are equipped with a family of maps Φt : Iv(t)×(−rc, rc)→
Rd given by Φt(x, y) := x + ynv(x, t), which are C2-diffeomorphisms onto their image {x ∈
Rd : dist(x, Iv(t)) < rc}. Recall the estimates (3.14). We then move on with a change of
variables, the one-dimensional Gagliardo-Nirenberg-Sobolev interpolation inequality

‖g‖L∞(−rc,rc) ≤ C‖g‖
1
2

L2(−rc,rc)‖∇g‖
1
2

L2(−rc,rc) + C‖g‖L2(−rc,rc)

as well as Hölder’s and Young’s inequality to obtain the bound∣∣∣∣ ˆ T

0

ˆ
{dist(x,Iv(t))<rc}

(χu − χv)(u− v − w) · F dx dt

∣∣∣∣
≤ C‖F‖L∞

ˆ T

0

ˆ
Iv(t)

ˆ rc

−rc
|(χu−χv)|(Φt(x, y)) |(u−v−w)|(Φt(x, y)) dy dS(x) dt

≤ C‖F‖L∞
ˆ T

0

ˆ
Iv(t)

sup
y∈[−rc,rc]

|u− v − w|(x+ ynv(x, t))

×
( ˆ rc

−rc
|(χu−χv)|(x+ ynv(x, t)) dy

)
dS(x) dt

≤ C
‖F‖L∞ + ‖F‖2L∞

δ

ˆ T

0

ˆ
Rd
|u− v − w|2 dx dt+ δ

ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt

+ C‖F‖L∞
ˆ T

0

ˆ
Iv(t)

(ˆ rc

−rc
|(χu−χv)|(x+ ynv(x, t)) dy

)2

dS(x) dt.

It thus suffices to derive an estimate for the L2-norm of the local interface error height in
normal direction

h(x) =

ˆ rc

−rc
|(χu−χv)|(x+ ynv(x, t)) dy.
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3.3. Time evolution of geometric quantities and further coercivity properties

The proof of Proposition 3.26 below, where we establish next to the required L2-bound also
several other properties of the local interface error height, shows that (see (3.56))

ˆ
Iv(t)
|h(x)|2 dS ≤ C

ˆ
Rd
|χu−χv|min

{dist(x, Iv(t))

rc
, 1
}

dx. (3.37)

This then concludes the proof.

We conclude this section with an L2
tanL

∞
nor-bound for H1-functions on the tubular neigh-

borhood around the evolving interfaces as well as a bound for the derivatives of the normal
velocity of the interface of a strong solution in terms of the associated velocity field v, both
of which will be used several times in the estimation of the terms on the right hand side of
the relative entropy inequality of Proposition 3.10.

Lemma 3.21. Consider the situation of Proposition 3.10. We have the estimateˆ
Iv(t)

sup
y∈[−rc,rc]

|g(x+ ynv(x, t))|2 dS ≤ C(‖g‖L2‖∇g‖L2 + ‖g‖2L2) (3.38)

valid for any g ∈ H1(Rd).

Proof. Let f ∈ H1(−rc, rc). The one-dimensional Gagliardo-Nirenberg-Sobolev inerpolation
inequality then implies

‖f‖L∞(−rc,rc) ≤ C‖f‖
1
2

L2(−rc,rc)‖f
′‖

1
2

L2(−rc,rc) + C‖f‖L2(−rc,rc).

From this we obtain together with Hölder’s inequalityˆ
Iv(t)

sup
y∈[−rc,rc]

|g(x+ ynv(x, t))|2 dS

≤ C
ˆ
Iv(t)

ˆ rc

−rc
|g(x+ynv(x, t))|2 dy dS

+ C

( ˆ
Iv(t)

ˆ rc

−rc
|g(x+ynv(x, t))|2 dy dS

) 1
2

×
(ˆ

Iv(t)

ˆ rc

−rc
|∇g(x+ynv(x, t))|2 dy dS

) 1
2

.

This implies (3.38) by making use of the C2-diffeomorphisms Φt : Iv(t) × (−rc, rc) → Rd
given by Φt(x, y) = x+ynv(x, t) and the associated change of variables, using also the bound
(3.14).

Lemma 3.22. Consider the situation of Proposition 3.10 and define the vector field

Vn(x, t) :=
(
v(x, t) · nv(PIv(t)x, t)

)
nv(PIv(t)x, t),

for (x, t) ∈ Rd × [0, Tstrong) such that dist(x, Iv(t)) < rc. Then

‖∇Vn‖L∞(O) ≤ Cr−1
c ‖v‖L∞ + C‖∇v‖L∞ , (3.39)

‖∇2Vn‖L∞(O) ≤ Cr−2
c ‖v‖L∞ + Cr−1

c ‖∇v‖L∞ + C‖∇2v‖L∞t L∞x (Rd\Iv(t)), (3.40)

where O =
⋃
t∈(0,Tstrong){x ∈ Rd : dist(x, Iv(t)) < rc} × {t} denotes the space-time tubular

neighborhood of width rc of the evolving interface of the strong solution.
In particular, we have for V̄n(x, t) := Vn(PIv(t)x, t) the estimate

|V̄n(x, t)− Vn(x, t)| ≤ Cr−1
c ||v||W 1,∞ dist(x, Iv(t)). (3.41)
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

Proof. The estimates (3.39) and (3.40) are a direct consequence of the regularity requirements
on the velocity field v of a strong solution, see Definition 3.6, the pointwise bounds (3.15) and
the representation of the normal vector field on the interface in terms of the signed distance
function (3.19).

3.4 Weak-strong uniqueness of varifold solutions: The case of
equal viscosities

In this section we provide a proof of the weak-strong uniqueness principle to the free boundary
problem for the incompressible Navier-Stokes equation for two fluids (1.1a)-(1.1c) in the
case of equal shear viscosities µ+ = µ−. Note that in this case the problematic viscous
stress term Rvisc in the relative entropy inequality (see Proposition 3.10) vanishes because
of µ(χu) − µ(χv) = 0. In this setting, it is possible to choose w ≡ 0 which directly implies
Avisc = 0, Aadv = 0, Adt = 0, AweightV ol = 0, and AsurTen = 0. It remains to estimate
the terms RsurTen, Radv, Rdt, and RweightV ol which are left on the right-hand side of the
relative entropy inequality. We directly estimate these terms also for w 6= 0 in order to avoid
unnecessary repetition, as the estimates for w 6= 0 are not more complicated but will be
required for the case of different viscosities.

3.4.1 Estimate for the surface tension terms

We start by estimating the terms related to surface tension RsurTen.

Lemma 3.23. Consider the situation of Proposition 3.10. The terms related to surface
tension RsurTen are estimated by

RsurTen ≤ δ
ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt

+ C(δ)r−4
c

(
1 + ‖v‖2

L∞t W
2,∞
x (Rd\Iv(t))

) ˆ T

0
E[χu, u, V |χv, v](t) dt (3.42)

for any δ > 0.

Proof. We start by using (3.34) and (3.28) to estimate

− σ
ˆ T

0

ˆ
Rd

(
ξ · ∇χu
|∇χu|

)
nv(PIv(t)x) ·

(
nv(PIv(t)x) · ∇

)
v − ξ · (ξ · ∇)v d|∇χu| dt

= σ

ˆ T

0

ˆ
Rd

(
1− ξ · ∇χu

|∇χu|

)
nv(PIv(t)x) ·

(
nv(PIv(t)x) · ∇

)
v d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
ξ · (ξ · ∇)v − nv(PIv(t)x) ·

(
nv(PIv(t)x) · ∇

)
v d|∇χu| dt

≤ C‖∇v‖L∞
ˆ T

0

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu| dt

+ C‖∇v‖L∞
ˆ T

0

ˆ
Rd

1− ζ
(dist±(x, Iv(t))

rc

)
d|∇χu| dt

≤ C‖v‖
L∞t W

1,∞
x

ˆ T

0
E[χu, u, V |χv, v](t) dt. (3.43)

Recall from (3.35) that the squared error in the varifold normal is controlled by the relative
entropy functional. Together with the bound from Lemma 3.20, (3.15) as well as (3.43) we
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3.4. Weak-strong uniqueness of varifold solutions: The case of equal viscosities

get an estimate for the first four terms of RsurTen

RsurTen (3.44)

≤ C(δ)r−4
c (1 + ‖v‖

L∞t W
1,∞
x

)

ˆ T

0
E[χu, u, V |χv, v](t) dt

+
δ

2

ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt

+ σ

ˆ T

0

ˆ
Rd

∇χu
|∇χu|

·
(
(Id−nv(PIv(t)x)⊗ nv(PIv(t)x))(∇V̄n−∇v)T ξ

)
d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

∇χu
|∇χu|

·
(
(V̄n − v) · ∇

)
ξ d|∇χu| dt

for almost every T ∈ [0, Tstrong) and all δ ∈ (0, 1]. To estimate the remaining two terms we
decompose V̄n − v as

V̄n − v = (V̄n − Vn) + (Vn − v), (3.45)

where the vector field Vn is given by

Vn(x, t) :=
(
v(x, t) · nv(PIv(t)x, t)

)
nv(PIv(t)x, t) (3.46)

in the space-time domain {dist(x, Iv(t)) < rc} (i. e. in contrast to V̄n, for Vn the veloc-
ity v is evaluated not at the projection of x onto the interface, but at x itself). Note
that it will not matter as to how Vn and similar quantities are defined outside of the area
{dist(x, Iv(t)) < rc}, as the terms will always be multiplied by suitable cutoffs which vanish
outside of {dist(x, Iv(t)) < rc}. In the next two steps, we compute and bound the contribu-
tions from the two different parts in the decomposition (3.45) of the error V̄n − v.

First step: Controlling the error Vn − v

By definition of the vector field Vn in (3.46), we may write Vn − v = −
(
Id − nv(PIv(t)x) ⊗

nv(PIv(t)x)
)
v. It is then not clear why the term

σ

ˆ T

0

ˆ
Rd

∇χu
|∇χu|

·
(
(Id−nv(PIv(t)x)⊗ nv(PIv(t)x))(∇Vn−∇v)T ξ

)
d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

∇χu
|∇χu|

·
(
(Vn − v) · ∇

)
ξ d|∇χu| dt

should be controlled by our relative entropy functional. However, the integrands enjoy a
crucial cancellation

(Id−nv(PIv(t)x)⊗ nv(PIv(t)x))(∇Vn−∇v)T ξ +
(
(Vn − v) · ∇

)
ξ = 0 (3.47)

in the space-time domain {(x, t) ∈ Rd × [0, Tstrong) : dist(x, Iv(t)) < rc}. To verify this
cancellation, we first recall from (3.19) that ∇ dist±(x, Iv(t)) = nv(PIv(t)x, t). We then start
by rewriting (

(Vn − v) · ∇
)
ξ = −∇ξ (Id−∇ dist±(·, Iv)⊗∇ dist±(·, Iv))v.

Note that when the derivative hits the cutoff multiplier in the definition of ξ (see (3.28)), the
resulting term on the right hand side of the last identity vanishes. Hence, we obtain together
with (3.21)(

(Vn − v) · ∇
)
ξ

= −ζ
(
r−1
c dist±(·, Iv)

)(
∇2 dist±(·, Iv)

)
(Id−∇ dist±(·, Iv)⊗∇ dist±(·, Iv))v

= −ζ
(
r−1
c dist±(·, Iv)

)(
∇2 dist±(·, Iv)

)
v.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

On the other side, another application of (3.21) yields

(∇Vn−∇v)T ξ

= −(∇v)T
(
Id−nv(PIv(t)x)⊗ nv(PIv(t)x)

)
ξ + ζ

(
r−1
c dist±(·, Iv)

)(
∇2 dist±(·, Iv)

)
v

= ζ
(
r−1
c dist±(·, Iv)

)(
∇2 dist±(·, Iv)

)
v.

Therefore, the cancellation (3.47) indeed holds true since by (3.21) the right-hand side of the
last computation remains unchanged after projecting via Id− nv ⊗ nv.

Second step: Controlling the error V̄n − Vn

It remains to control the contributions from the following two quantities:

I :=

ˆ T

0

ˆ
Rd

nu ·
((

Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇V̄n−∇Vn)T ξ

)
d|∇χu| dt,

II :=

ˆ T

0

ˆ
Rd

nu ·
(
(V̄n − Vn) · ∇

)
ξ d|∇χu| dt.

Note first that we can write

I =

ˆ T

0

ˆ
Rd

(nu − ξ) ·
((

Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇V̄n−∇Vn)T ξ

)
d|∇χu| dt.

Moreover, recall from (3.23) the formula for the gradient of the projection onto the nearest
point on the interface Iv(t). The definition of Vn (see (3.46)) and V̄n(x) = Vn(PIv(t)x), the
product rule, (3.19), (3.15), and (3.21) imply using the definition of ξ and the property |ξ| ≤ 1

∣∣∣(Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇V̄n−∇Vn)T ξ

∣∣∣
≤
∣∣∣(Id−nv(PIv(t)x)⊗ nv(PIv(t)x)

)
(∇(v(PIv(t)x))−∇v(x))T

∣∣∣
+
∣∣∣(Id−nv(PIv(t)x)⊗ nv(PIv(t)x)

)
(∇(nv(PIv(t)x))T (v(PIv(t)x)− v(x))

∣∣∣
+ ‖v‖L∞

∣∣∣(∇(nv(PIv(t)x)))T ξ
∣∣∣

≤ Cr−1
c ‖v‖W 2,∞(Rd\Iv(t)) dist(x, Iv(t))

where in the last step we have used also (3.23). Together with Young’s inequality and the
coercivity properties of the relative entropy (3.33) and (3.34) we then immediately get the
estimate

I ≤ C
ˆ T

0

ˆ
Rd
|nu − ξ|2 d|∇χu| dt

+ Cr−4
c ‖v‖2L∞t W 2,∞

x (Rd\Iv(t))

ˆ T

0

ˆ
Rd
|dist(x, Iv(t))|2 d|∇χu| dt

≤ C(1 + r−4
c ‖v‖2L∞t W 2,∞

x (Rd\Iv(t))
)

ˆ T

0
E[χu, u, V |χv, v](t) dt. (3.48)
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3.4. Weak-strong uniqueness of varifold solutions: The case of equal viscosities

To estimate the second term II, we start by adding zero and then use again V̄n(x, t) =
Vn(PIv(t)x, t), (3.39), (3.15) as well as (3.33) and (3.34)

II =

ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(V̄n − Vn) · ∇

)
ξ d|∇χu| dt

+

ˆ T

0

ˆ
Rd
ξ ·
(
(V̄n − Vn) · ∇

)
ξ d|∇χu| dt

≤ C(1 + r−2
c ‖v‖2L∞t W 1,∞

x
)

ˆ T

0
E[χu, u, V |χv, v](t) dt

+

ˆ T

0

ˆ
Rd
ξ ·
(
(V̄n − Vn) · ∇

)
ξ d|∇χu| dt.

Using (3.21), we continue by computing

ˆ T

0

ˆ
Rd
ξ ·
(
(V̄n − Vn) · ∇

)
ξ d|∇χu| dt

= r−1
c

ˆ T

0

ˆ
Rd
ζ ′
(dist±(x, Iv(t))

rc

)
ξ ⊗ (V̄n − Vn) : nv(PIv(t))⊗ nv(PIv(t)) d|∇χu| dt

Hence, it follows from ζ ′(0) = 0 and |ζ ′′| ≤ C as well as (3.41) that

II ≤ C(1 + r−2
c ‖v‖2L∞t W 1,∞

x
)

ˆ T

0
E[χu, u, V |χv, v](t) dt

+ Cr−3
c ‖v‖L∞t W 1,∞

x

ˆ T

0

ˆ
Rd
|dist(x, Iv(t))|2 d|∇χu| dt

≤ C(1 + r−3
c ‖v‖2L∞t W 1,∞

x
)

ˆ T

0
E[χu, u, V |χv, v](t) dt. (3.49)

Third step: Summary

Inserting (3.47), (3.48), and (3.49) into (3.44) entails the bound

RsurTen

≤ C(δ)

r4
c

(1+‖v‖
L∞t W

2,∞
x (Rd\Iv(t))

∨ ‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0
E[χu, u, V |χv, v](t) dt

+ δ

ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt.

This yields the desired estimate.

3.4.2 Estimate for the remaining terms Radv, Rdt, and RweightV ol

To bound the advection-related terms

Radv =−
ˆ T

0

ˆ
Rd

(
ρ(χu)− ρ(χv)

)
(u− v − w) · (v · ∇)v dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) ·

(
(u− v − w) · ∇

)
v dx dt
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

from the relative entropy inequality, the time-derivative related terms Rdt, and the terms
resulting from the weighted volume control term in the relative entropy

RweightV ol :=

ˆ T

0

ˆ
Rd

(χu−χv)
((
V̄n−Vn

)
· ∇
)
β
(dist±(·, Iv)

rc

)
dx dt

+

ˆ T

0

ˆ
Rd

(χu−χv)
(
(u−v−w) · ∇

)
β
(dist±(·, Iv)

rc

)
dx dt

(with Vn(x, t) := (nv(PIv(t)x, t) ⊗ nv(PIv(t)x, t))v(x, t)), we use mostly straightforward esti-
mates.

Lemma 3.24. Consider the situation of Proposition 3.10. The terms Radv, Rdt, and RweightV ol
are subject to the bounds

Radv ≤ C(δ)(1 + ‖v‖4
L∞t W

1,∞
x

)

ˆ T

0
E[χu, u, V |χv, v](t) dt (3.50)

+ δ

ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt,

Rdt ≤ δ
ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt (3.51)

+ C(δ)‖∂tv‖L∞x,t(Rd\Iv(t))

ˆ T

0
E[χu, u, V |χv, v](t) dt,

and

RweightV ol ≤ δ
ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt (3.52)

+ C(δ)r−2
c (1 + ‖v‖

L∞t W
1,∞
x

)

ˆ T

0
E[χu, u, V |χv, v](t) dt

for any δ > 0.

Proof. To derive (3.50), we use a direct estimate for the second term in Radv as well as
Lemma 3.20 for the first term.

The bound (3.51) is derived similarly.
Finally, we show estimate (3.52). Note that by definition we have V̄n(x, t) = Vn(PIv(t)x, t).

Hence, we obtain using the bound (3.41) as well as (3.32) and |β′| ≤ C

RweightV ol ≤ C‖v‖L∞t W 1,∞
x

ˆ T

0

ˆ
Rd
|χu−χv|

∣∣β(dist±(x, Iv(t))

rc

)∣∣∣ dx dt

+ Cr−1
c

ˆ T

0

ˆ
{dist(x,Iv(t))≤rc}

|χu − χv||u− v − w| dx dt.

An application of Lemma 3.20 yields (3.52).

3.4.3 The weak-strong uniqueness principle in the case of equal
viscosities

We conclude our discussion of the case of equal shear viscosities µ+ = µ− for the free boundary
problem for the incompressible Navier-Stokes equation for two fluids (1.1a)-(1.1c) with the
proof of the weak-strong uniqueness principle.
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Proposition 3.25. Let d ≤ 3. Let (χu, u, V ) be a varifold solution to the free boundary
problem for the incompressible Navier-Stokes equation for two fluids (1.1a)-(1.1c) in the sense
of Definition 3.2 on some time interval [0, Tvari) with initial data (χ0

u, u0). Let (χv, v) be a
strong solution to (1.1a)-(1.1c) in the sense of Definition 3.6 on some time interval [0, Tstrong)
with Tstrong ≤ Tvari and initial data (χ0

v, v0). We assume that the shear viscosities of the two
fluids coincide, i.e., µ+ = µ−.

Then, there exists a constant C > 0 which only depends on the data of the strong solution
such that the stability estimate

E[χu, u, V |χv, v](T ) ≤ E[χu, u, V |χv, v](0)eCT

holds. In particular, if the initial data of the varifold solution and the strong solution coincide,
the varifold solution must be equal to the strong solution in the sense

χu(·, t) = χv(·, t) and u(·, t) = v(·, t)

almost everywhere for almost every t ∈ [0, Tstrong). Furthermore, in this case the varifold is
given by

dVt = δ ∇χv
|∇χv |

d|∇χv|

for almost every t ∈ [0, Tstrong).

Proof. Applying the relative entropy inequality from Proposition 3.10 with w = 0, using the
fact that the problematic term Rvisc vanishes in the case of equal shear viscosities µ+ = µ−, as
well as using the bounds from (3.42), (3.50), (3.51) and (3.52), we observe that we established
the following bound

E[χu, u, V |χv, v](T ) + c

ˆ T

0

ˆ
Rd
|∇u−∇v|2 dx dt (3.53)

≤ E[χu, u, V |χv, v](0) + δ

ˆ T

0

ˆ
Rd
|∇u−∇v|2 dx dt

+
C(δ)

r4
c

(1+‖∂tv‖L∞x,t(Rd\Iv(t))+‖v‖L∞t W 2,∞
x (Rd\Iv(t))

∨ ‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

×
ˆ T

0
E[χu, u, V |χv, v](t) dt

for almost every T ∈ [0, Tstrong). An absorption argument along with a subsequent applica-
tion of Gronwall’s lemma then immediately yields the asserted stability estimate.

Consider the case of coinciding initial conditions, i.e., E[χu, u, V |χv, v](0) = 0. In this
case, we deduce from the stability estimate that the relative entropy vanishes for almost every
t ∈ [0, Tstrong). From this it immediately follows that u(·, t) = v(·, t) as well as χu(·, t) =
χv(·, t) almost everywhere for almost every t ∈ [0, Tstrong).

The asserted representation of the varifold V of the varifold solution follows from the fol-
lowing considerations. First, we deduce |∇χu(·, t)| = |Vt|Sd−1 for almost every t ∈ [0, Tstrong)
as a consequence of the fact that the density of the varifold satisfies θt = d|∇χu(·,t)|

d|Vt|Sd−1
≡ 1 almost

everywhere for almost every t ∈ [0, Tstrong). The remaining fact that the measure on Sd−1 is
given by δnu(x,t) for |Vt|Sd−1-almost every x ∈ Rd for almost every t ∈ [0, Tstrong) then follows
from the control of the squared error in the normal of the varifold by the relative entropy
functional, see (3.35). This concludes the proof.
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3.5 Weak-strong uniqueness of varifold solutions: The case of
different viscosities

We turn to the derivation of the weak-strong uniqueness principle in the case of different
shear viscosities of the two fluids. In this regime, we cannot anymore ignore the viscous
stress term (µ(χv)−µ(χu))(∇v+∇vT ). The key idea is to construct a solenoidal vector field
w which is small in the L2-norm but whose gradient compensates for most of this problematic
term, and then use the relative entropy inequality from Proposition 3.10 with this function.
The precise definition as well as a list of all the relevant properties of this vector field are the
content of Proposition 3.28.

A main ingredient for the construction of w are the local interface error heights as mea-
sured in orthogonal direction from the interface of the strong solution (see Figure 3.2). For
this reason, we first prove the relevant properties of the local heights of the interface error in
Proposition 3.26. However, in order to control certain surface-tension terms in the relative
entropy inequality, we actually need the vector field w to have bounded spatial derivatives.
To this aim, we perform an additional regularization of the height functions. This will be
carried out in detail in Proposition 3.27 by a (time-dependent) mollification. After all these
preparations, in Section 3.5.4–3.5.8 we then further estimate the additional terms Avisc,
Adt, Aadv, and AsurTen in the relative entropy inequality from Proposition 3.10. Based on
these bounds, in Section 3.5.9 we finally provide the proof of the stability estimate and the
weak-strong uniqueness principle for varifold solutions to the free boundary problem for the
incompressible Navier-Stokes equation for two fluids (1.1a)-(1.1c) from Theorem 3.1.

3.5.1 The evolution of the local height of the interface error

Consider a strong solution (χv, v) to the free boundary problem for the incompressible Navier-
Stokes equation for two fluids (1.1a)-(1.1c) in the sense of Definition 3.6 on some time interval
[0, Tstrong). For the sake of better readability, let us recall some definitions and constructions
related to the associated family of evolving interfaces Iv(t) of the strong solution.

For the family (Ω+
t )t∈[0,Tstrong) of smoothly evolving domains of the strong solution, the

associated signed distance function is given by

dist±(x, Iv(t)) =

{
dist(x, Iv(t)), x ∈ Ω+

t ,

−dist(x, Iv(t)), x /∈ Ω+
t .

From Definition 3.5 of a family of smoothly evolving domains it follows that the family of
maps Φt : Iv(t) × (−rc, rc) → Rd given by Φt(x, y) := x + ynv(x, t) are C2-diffeomorphisms
onto their image {x ∈ Rd : dist(x, Iv(t)) < rc}. Here, nv(·, t) denotes the normal vector field
of the interface Iv(t) pointing inwards {x ∈ Rd : χv(x, t) = 1}. The signed distance function
(resp. its time derivative) to the interface Iv(t) of the strong solution is then of class C0

t C
3
x

(resp. C0
t C

2
x) in the space-time tubular neighborhood

⋃
t∈[0,Tstrong) im(Φt) × {t} due to the

regularity assumptions in Definition 3.5. Moreover, the projection PIv(t)x of a point x onto
the nearest point on the manifold Iv(t) is well-defined and of class C0

t C
2
x in the same tubular

neighborhood. Observe that the inverse of Φt is given by Φ−1
t (x) = (PIv(t)x, dist±(x, Iv(t)))

for all x ∈ Rd such that dist(x, Iv(t)) < rc.
In Lemma 3.11, we computed the time evolution of the signed distance function to the

interface Iv(t) of a strong solution. Recall also the various relations for the projected inner
unit normal vector field nv(PIv(t)x, t) from Lemma 3.11, which will be of frequent use in
subsequent computations. Finally, we remind the reader of the definition of the vector field
ξ from Definition 3.13, which is a global extension of the inner unit normal vector field of the
interface Iv(t). For an illustration of the vector field ξ, we recall Figure 3.1; for an illustration
of h+, we refer to Figure 3.2.
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Proposition 3.26. Let χv ∈ L∞([0, Tstrong); BV(Rd; {0, 1})) be an indicator function such
that Ω+

t := {x ∈ Rd : χv(x, t) = 1} is a family of smoothly evolving domains and Iv(t) := ∂Ω+
t

is a family of smoothly evolving surfaces in the sense of Definition 3.5. Let ξ be the extension
of the unit normal vector field nv from Definition 3.13.

Let θ : [0,∞) → [0, 1] be a smooth cutoff with θ ≡ 0 outside of [0, 1
2 ] and θ ≡ 1 in [0, 1

4 ].
For an indicator function χu ∈ L∞([0, Tstrong]; BV(Rd; {0, 1})) and t ≥ 0, we define the local
height of the one-sided interface error h+(·, t) : Iv(t)→ R+

0 as

h+(x, t) :=

ˆ ∞
0

(1− χu)(x+ ynv(x, t), t) θ
( y
rc

)
dy. (3.54)

Similarly, we introduce the local height of the interface error in the other direction

h−(x, t) :=

ˆ ∞
0

χu(x− ynv(x, t), t)θ
( y
rc

)
dy.

Then h+ and h− have the following properties:
a) (L2-bound) We have the estimates |h±(x, t)| ≤ rc

2 and

ˆ
Iv(t)
|h±(x, t)|2 dS(x) ≤ C

ˆ
Rd
|χu−χv|min

{dist(x, Iv(t))

rc
, 1
}

dx. (3.55a)

b) (H1-bound) Moreover, the estimate holds

ˆ
Iv(t)

min{|∇tanh±(x, t)|2, |∇tanh±(x, t)|} dS + |Dsh±|(Iv(t)) (3.55b)

≤ C
ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|+
C

r2
c

ˆ
Rd
|χu−χv|min

{dist(x, Iv(t))

rc
, 1
}

dx.

c) (Approximation property) The functions h+ and h− provide an approximation of the
set {χu = 1} in terms of a subgraph over the set Iv(t) by setting

χv,h+,h− := χv − χ0≤dist±(x,Iv(t))≤h+(PIv(t)x,t)
+ χ−h−(PIv(t)x,t)≤dist±(x,Iv(t))≤0,

up to an error of

ˆ
Rd

∣∣χu − χv,h+,h−
∣∣ dx

≤ C
ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|+ C

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx. (3.55c)

d) (Time evolution) Let v be a solenoidal vector field

v ∈ L2([0, Tstrong];H
1(Rd;Rd)) ∩ L∞([0, Tstrong];W

1,∞(Rd;Rd))

such that in the domain
⋃
t∈[0,Tstrong)(Ω

+
t ∪ Ω−t ) × {t} the second spatial derivatives of the

vector field v exist and satisfy supt∈[0,Tstrong) supx∈Ω+
t ∪Ω−t

|∇2v(x, t)| < ∞. Assume that χv
solves the equation ∂tχv = −∇·(χvv). If χu solves the equation ∂tχu = −∇·(χuu) for another
solenoidal vector field u ∈ L2([0, Tstrong];H

1(Rd;Rd)), we have the following estimate on the
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time derivative of the local interface error heights h±:∣∣∣∣ d

dt

ˆ
Iv(t)

η(x)h±(x, t) dS(x)−
ˆ
Iv(t)

h±(x, t)(Id−nv ⊗ nv)v(x, t) · ∇η(x) dS(x)

∣∣∣∣ (3.55d)

≤ C

r2
c

‖η‖W 1,4(Iv(t))

(ˆ
Iv(t)
|h̄±|4 dS

)1/4

×

(ˆ
Iv(t)

sup
y∈[−rc,rc]

|u− v|2(x+ ynv(x, t), t) dS(x)

)1/2

+ C
1 + ‖v‖W 2,∞(Rd\Iv(t))

r3
c

‖η‖L2(Iv(t))

×

(ˆ
Rd
|χu(x, t)− χv(x, t)| min

{dist(x, Iv(t))

rc
, 1
}

dx

) 1
2

+
C(1 + ‖v‖W 1,∞)

r2
c

max
p∈{2,4}

‖η‖W 1,p(Iv(t))

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|

+ C‖η‖L2(Iv(t))

( ˆ
Iv(t)
|u− v|2 dS

)1/2

for any test function η ∈ C∞cpt(Rd) with nv · ∇η = 0 on the interface Iv(t), and where h̄± is
defined as h± but now with respect to the modified cut-off θ̄(·) = θ

( ·
2

)
.

Proof. Step 1: Proof of the estimate on the L2-norm. The trivial estimate |h±(x, t)| ≤
rc
2 follows directly from the definition of h±. To establish the L2-estimate, let `+(x) :=´ rc
0 (1− χu)(x+ ynv(x, t), t) dy. A straighforward estimate then gives

|`+(x)|2 = 2

ˆ `+(x)

0
y dy ≤ C

ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| y

rc
dy. (3.56)

Note that the term on the left hand side dominates |h+|2 since we dropped the cutoff function.
Hence, the desired estimate on the L2-norm of h+ follows at once by a change of variables
and recalling the fact that dist(Φt(x, y), Iv(t)) = y. The corresponding bound for h− then
follows along the same lines.

Step 2: Proof of the estimate on the spatial derivative (3.55b). The definition
(3.54) is equivalent to

h+(Φt(x, 0), t) =

ˆ ∞
0

(1− χu)(Φt(x, y)) θ
( y
rc

)
dy.

We compute for any smooth vector field η ∈ C∞cpt(Rd;Rd) (recall that Φt(x, 0) = x and
dist(Φt(x, y), Iv(t)) = y for any x ∈ Iv(t) and any y with |y| ≤ rc)
ˆ
Iv(t)

η(x) · d(Dtan
x h+(·, t))(x)

= −
ˆ
Iv(t)

h+(x, t)∇tan · η(x) dS(x)−
ˆ
Iv(t)

h+(x, t)η(x) ·H(x, t) dS(x)

= −
ˆ rc

0

ˆ
Iv(t)

(1− χu)(Φt(x, y), t)θ
( y
rc

)
∇tan · η(x) dS(x) dy

−
ˆ rc

0

ˆ
Iv(t)

(1− χu)(Φt(x, y), t)θ
( y
rc

)
η(x) ·H(Φt(x, 0), t) dS(x) dy
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= −
ˆ
Rd

(1− χu)(x, t)θ
(dist(x, Iv(t))

rc

)
|det∇Φ−1

t (x)|

× (Id−nv(PIv(t)x)⊗ nv(PIv(t)x)) : ∇η(PIv(t)x) dx

−
ˆ
Rd

(1− χu)(x, t)θ
(dist(x, Iv(t))

rc

)
η(PIv(t)x) ·H(PIv(t)x)| det∇Φ−1

t (x)| dx

= −
ˆ
Rd
θ
(dist(x, Iv(t))

rc

)
|det∇Φ−1

t (x)|η(PIv(t)x)(Id−nv(PIv(t)x)⊗ nv(PIv(t)x)) · d∇χu

+

ˆ
Rd

(1− χu)(x, t)θ

(
dist(x, Iv(t))

rc

)
η(PIv(t)x)

·
(
∇ ·
(
(Id−nv(PIv(t)x)⊗ nv(PIv(t)x))|det∇Φ−1

t |
)
−H(PIv(t)x)| det∇Φ−1

t |
)

dx,

where in the last step we have used ∇ dist±(x, Iv(t)) = nv(PIv(t)x). This yields by another
change of variables in the second integral, the fact that χv(Φt(x, y), t) = 1 for any y > 0,
(3.15), (3.16), | det∇Φ−1

t | ≤ C as well as by abbreviating nu = ∇χu
|∇χu|ˆ

U∩Iv(t)
1 d|Dtan

x h+(·, t)|

≤ C
ˆ
{x+ynv(x,t):x∈U∩Iv(t),y∈(−rc,rc)}

∣∣nv(PIv(t)x)− nu
∣∣d|∇χu(·, t)|

+
C

rc

ˆ
U∩Iv(t)

ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| dy dS(x)

for any Borel set U ⊂ Rd. Recall that the indicator function χu(·, t) of the varifold solution is
of bounded variation in I := {x ∈ Rd : dist±(x, Iv(t)) ∈ (−rc, rc)}. In particular, E+ := {x ∈
Rd : χu > 0} ∩ I is a set of finite perimeter in I. Applying Theorem 3.39 in local coordinates
the sections

E+
x = {y ∈ (−rc, rc) : χu(x+ ynv(x, t)) > 0}

are guaranteed to be one-dimensional Caccioppoli sets in (−rc, rc) for Hd−1-almost every
x ∈ Iv(t). Note that whenever |nv · nu| ≤ 1

2 then 1− nv · nu ≥ 1
2 , and therefore using also the

co-area formula for rectifiable sets (see [12, (2.72)])
ˆ
U∩Iv(t)

1 d|Dtan
x h+(·, t)| (3.57)

≤ C

rc

ˆ
U∩Iv(t)

ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| dy dS(x)

+ C

ˆ
U∩Iv(t)

ˆ
∂∗E+

x ∩{nv(x)·nu(x+ynv(x,t))≥ 1
2
}∩(−rc,rc)

|nv(x)− nu|
|nv(x) · nu|

dH0(y) dS(x)

+ C

ˆ
{x+ynv(x,t):x∈U∩Iv(t),y∈(−rc,rc),nv(x)·nu(x+ynv(x,t))≤ 1

2
}

(
1− nv(PIv(t)x) · nu

)
d|∇χu(·, t)|.

We now distinguish between different cases depending on x ∈ Iv(t) up to Hd−1-measure
zero. We start with the set of points x ∈ A1 ⊂ Iv(t) such that

ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| dy (3.58)

+

ˆ
∂∗E+

x ∩{nv(x)·nu(x+ynv(x,t))≥ 1
2
}∩(−rc,rc)

|nv(x)− nu|
|nv(x) · nu|

dH0(y)

+ sup
y∈{ỹ∈(−rc,rc)∩∂∗E+

x : nv(x)·nu(x+ỹnv(x,t))≤ 1
2
}
1− nv(PIv(t)x) · nu(x+ynv(x, t))
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≤ 1

4
.

By splitting the measure Dtan
x h+ into a part which is absolutely continuous with respect to

the surface measure on Iv(t), for which we denote the density by ∇tanh+, as well as a singular
part Dsh+, we obtain from (3.57) (note that the third integral in (3.57) does not contribute
to this estimate by the definition of the set A1 ⊂ Iv(t))ˆ

U∩Iv(t)∩A1

|∇tanh+|(x) dS(x)

≤
ˆ
U∩Iv(t)∩A1

C

rc

ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| dy dS(x)

+

ˆ
U∩Iv(t)∩A1

C

ˆ
∂∗E+

x ∩{nv(x)·nu(x+ynv(x,t))≥ 1
2
}∩(−rc,rc)

|nv(x)− nu|
|nv(x) · nu|

dH0(y) dS(x)

for every Borel set U ⊂ Rd. Since U was arbitrary, we deduce that |∇tanh+| is bounded on
A1 by the two integrands on the right hand side of the last inequality. Hence, we obtainˆ

A1

|∇tanh+|2(x) dS(x) + |Dsh+|(A1)

≤ Cr−2
c

ˆ
Iv(t)

∣∣∣∣ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| dy

∣∣∣∣2 dS(x)

+ C

ˆ
Iv(t)∩A1

∣∣∣∣ˆ
∂∗E+

x ∩{nv(x)·nu(x+ynv(x,t))≥ 1
2
}∩(−rc,rc)

|nv − nu|dH0(y)

∣∣∣∣2 dS(x).

The first term on the right hand side can be estimated as in the proof of the L2-bound
for h±. To bound the second term, we make the following observation. First, we may
represent the one-dimensional Caccioppoli sets E+

x as a finite union of disjoint intervals (see
[12, Proposition 3.52]). It then follows from property iv) in Theorem 3.39 that ∂∗E+

x ∩(−rc, rc)
can only contain at most one point. Indeed, otherwise we would find at least one point
y ∈ ∂∗E+

x ∩ (−rc, rc) such that nv(x) · nu(x+ynv(x, t)) < 0 which is a contradiction to the
definition of A1. By another application of the co-area formula for rectifiable sets (see [12,
(2.72)]) we therefore getˆ

A1

|∇tanh+|2(x) dS(x) + |Dsh+|(A1)

≤ C

r2
c

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx (3.59)

+ C

ˆ
{dist(x,Iv(t))<rc}

1− nv(PIv(t)x) · ∇χu
|∇χu|

d|∇χu|(x).

We now turn to the second case, namely the set of points A2 := Iv(t) \ A1. We begin
with a preliminary computation. When splitting E+

x into a finite family of disjoint open
intervals as before, it again follows from property iv) in Theorem 3.39 that every second
point y ∈ ∂∗E+

x ∩ (−rc, rc) has to have the property that nv(x) · nu(x+ynv(x, t)) < 0, i.e.,
|nv(x) − nu| ≤ 2 ≤ 2(1 − nv(x) · nu). In particular, by another application of the co-area
formula for rectifiable sets (see [12, (2.72)]) we obtain the bound

ˆ
A2

ˆ
∂∗E+

x ∩{nv(x)·nu(x+ynv(x,t))≥ 1
2
}∩(−rc,rc)

|nv(x)− nu|
|nv(x) · nu|

dH0(y) dS(x)

≤ 8

ˆ
{dist(x,Iv(t))<rc}

1− nv(PIv(t)x) · ∇χu
|∇χu|

d|∇χu|(x). (3.60)
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Now, we proceed as follows. By definition of A2, either one of the three summands in
(3.58) has to be ≥ 1

12 . We distinguish between two cases. If the third one is not, then this
actually means that the set {ỹ ∈ (−rc, rc) ∩ ∂∗E+

x : nv(x) · nu(x+ỹnv(x, t)) ≤ 1
2} is empty,

i.e., the third summand has to vanish. Hence, either one of the first two summands in (3.58)
has to be ≥ 1

8 . If the first one is not, we use that
´ rc

0 |χu(Φt(x, y), t)−χv(Φt(x, y), t)| dy ≤ rc
and bound this by the second term and then (3.60). If the second one is not, then

`+(x) :=

ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| dy ≤ rc

≤ C

rc

ˆ `+(x)

0
y dy ≤ C

ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| y

rc
dy. (3.61)

Now, we move on with the remaining case, i.e., that the third summand in (3.58) does not
vanish. In other words, {ỹ ∈ (−rc, rc) ∩ ∂∗E+

x : nv(x) · nu(x+ỹnv(x, t)) ≤ 1
2} is non-empty.

We then estimate
ˆ rc

0
|χu(Φt(x, y), t)− χv(Φt(x, y), t)| dy

≤ rc ≤ 2rc

ˆ
∂∗E+

x ∩(−rc,rc)
1− nv(x) · nu(x+ynv(x, t)) dH0(y). (3.62)

Taking finally U = A2 in (3.57), the conclusions of the above case study together with
the three estimates (3.60), (3.61) and (3.62) followed by another application of the co-area
formula for rectifiable sets (see [12, (2.72)]) to further estimate the latter, then imply that

ˆ
A2

|∇tanh+|(x) dS(x) + |Dsh+|(A2)

≤ C

rc

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx (3.63)

+ C

ˆ
{dist(x,Iv(t))<rc}

1− nv(PIv(t)x) · ∇χu
|∇χu|

d|∇χu|(x).

The two estimates (3.59) and (3.63) thus entail the desired upper bound (3.55b) for
the (tangential) gradient of h± with ξ replaced by nv(PIv(t)x). However, one may replace
nv(PIv(t)x) by ξ because of (3.34).

Step 3: Proof of the approximation property for the interface (3.55c). In
order to establish (3.55c), we rewrite using the coordinate transform Φt (recall that it holds
dist±(Φt(x, y), Iv(t)) = y and that |h±| ≤ rc)

ˆ
Rd
|χu − χv,h+,h− | dx

=

ˆ
Iv(t)

ˆ rc

0
det∇Φt(x, y)|χu(Φt(x, y))− 1 + χ{y≤h+(x)}| dy dS(x) (3.64)

+

ˆ
Iv(t)

ˆ 0

−rc
det∇Φt(x, y)|χu(Φt(x, y))− χ{y≥−h−(x)}| dy dS(x)

+

ˆ
{dist(x,Iv(t))≥rc}

|χu − χv| dx.

In order to derive a bound for the first term on the right-hand side of (3.64), we distinguish
between different cases depending on x ∈ Iv(t) up to Hd−1-measure zero. We first distinguish
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between h+(x) ≥ rc
4 and h+(x) < rc

4 . In the former case, a straightforward estimate yields
(recall (3.14))∣∣∣∣ˆ rc

0
det∇Φt(x, y)|χu(Φt(x, y))− 1 + χ{y≤h+(x)}| dy

∣∣∣∣
≤ Crc ≤

C

rc

ˆ h+(x)

0
y dy ≤ C

ˆ rc

0
|χu(Φt(x, y))− χv(Φt(x, y))| y

rc
dy, (3.65)

which is indeed of required order after a change of variables. We now consider the other
case, i.e., h+(x) < rc

4 . Recall that the indicator function χu(·, t) of the varifold solution is of
bounded variation in I+ := {x ∈ Rd : dist±(x, Iv(t)) ∈ (0, rc)}. In particular, E+ := {x ∈
Rd : 1 − χu > 0} ∩ I+ is a set of finite perimeter in I+. Recall also that E+ = I+ ∩ {x ∈
Rd : (χv − χu)+ > 0} since χv ≡ 1 in I+. Applying Theorem 3.39 in local coordinates, the
sections

E+
x = {y ∈ (0, rc) : 1− χu(x+ ynv(x, t)) > 0}

are guaranteed to be one-dimensional Caccioppoli sets in (0, rc) for Hd−1-almost every x ∈
Iv(t). Hence, we may represent the one-dimensional section E+

x for such x ∈ Iv(t) as a finite
union of disjoint intervals (see [12, Proposition 3.52])

E+
x ∩ (0, rc) =

K(x)⋃
m=1

(am, bm).

If K(x) = 0 then h+(x) = 0, and the inner integral in the first term on the right hand side
of (3.64) vanishes for this x. If K(x) = 1 and a1 = 0, then by definition of h+(x) we have
(a1, b1) = (0, h+(x)) (recall that we now consider the case h+(x) ≤ rc

4 ). Thus, again the
inner integral in the first term on the right hand side of (3.64) vanishes for this x. Hence, it
remains to discuss the case that there is at least one non-empty interval in the decomposition
of E+

x , say (a, b), such that a ∈ (0, rc). From property iv) in Theorem 3.39 it then follows
that

nv(x, t) ·
−∇χE+

|∇χE+ |
(x+ anv(x, t)) ≤ 0.

Hence, we may bound∣∣∣∣ˆ rc

0
det∇Φt(x, y)|χu(Φt(x, y))− 1 + χ{y≤h+(x)}| dy

∣∣∣∣
≤ Crc ≤ C

ˆ
(0,rc)∩(∂∗E+)x

1− nv(x, t) ·
−∇χE+

|∇χE+ |
(x+ ynv(x, t)) dH0(y)

Gathering the bounds from the different cases together with the estimate in (3.65), we there-
fore obtain by the co-area formula for rectifiable sets (see [12, (2.72)]) together with the
change of variables Φt(x, y)∣∣∣∣ˆ

Iv(t)

ˆ rc

0
det∇Φt(x, y)|χu(Φt(x, y))− 1 + χ{y≤h+(x)}| dy dS(x)

∣∣∣∣
≤ C

ˆ
Iv(t)

ˆ
(0,rc)∩(∂∗E+)x

1− nv(x, t) ·
−∇χE+

|∇χE+ |
(x+ ynv(x, t)) dH0(y) dS(x)

+ C

ˆ
Rd

ˆ rc

−rc
|χu(Φt(x, y))− χv(Φt(x, y))| y

rc
dy dx

≤ C
ˆ
{dist(x,Iv(t))<rc}

1− nv(PIv(t)x) · ∇χu
|∇χu|

d|∇χu|(x)

+ C

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx,
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which is by (3.34) as well as (3.33) indeed a bound of desired order. Moreover, performing
analogous estimates for the second term on the right-hand side of (3.64) and estimating the
third term on the right-hand side of (3.64) trivially, we then get

ˆ
Rd
|χu − χv,h+,h− | dx

≤ C
ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|+ C

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx

which is precisely the desired estimate (3.55c).
Step 4: Proof of estimate on the time derivative (3.55d). To bound the time

derivative, we compute using the weak formulation of the continuity equation ∂tχu = −∇ ·
(χuu) and abbreviating I+(t) := {x ∈ Rd : dist±(x, Iv(t)) ∈ [0, rc)} (recall that the boundary
∂I+(t) = Iv(t) moves with normal speed nv · v)

d

dt

ˆ
Iv(t)

η(x)h+(x, t) dS(x)

=
d

dt

ˆ
Iv(t)

ˆ ∞
0

η(x)(1− χu)(x+ ynv(x, t), t) θ
( y
rc

)
dy dS(x)

=
d

dt

ˆ
I+(t)

η(PIv(t)x)| det∇Φ−1
t |(x)(1− χu)(x, t) θ

(dist(x, Iv(t))

rc

)
dx

=

ˆ
I+(t)

(1− χu)(x, t)u · ∇
(
η(PIv(t)x)| det∇Φ−1

t |(x) θ
(dist(x, Iv(t))

rc

))
dx

+

ˆ
Iv(t)

(nv · u)(x, t)(1−χu)(x, t)η(PIv(t)x)|det∇Φ−1
t |(x)θ

(dist(x, Iv(t))

rc

)
dS(x)

+

ˆ
I+(t)

(1− χu)(x, t)
d

dt

(
η(PIv(t)x)| det∇Φ−1

t |(x)θ
(dist(x, Iv(t))

rc

))
dx

−
ˆ
Iv(t)

(nv · v)(x, t)(1−χu)(x, t)η(PIv(t)x)| det∇Φ−1
t |(x)θ

(dist(x, Iv(t))

rc

)
dS(x).

Recall from (3.23) the formula for the gradient of the projection onto the nearest point on
the interface Iv(t). Recalling also the definitions of the extended normal velocity Vn(x, t) :=(
v(x, t) · nv(PIv(t)x, t)

)
nv(PIv(t)x, t) and its projection V̄n(x, t) := Vn(PIv(t)x, t) from (3.46)

respectively (3.18), we also have

−
ˆ
I+

(1− χu(x, t))|det∇Φ−1
t |(x)θ

(dist(x, Iv(t))

rc

)
(∇η)(PIv(t)x)

·
(
(v(PIv(t)x, t)− V̄n(x, t)) · ∇

)
PIv(t)x dx

= −
ˆ
Iv(t)

ˆ rc

0
(1− χu(Φt(x, y), t))θ

( y
rc

)
∇η(x)

·
(
(v(x, t)− Vn(x, t)) · ∇

)
PIv(t)(Φt(x, y)) dy dS(x)

= −
ˆ
Iv(t)

h+(x, t)(Id−nv(x)⊗ nv(x))v(x, t) · ∇η(x) dS(x)

+

ˆ
I+(t)

(1− χu(x, t))|det∇Φ−1
t |(x)θ

(dist(x, Iv(t))

rc

)
dist(x, Iv(t))(∇η)(PIv(t)x)

·
(
(v(PIv(t)x, t)− V̄n(x, t)) · ∇

)
nv(PIv(t)x) dx.

Adding this formula to the above formula for d
dt

´
Iv(t) η(x)h+(x, t) dS(x), introducing the

abbreviation f := | det∇Φ−1
t |(x) θ(dist(x,Iv(t))

rc
), and using the fact that χv = 1 in I+(t), we
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obtain

d

dt

ˆ
Iv(t)

η(x)h+(x, t) dx−
ˆ
Iv(t)

h+(x, t)(Id−nv ⊗ nv)v(x, t) · ∇η(x) dS(x)

=

ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x) dist(x, Iv(t))(∇η)(PIv(t)x)

·
(
(v(PIv(t)x, t)− V̄n(x, t)) · ∇

)
nv(PIv(t)x) dx

−
ˆ
I+(t)

(χu(x, t)− χv(x, t))η(PIv(t)x)(u− v) · ∇f dx (3.66)

−
ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x)(∇η)(PIv(t)x) · ((u− v) · ∇)PIv(t)x dx

−
ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x)(∇η)(PIv(t)x)

·
(
(v(x, t)− (v(PIv(t)x, t)− V̄n(x, t))) · ∇

)
PIv(t)x dx

−
ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x)(∇η)(PIv(t)x) · d

dt
PIv(t)x dx

−
ˆ
I+(t)

(χu(x, t)− χv(x, t)) η(PIv(t)x)
( d

dt
f + v · ∇f

)
dx

+

ˆ
Iv(t)

nv · (u− v)(1− χu)η dS.

Note that f(x) = |det∇Φ−1
t |(x) θ(dist(x,Iv(t))

rc
) = 1 for any t and any x ∈ Iv(t). Thus, we

have d
dtf + v · ∇f = 0 on Iv(t). Furthermore, we have |∇V̄n| ≤ C

r2
c
‖v‖W 1,∞ and |∇2V̄n| ≤

C
r3
c
‖v‖W 2,∞(Rd\Iv(t)) because of V̄n(x) = Vn(PIv(t)x), (3.15), the corresponding estimate (3.39)

for the gradient of Vn as well as the formula (3.23) for the gradient of PIv(t). Because of
(3.19) and the equation (3.30) for the time evolution of the normal vector, we thus get the
bounds | d

dt∇ dist±(·, Iv(t))| ≤ C
r2
c
‖v‖W 1,∞ and |∇ d

dt∇ dist±(·, Iv(t))| ≤ C
r3
c
‖v‖W 2,∞(Rd\Iv(t)).

Taking all of these bounds together, we obtain |f | ≤ C
rc
, |∇f | ≤ C

r2
c
and |∇2f | + |∇ d

dtf | ≤
C
r3
c
(1 + ‖v‖W 2,∞(Rd\Iv(t))). As a consequence, we get∣∣∣ d

dt
f + v · ∇f

∣∣∣ ≤ C

r3
c

(1 + ‖v‖W 2,∞(Rd\Iv(t))) dist(·, Iv(t)). (3.67)

Moreover, we may compute

d

dt
PIv(t)x = −nv(PIv(t)x)

d

dt
dist±(x, Iv(t))− dist±(x, Iv(t))

d

dt
(nv(PIv(t)x)). (3.68)

Since nv · ∇η = 0 holds on the interface Iv(t) by assumption, we obtain from (3.68)

−
ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x)(∇η)(PIv(t)x) · d

dt
PIv(t)x dx

=

ˆ
I+(t)

(χu(x, t)− χv(x, t)) dist±(x, Iv(t))f(x)(∇η)(PIv(t)x) · d

dt
(nv(PIv(t)x)) dx.

In what follows, we will by slight abuse of notation use ∇tang(x) as a shorthand for (Id −
nv(PIv(t)x) ⊗ nv(PIv(t)x))∇g(x) for scalar fields as well as (∇tan · g)(x) instead of (Id −
nv(PIv(t)x) ⊗ nv(PIv(t)x)) : ∇g(x) for vector fields. Let us also abbreviate P tanx := (Id −
nv(PIv(t)x)⊗nv(PIv(t)x)). Note that by assumption (∇η)(PIv(t)x) = (∇tanη)(PIv(t)x). More-
over, it follows from (3.20), (3.21) and (3.19) that nv(PIv(t)x) · d

dt(nv(PIv(t)x)) = 0. Hence,
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we may rewrite with an integration by parts (recall the notation P tan(x) = (Id−nv ⊗
nv)(PIv(t)x, t))

ˆ
I+(t)

(χu(x, t)− χv(x, t)) dist±(x, Iv(t))f(x)(∇tanη)(PIv(t)x) · d

dt
(nv(PIv(t)x)) dx (3.69)

= −
ˆ
I+(t)

(χu − χv)(x, t) dist±(x, Iv(t))η(PIv(t)x)

×
( d

dt
(nv(PIv(t)x))⊗∇

)
: f(x)P tan(x) dx

−
ˆ
I+(t)

(χu − χv)(x, t) dist±(x, Iv(t))f(x)η(PIv(t)x)∇tan · d

dt
(nv(PIv(t)x)) dx

−
ˆ
Rd

dist±(x, Iv(t))f(x)η(PIv(t)x)
( ∇χu
|∇χu|

− nv(PIv(t)x)
)
· d

dt
(nv(PIv(t)x)) d|∇χu|.

Using from (3.21) and (3.19) that the spatial partial derivatives of the extended normal vector
field are orthogonal to the gradient of the signed distance function, the same argument also
shows that

ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x) dist(x, Iv(t))(∇tanη)(PIv(t)x) (3.70)

·
(
(v(PIv(t)x, t)− V̄n(x, t)) · ∇

)
nv(PIv(t)x) dx

= −
ˆ
I+(t)

(χu(x, t)− χv(x, t)) dist(x, Iv(t))η(PIv(t)x)

×
(
((v(PIv(t)x, t)− V̄n(x, t)) · ∇)nv(PIv(t)x)⊗∇

)
: f(x)P tan(x) dx

−
ˆ
I+(t)

(χu(x, t)− χv(x, t)) dist(x, Iv(t))f(x)η(PIv(t)x)

×∇tan ·
((

(v(PIv(t)x, t)− V̄n(x, t)) · ∇
)
nv(PIv(t)x)

)
dx

−
ˆ
Rd

dist±(x, Iv(t))f(x)η(PIv(t)x)
( ∇χu
|∇χu|

− nv(PIv(t)x)
)

·
(
(v(PIv(t)x, t)− V̄n(x, t)) · ∇

)
nv(PIv(t)x) d|∇χu|.

It follows from (3.23) as well as (3.21) and (3.19) that (nv(PIv(t)x) · ∇)PIv(t)x = 0. Hence,
we obtain

ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x)(∇η)(PIv(t)x) (3.71)

·
(
(v(x, t)− (v(PIv(t)x, t)− V̄n(x, t))) · ∇

)
PIv(t)(x) dx

=

ˆ
I+(t)

(χu − χv)(x, t)f(x)(∇η)(PIv(t)x) ·
(
(v(x, t)− v(PIv(t)x, t)) · ∇

)
PIv(t)x dx.

Since the domain of integration is I+(t), we may write

v(x, t)− v(PIv(t)x, t)

= dist±(x, Iv(t))

ˆ
(0,1]
∇v
(
PIv(t)x+ λ dist±(x, Iv(t))nv(PIv(t)x)

)
dλ · nv(PIv(t)x).

From this and the fact nv(PIv(t)) · ∇PIv(t)(x) = 0, we deduce by another integration by parts
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that (where |F | ≤ r−1
c ‖v‖W 2,∞(Rd\Iv(t)))

ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x)(∇tanη)(PIv(t)x) · ((v(x, t)− v(PIv(t)x, t)) · ∇)PIv(t)x dx

(3.72)

= −
ˆ
I+(t)

(χu(x, t)− χv(x, t))η(PIv(t)x)

×
(
((v(x, t)− v(PIv(t)x, t)) · ∇)PIv(t)x⊗∇

)
: f(x)P tanx dx

−
ˆ
I+(t)

(χu(x, t)− χv(x, t))f(x)η(PIv(t)x)((v(x, t)− v(PIv(t)x, t)) · ∇(∇tan · PIv(t)x) dx

−
ˆ
I+(t)

(χu(x, t)− χv(x, t)) dist(x, Iv(t))f(x)η(PIv(t)x)F (x, t) : ∇PIv(t)x dx

−
ˆ
Rd
f(x)η(PIv(t)x)

( ∇χu
|∇χu|

−nv(PIv(t)x)
)
·
(
(v(x, t)−v(PIv(t)x, t)) · ∇

)
PIv(t)x d|∇χu|.

Hence, plugging in (3.71), (3.70) and (3.72), (3.69) into (3.66) and using the estimates
|∇V̄n| ≤ C

r2
c
‖v‖W 1,∞ , | d

dtnv(PIv(t)x)| ≤ C
r2
c
‖v‖W 1,∞ , |∇ d

dtnv(PIv(t)x)| ≤ C
r3
c
‖v‖W 2,∞(Rd\Iv(t)), and

|∇f | ≤ C
r2
c
, we obtain∣∣∣∣ d

dt

ˆ
Iv(t)

η(x)h+(x, t) dx−
ˆ
Iv(t)

h+(x, t)(Id−nv ⊗ nv)v(x, t) · ∇η(x) dS(x)

∣∣∣∣
≤ C

r2
c

ˆ
{dist(x,Iv(t))≤rc}

|χu(x, t)− χv(x, t)||u(x, t)− v(x, t)||η(PIv(t)x)| dx

+
C

rc

ˆ
{dist(x,Iv(t))≤rc}

|χu(x, t)− χv(x, t)||u(x, t)− v(x, t)||∇η(PIv(t)x)| dx

+
C(1+‖v‖W 1,∞)

rc

ˆ
{dist(x,Iv(t))≤rc}

∣∣∣∣ ∇χu|∇χu|
− nv(PIv(t)x)

∣∣∣∣ | dist±(x, Iv(t))|
rc

|η(PIv(t)x)|d|∇χu|(x)

+
C(1+‖v‖W 2,∞(Rd\Iv(t)))

r3
c

ˆ
{dist(x,Iv(t))≤rc}

|χu(x, t)−χv(x, t)|
| dist±(x, Iv(t))|

rc
|η(PIv(t)x)| dx

+ C

ˆ
Iv(t)
|u− v||η| dS.

This yields by the change of variables Φt(x, y) and a straightforward estimate∣∣∣∣ d

dt

ˆ
Iv(t)

η(x)h+(x, t) dx−
ˆ
Iv(t)

h+(x, t)(Id−nv ⊗ nv)v(x, t) · ∇η(x) dS(x)

∣∣∣∣
≤ C

r2
c

‖η‖W 1,4(Iv(t))

(ˆ
Iv(t)

(ˆ rc
2

0
|χu − χv|(x+ ynv(x, t), t) dy

)4

dS

)1/4

×
(ˆ

Iv(t)
sup

y∈[−rc,rc]
|u− v|2(x+ ynv(x, t), t) dS(x)

)1/2

+
C(1+‖v‖W 2,∞(Rd\Iv(t)))

r3
c

‖η‖L2(Iv(t))

×
(ˆ

Rd
|χu(x, t)− χv(x, t)| min

{dist(x, Iv(t))

rc
, 1
}

dx

) 1
2

+
C(1+‖v‖W 1,∞)

rc
‖η‖L∞(Iv(t))

(ˆ
{dist(x,Iv(t))≤rc}

∣∣∣∣ ∇χu|∇χu|
− nv(PIv(t)x)

∣∣∣∣2 d|∇χu|
) 1

2
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×
(ˆ
{dist(x,Iv(t))≤rc}

| dist±(x, Iv(t))|2

r2
c

d|∇χu|
) 1

2

+ C

( ˆ
Iv(t)
|u− v|2 dS

)1/2

‖η‖L2(Iv(t)).

Using finally the Sobolev embedding to bound the L∞-norm of η on the interface (which
is either one- or two-dimensional; note that the constant in the Sobolev embedding may be
bounded by Cr−1

c for our geometry), we infer from this estimate the desired bound (3.55d),
using also (3.34) and (3.33). This concludes the proof.

3.5.2 A regularization of the local height of the interface error

In order to modify our relative entropy to compensate for the velocity gradient discontinuity
at the interface, we need regularized versions of the local heights of the interface error h+ and
h− which in particular have Lipschitz regularity. To this aim, we fix some function e(t) > 0
and basically apply a mollifier on scale e(t) to the local interface error heights h+ and h−

at each time. An illustration of h+ and its mollification h+
e(t) is provided in Figure 3.2 and

Figure 3.3, respectively. These regularized versions h+
e(t) and h

−
e(t) of the local interface error

heights then have the following properties:

Proposition 3.27. Let χv ∈ L∞([0, Tstrong); BV(Rd; {0, 1})) be an indicator function such
that Ω+

t := {x ∈ Rd : χv(x, t) = 1} is a family of smoothly evolving domains and Iv(t) := ∂Ω+
t

is a family of smoothly evolving surfaces in the sense of Definition 3.5. Let ξ be the extension
of the unit normal vector field nv from Definition 3.13.

Let χu ∈ L∞([0, Tstrong); BV(Rd; {0, 1})) be another indicator function and let then h+

resp. h− be as defined in Proposition 3.26. Let θ : R+ → [0, 1] be a smooth cutoff with θ(s) = 1
for s ∈ [0, 1

4 ] and θ(s) = 0 for s ≥ 1
2 . Let e : [0, Tstrong)→ (0, rc] be a C1-function and define

the regularized height of the local interface error

h±e(t)(x, t) :=

´
Iv(t) θ

( |x̃−x|
e(t)

)
h±(x̃, t) dS(x̃)´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

. (3.73)

Then h+
e(t) and h−e(t) have the following properties:

a) (H1-bound) If the interface error terms from the relative entropy are bounded byˆ
Rd

1− ξ(·, t) · ∇χu(·, t)
|∇χu(·, t)|

d|∇χu(·, t)|

+

ˆ
Rd

∣∣χu(·, t)− χv(·, t)
∣∣ ∣∣∣β(dist±(·, Iv(t))

rc

)∣∣∣ dx ≤ e(t)2,

we have the Lipschitz estimate |∇h±e(t)(·, t)| ≤ Cr
−2
c , the global bound |∇2h±e(t)(·, t)| ≤ Ce(t)

−1r−4
c ,

and the boundˆ
Iv(t)
|∇h±e(t)|

2 + |h±e(t)|
2 dS ≤ C

r2
c

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu| (3.74a)

+
C

r4
c

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx.

b) (Improved approximation property) The functions h+
e(t) and h−e(t) provide an approx-

imation for the interface of the weak solution

χv,h+
e(t)

,h−
e(t)

:=χv − χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x,t)
(3.74b)

+ χ−h−
e(t)

(PIv(t)x,t)≤dist±(x,Iv(t))≤0,
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up to an error of

ˆ
Rd

∣∣χu − χv,h+
e(t)

,h−
e(t)

∣∣ dx

≤ C
ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|+ C

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx (3.74c)

+ Ce(t)

(ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|
)1/2

Hd−1(Iv(t))
1/2

+ C
e(t)

rc

(ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx

)1/2

Hd−1(Iv(t))
1/2.

c) (Time evolution) Let v be a solenoidal vector field

v ∈ L2([0, Tstrong];H
1(Rd;Rd)) ∩ L∞([0, Tstrong];W

1,∞(Rd;Rd))

such that in the domain
⋃
t∈[0,Tstrong)(Ω

+
t ∪ Ω−t ) × {t} the second spatial derivatives of the

vector field v exist and satisfy supt∈[0,Tstrong) supx∈Ω+
t ∪Ω−t

|∇2v(x, t)| < ∞. Assume that χv
solves the equation ∂tχv = −∇·(χvv). If χu solves the equation ∂tχu = −∇·(χuu) for another
solenoidal vector field u ∈ L2([0, Tstrong];H

1(Rd;Rd)), we have the following estimate on the
time derivative of h±e(t):

∣∣∣∣ d

dt

ˆ
Iv(t)

η(x)h±e(t)(x, t) dx−
ˆ
Iv(t)

h±e(t)(x, t)(Id−nv ⊗ nv)v(x, t) · ∇η(x) dS(x)

∣∣∣∣ (3.74d)

≤ C

e(t)r2
c

‖η‖L4(Iv(t))

( ˆ
Iv(t)
|h̄±|4 dS

)1/4

×
( ˆ

Iv(t)
sup

y∈[−rc,rc]
|u− v|2(x+ ynv(x, t), t) dS(x)

)1/2

+ C
(1 + ‖v‖W 1,∞)

e(t)rc
max
p∈{2,4}

‖η‖Lp(Iv(t))

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|

+ Cr−4
c ‖v‖W 1,∞(1 + e′(t))

( ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|
)1/2

||η||L2(Iv(t))

+ C

(
1 + ‖v‖W 2,∞(Rd\Iv(t))

rc
+
‖v‖W 1,∞

r6
c

(1 + e′(t))

)
‖η‖L2(Iv(t))

×
(ˆ

Rd
|χu(x, t)− χv(x, t)| min

{dist(x, Iv(t))

rc
, 1
}

dx

) 1
2

+ C‖η‖L2(Iv(t))

( ˆ
Iv(t)
|u− v|2 dS

) 1
2

for any smooth test function η ∈ C∞cpt(Rd) with nv · ∇η = 0 on the interface Iv(t), and where
h̄± is defined as h± but now with respect to the modified cut-off function θ̄(·) = θ

( ·
2

)
.

Proof. Proof of a). In order to estimate the spatial derivative ∇h±e(t), we compute using
the fact that ∇xθ

( |x−x̃|
e(t)

)
= −∇x̃θ

( |x−x̃|
e(t)

)
(note that all of the subsequent gradients are to be
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understood in the tangential sense on the manifold Iv(t))

∇h±e(t)(x, t) = −

´
Iv(t)∇x̃θ

( |x̃−x|
e(t)

)
h±(x̃, t) dS(x̃)´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

+

´
Iv(t) θ

( |x̃−x|
e(t)

)
h±(x̃, t) dS(x̃)

´
Iv(t)∇x̃θ

( |x̃−x|
e(t)

)
dS(x̃)( ´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

)2
=

´
Iv(t) θ

( |x̃−x|
e(t)

)
∇h±(x̃, t) dS(x̃)´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

+

´
Iv(t) θ

( |x̃−x|
e(t)

)
dDsh±(x̃)´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

+

´
Iv(t) θ

( |x̃−x|
e(t)

)
h±(x̃, t)H(x̃, t) dS(x̃)´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

−

´
Iv(t) θ

( |x̃−x|
e(t)

)
h±(x̃, t) dS(x̃)

´
Iv(t) θ

( |x̃−x|
e(t)

)
H(x̃, t) dS(x̃)( ´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

)2 .

Introduce the convex function

G(p) :=

{
|p|2 for |p| ≤ 1,

2|p| − 1 for |p| ≥ 1.
(3.75)

Using the estimate (3.16), the obvious bounds G(p + p̃) ≤ CG(p) + CG(p̃) and G(λp) ≤
C(λ + λ2)G(p) for any p, p̃, and λ > 0, and Jensen’s inequality, we obtain (as the recession
function of G is given by 2|p|)

G(|∇h±e(t)(x, t)|) ≤ C

´
Iv(t) θ

( |x̃−x|
e(t)

)(
G(|∇h±(x̃, t)|) +G(r−1

c |h±(x̃, t)|)
)

dS(x̃)´
Iv(t) θ

( |x̃−x|
e(t)

)
dS(x̃)

(3.76)

+ C

´
Iv(t) θ

( |x̃−x|
e(t)

)
d|Dsh±|(x̃, t)´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

.

Consider x ∈ Iv(t). By the assumption from Definition 3.5, there is a C3-function g : B1(0) ⊂
Rd−1 → R with ‖∇g‖L∞ ≤ 1, g(0) = 0, and ∇g(0) = 0, and such that Iv(t)∩B2rc(x) is after
rotation and translation given as the graph {(x, g(x)) : x ∈ Rd−1}. Using the fact that θ ≡ 0
on R\ [0, 1

2 ] and e(t) < rc ≤ 1, i.e., the map Iv(t) 3 x̃ 7→ θ( |x̃−x|e(t) ) is supported in a coordinate
patch given by the graph of g, we then may boundˆ

Iv(t)
θ
( |x̃− x|

e(t)

)
dS(x̃) ≤

ˆ
Iv(t)∩B e(t)

2

(x)
1 dS(x̃) ≤ C

ˆ
{x̃∈Rd−1 : |x̃|< e(t)

2
}

1 dx̃

≤ Ce(t)d−1.

We also obtain a lower bound using that θ ≡ 1 on [0, 1
4 ] and again e(t) < rc ≤ 1

ˆ
Iv(t)

θ
( |x̃− x|

e(t)

)
dS(x̃) ≥

ˆ
Iv(t)∩B e(t)

4

(x)
1 dS(x̃) ≥ c

ˆ
{x̃∈Rd−1 : |x̃|<ce(t)}

1 dx̃

≥ ce(t)d−1.

In summary, we infer that

ce(t)d−1 ≤
ˆ
Iv(t)

θ
( |x̃− x|

e(t)

)
dS(x̃) ≤ Ce(t)d−1. (3.77)
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Making use of (3.77), the assumptions
´
Rd 1− ξ · nu d|∇χu| ≤ e(t)2 ≤ r2

c < 1 and d ≤ 3, the
upper bounds |θ| ≤ 1 and G(λp) ≤ C(λ + λ2)G(p), as well as the already established L2-
resp. H1-bound for the local interface error heights h± from (3.55a) resp. (3.55b) we deduce

G(|∇h±e(t)(x, t)|) ≤ Cr
−2
c ,

which is precisely the first assertion in a). Similarly, one derives the other desired estimate
G(e(t)|∇2h±e(t)(x, t)|) ≤ Cr

−4
c .

Integrating (3.76) over Iv(t) and employing the global upper bound |∇h±e(t)(·, t)| ≤ Cr
−2
c ,

which in turn entails G(|∇h±e(t)(·, t)|) ≥ cr
2
c |∇h±e(t)(·, t)|

2, we getˆ
Iv(t)
|∇h±e(t)(x, t)|

2 dS(x)

≤ Cr−2
c

ˆ
Iv(t)

´
Iv(t) θ

( |x̃−x|
e(t)

)
G(|∇h±(x̃, t)|) +G(r−1

c |h±(x̃, t)|) dS(x̃)´
Iv(t) θ

( |x̃−x|
e(t)

)
dS(x̃)

dS(x) (3.78)

+ Cr−2
c

ˆ
Iv(t)

´
Iv(t) θ

( |x̃−x|
e(t)

)
d|Dsh±|(x̃, t)´

Iv(t) θ
( |x̃−x|
e(t)

)
dS(x̃)

dS(x).

Applying Fubini’s theorem and using the bounds (3.77), G(λp) ≤ C(λ+ λ2)G(p), as well as
(3.55a) and (3.55b) we deduce the estimate on

´
Iv(t) |∇h

±
e(t)|

2 dS stated in a). The estimate
on
´
Iv(t) |h

±
e(t)|

2 dS follows by an analogous argument, first squaring (3.73) and applying
Jensen’s inequality, then integrating over Iv(t), and finally using (3.77), Fubini as well as
(3.55a) and (3.55b).

Proof of b). We start with a change of variables to estimate (recall (3.14))ˆ
Rd
|χv,h+

e(t)
,h−
e(t)
− χv,h+,h− | dx

≤ C
ˆ
Iv(t)

ˆ rc

0
|χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x,t)

− χ0≤dist±(x,Iv(t))≤h+(PIv(t)x,t)
| dy dS

+ C

ˆ
Iv(t)

ˆ rc

0
|χ−h−

e(t)
(PIv(t)x,t)≤dist±(x,Iv(t))≤0 − χ−h−(PIv(t)x,t)≤dist±(x,Iv(t))≤0| dy dS

≤ C
ˆ
Iv(t)
|h+
e(t)(x, t)− h

+(x, t)|+ |h−e(t)(x, t)− h
−(x, t)| dS(x).

By adding zero and using (3.55c) we therefore obtainˆ
Rd
|χu − χv,h+

e(t)
,h−
e(t)
| dx

≤
ˆ
Rd
|χu − χv,h+,h− | dx+

ˆ
Rd
|χv,h+

e(t)
,h−
e(t)
− χv,h+,h− | dx

≤ C
ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|

+ C

ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx

+ C

ˆ
Iv(t)
|h+
e(t)(x, t)− h

+(x, t)|+ |h−e(t)(x, t)− h
−(x, t)| dS(x).

Observe that one can decompose

h±(x, t) = h±e(t)(x, t) +
∞∑
k=0

(
h±

2−k−1e(t)
(x, t)− h±

2−ke(t)
(x, t)

)
.
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A straightforward estimate in local coordinates then yields
ˆ
Iv(t)

∣∣h±
2−ke(t)

− h±
2−k−1e(t)

∣∣ dS

≤ C2−ke(t)

ˆ
Iv(t)

1 d|Dtanh±|

≤ C2−ke(t)

ˆ
Iv(t)

1 d|Dsh±|+ C2−ke(t)

ˆ
Iv(t)
|∇h+|χ{|∇h+|≥1} dS

+ C2−ke(t)

(ˆ
Iv(t)
|∇h+|2χ{|∇h+|≤1} dS

)1/2

Hd−1(Iv(t))
1/2.

Using (3.55b) and summing with respect to k ∈ N, we get the desired estimate (3.74c).
Proof of c). Note that

ˆ
Iv(t)

η(x)h±e(t)(x, t) dS =

ˆ
Iv(t)

h±(x̃, t)

ˆ
Iv(t)

θ
( |x̃−x|
e(t)

)
η(x)´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

dS(x) dS(x̃).

Abbreviating

ηe(x̃, t) :=

ˆ
Iv(t)

θ
( |x̃−x|
e(t)

)
η(x)´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

dS(x),

we compute

|∇tan
x̃ ηe(x̃, t)| =

∣∣∣∣ ˆ
Iv(t)

∇tan
x̃ θ

( |x̃−x|
e(t)

)
η(x)´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

dS(x)

∣∣∣∣
≤
ˆ
Iv(t)

( ∣∣θ′∣∣( |x̃−x|e(t)

)
´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

)
η(x)

e(t)
dS(x).

As in the argument for (3.77), one checks that
´
Iv(t) |θ

′|( |x̃−x|e(t) ) dS(x) ≤ Ce(t)d−1. Using the
lower bound from (3.77), the proof for the standard Lp-inequality for convolutions carries
over and we obtain ‖ηe‖Lp(Iv(t)) ≤ C‖η‖Lp(Iv(t)) as well as

ˆ
Iv(t)
|∇ηe(x, t)|p dS(x) ≤ C

e(t)p

ˆ
Iv(t)
|η(x, t)|p dS(x)

for any p ≥ 1. As a consequence of (3.55d) and these considerations, we deduce∣∣∣∣ d

dt

ˆ
Iv(t)

η(x)h±e(t)(x, t) dx−
ˆ
Iv(t)

h±(x̃, t)
d

dt
ηe(x̃, t) dS(x̃)

−
ˆ
Iv(t)

h±(x̃, t)(Id−nv ⊗ nv)v(x̃, t) · ∇x̃ηe(x̃, t) dS(x̃)

∣∣∣∣
≤ C

e(t)r2
c

‖η‖L4(Iv(t))

(ˆ
Iv(t)
|h̄±|4 dS

)1/4

(3.79)

×

(ˆ
Iv(t)

sup
y∈[−rc,rc]

|u− v|2(x+ ynv(x, t), t) dS(x)

)1/2
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+ C
1 + ‖v‖W 2,∞(Rd\Iv(t))

rc
‖η‖L2(Iv(t))

×

(ˆ
Rd
|χu(x, t)− χv(x, t)| min

{dist(x, Iv(t))

rc
, 1
}

dx

) 1
2

+ C
(1 + ‖v‖W 1,∞)

rce(t)
max
p∈{2,4}

‖η‖Lp(Iv(t))

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|

+ C‖η‖L2(Iv(t))

(ˆ
Iv(t)
|u− v|2 dS

)1/2

.

Using the estimate |v(x, t)− v(x̃, t)| ≤ C|x− x̃|‖∇v‖L∞ , we infer

∣∣∣∣∣
ˆ
Iv(t)

h±(x̃, t)v(x̃, t) · ∇x̃
ˆ
Iv(t)

θ
( |x̃−x|
e(t)

)
η(x)´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

dS(x) dS(x̃) (3.80)

+

ˆ
Iv(t)

η(x)(v(x, t) · ∇)h±e(t)(x, t) dS(x)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
Iv(t)

ˆ
Iv(t)

η(x)h±(x̃, t)v(x̃, t) · ∇x̃
θ
( |x̃−x|
e(t)

)
´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

dS(x) dS(x̃)

+

ˆ
Iv(t)

ˆ
Iv(t)

η(x)h±(x̃, t)v(x, t) · ∇x
θ
( |x̃−x|
e(t)

)
´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

dS(x̃) dS(x)

∣∣∣∣∣
≤
ˆ
Iv(t)

ˆ
Iv(t)

h±(x̃, t)‖∇v‖L∞
|θ′|
( |x̃−x|
e(t)

)
|x̃− x||η(x)|

e(t)
´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

dS(x) dS(x̃)

+

ˆ
Iv(t)

ˆ
Iv(t)

h±(x̃, t)‖v‖L∞
θ
( |x̃−x|
e(t)

)
|η(x)|

∣∣∣∇x ´Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

∣∣∣( ´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

)2 dS(x) dS(x̃)

≤ Cr−1
c ‖v‖W 1,∞

( ˆ
Iv(t)
|h±(x, t)|2 dS(x)

)1/2(ˆ
Iv(t)
|η(x)|2 dS(x)

)1/2

where in the last step we have used the simple equality

∇tan
x

ˆ
Iv(t)

θ
( |x̂− x|

e(t)

)
dS(x̂) = −

ˆ
Iv(t)
∇tan
x̂ θ

( |x̂− x|
e(t)

)
dS(x̂) (3.81)

=

ˆ
Iv(t)

θ
( |x̂− x|

e(t)

)
H(x̂) dS(x̂)

and the bounds (3.16) and (3.77). Recall from the transport theorem for moving hypersurfaces
(see [128]) that we have for any f ∈ C1(Rd × [0, Tstrong))

d

dt

ˆ
Iv(t)

f(x, t) dS(x) =

ˆ
Iv(t)

∂tf(x, t) dS(x) +

ˆ
Iv(t)

Vn · ∇f(x, t) dS(x) (3.82)

+

ˆ
Iv(t)

f(x, t) H · Vn dS(x)

with the normal velocity Vn(x, t) = (v(x, t) ·nv(PIv(t)x, t))nv(PIv(t)x, t). Making use of (3.82)
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and d
dtPIv(t)x̃ = −Vn(x̃, t) for x̃ ∈ Iv(t) (see (3.68)), we then compute for every x̃ ∈ Iv(t)

d

dt

ˆ
Iv(t)

θ
( |x̂− x|

e(t)

)
dS(x̂) =

d

dt

ˆ
Iv(t)

θ
( |PIv(t)x̂− PIv(t)x|

e(t)

)
dS(x̂)

= − e
′(t)

e(t)2

ˆ
Iv(t)

θ′
( |x̂− x|

e(t)

)
|x̂− x| dS(x̂)

+
1

e(t)

ˆ
Iv(t)

θ′
( |x̂− x|

e(t)

)(x̂− x) · (Vn(x̂, t)− Vn(x, t))

e(t)|x̂− x|
dS(x̂)

+

ˆ
Iv(t)

θ
( |x̂− x|

e(t)

)
Vn(x̂) ·H(x̂) dS(x̂).

This together with another application of (3.82) and the fact that nv ·∇η = 0 on the interface
Iv(t) implies for x̃ ∈ Iv(t)

d

dt
ηe(x̃, t) =

d

dt

ˆ
Iv(t)

θ
( |PIv(t)x̃−PIv(t)x|

e(t)

)
η(x)

´
Iv(t) θ

( |PIv(t)x̂−PIv(t)x|
e(t)

)
dS(x̂)

dS(x) (3.83)

=

ˆ
Iv(t)

( θ
( |x̃−x|
e(t)

)
η(x)´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

)
Vn(x) ·H(x) dS(x)

−
ˆ
Iv(t)

θ
( |x̃−x|
e(t)

)
η(x)

( ´
Iv(t) θ

( |x̂−x|
e(t)

)
Vn(x̂) ·H(x̂) dS(x̂)

)( ´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

)2 dS(x)

+

ˆ
Iv(t)

η(x)θ′
( |x̃−x|
e(t)

) (x̃−x)·(Vn(x̃)−Vn(x))
e(t)|x̃−x|´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

dS(x)

−
ˆ
Iv(t)

θ
( |x̃−x|
e(t)

)
η(x)

´
Iv(t) θ

′( |x̂−x|
e(t)

) (x̂−x)·(Vn(x̂,t)−Vn(x,t))
e(t)|x̂−x| dS(x̂)( ´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

)2 dS(x)

− e′(t)

e(t)

ˆ
Iv(t)

F ′e,θ(x̃, x)η(x)´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

dS(x)

where F ′e,θ(t) : Iv(t)× Iv(t)→ R is the kernel

F ′e,θ(t)(x̃, x) := θ′
( |x̃− x|

e(t)

) |PIv(t)x̃− PIv(t)x|
e(t)

(3.84)

− θ
( |x̃−x|
e(t)

)´
Iv(t) θ

′( |x̂−x|
e(t)

) |PIv(t)x̂−PIv(t)x|
e(t) dS(x̂)´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

.

Observe that we have ˆ
Iv(t)

F ′e,θ(t)(x̃, x) dS(x̃) = 0. (3.85)

By the choice of the cutoff θ, we see that for every given x ∈ Iv(t) the kernel F ′e,θ(t) is
supported in Be(t)/2(x) ∩ Iv(t). Moreover, the exact same argumentation which led to the
upper bound in (3.77) (we only used the support and upper bound for θ as well as e(t) ≤ rc)
shows that the kernel F ′e,θ satisfies the upper bound

ˆ
Iv(t)
|F ′e,θ(x̃, x)|p dS(x̃) ≤ C(p)e(t)d−1 (3.86)
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

for any 1 ≤ p < ∞. We next intend to rewrite the function F ′e,θ(x̃, x) for fixed x as the
divergence of a vector field. By the property (3.85), we may consider Neumann problem for
the (tangential) Laplacian with right hand side F ′e,θ(·, x) in some neighborhood (of scale e(t))
of the point x. To do this we first rescale the setup, i.e., we consider the kernel F ′1(x̃, x) :=
F ′e,θ(e(t)x̃, e(t)x) for x̃, x ∈ e(t)−1Iv(t). By scaling and the fact that F ′e,θ is supported on
scale e(t)/2, it follows that F ′1(·, x) has zero average on e(t)−1Iv(t) ∩ B1(x) for every point
x ∈ e(t)−1Iv(t) and that

ˆ
e(t)−1Iv(t)

|F ′1(x̃, x)|p dS(x̃) ≤ C(p). (3.87)

We fix x ∈ e(t)−1Iv(t) and solve on e(t)−1Iv(t)∩B1(x) the weak formulation of the equation
−∆tan

x̃ F̂1(·, x) = F ′1(·, x) with vanishing Neumann boundary condition. More precisely, we
require F̂1(·, x) to have vanishing average on e(t)−1Iv(t) ∩ B1(x) (note that in the weak
formulation the curvature term does not appear because it gets contracted with the tangential
derivative of the test function). By elliptic regularity and (3.87), it follows

||∇tanF̂1(x̃, x)||L∞ ≤ C. (3.88)

We now rescale back to Iv(t) and define F̂e,θ(x̃, x) := e(t)2F̂1(e(t)−1x̃, e(t)−1x) for x ∈ Iv(t)
and x̃ ∈ Iv(t)∩Be(t)(x). For fixed x ∈ Iv(t), F̂e,θ(·, x) has vanishing average on Iv(t)∩Be(t)(x)

and solves −∆tan
x̃ F̂e,θ(·, x) = F ′e,θ(·, x) on Iv(t)∩Be(t)(x) with vanishing Neumann boundary

condition. We finally introduce Fe,θ(x̃, x) := ∇tan
x̃ F̂e,θ(x̃, x) for x ∈ Iv(t) and x̃ ∈ Iv(t) ∩

Be(t)(x). It then follows from scaling, (3.88) as well as e(t) < rc that ∇x̃ · Fe,θ(x̃, x) = F ′e,θ
and

||e−1(t)Fe,θ(x̃, x)||L∞ ≤ C. (3.89)

We now have everything in place to proceed with estimating the term

∣∣∣∣ ˆ
Iv(t)

h±(x̃, t)
d

dt
ηe(x̃, t) dS(x̃)

∣∣∣∣.
To this end, we will make use of (3.83) and estimate term by term. Because of (3.16), (3.77),
‖ηe‖Lp(Iv(t)) ≤ C‖η‖Lp(Iv(t)), the estimate

ˆ
Iv(t)
|θ′|
( |x̃− x|

e(t)

)
dS(x̃) ≤ Ce(t)d−1,

the Lipschitz property |Vn(x)−Vn(x̃)| ≤ ||∇v||L∞ |x− x̃|, and the fact that θ(s) = 0 for s ≥ 1,
the first four terms on the right-hand side of (3.83) are straightforward to estimate and result
in the bound

Cr−1
c ‖v‖W 1,∞‖h±(·, t)‖L2(Iv(t))‖η‖L2(Iv(t)). (3.90)

To estimate the fifth term, we first apply Fubini’s theorem and then perform an integration
by parts (recall that we imposed vanishing Neumann boundary conditions) which entails
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3.5. Weak-strong uniqueness of varifold solutions: The case of different viscosities

because of the above considerations

1

e(t)

ˆ
Iv(t)

h±(x̃, t)

ˆ
Iv(t)

F ′e,θ(x̃, x)´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

η(x) dS(x) dS(x̃)

=

ˆ
Iv(t)

( ˆ
Iv(t)∩B 3

4 e(t)
(x)
h±(x̃, t)

e(t)−1F ′e,θ(x̃, x)´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

dS(x̃)

)
η(x) dS(x)

= −
ˆ
Iv(t)

( ˆ
Iv(t)∩B 3

4 e(t)

∇x̃h±(x̃, t) ·
e(t)−1Fe,θ(x̃, x)´

Iv(t) θ
( |x̂−x|
e(t)

)
dS(x̂)

dS(x̃)

)
η(x) dS(x)

−
ˆ
Iv(t)

h±(x̃, t)H(x̃, t) ·
(ˆ

Iv(t)

e(t)−1Fe,θ(x̃, x)´
Iv(t) θ

( |x̂−x|
e(t)

)
dS(x̂)

η(x) dS(x)

)
dS(x̃).

Using (3.89) as well as the lower bound from (3.77) we see that the second term can be
estimated by a term of the form (3.90). For the first term, note that by the properties of Fe,θ
we may interpret the integral in brackets as the mollification of ∇h± on scale e(t). Applying
the argument which led to (3.78) (for this, we only need the upper bound (3.89) for Fe,θ,
a lower bound as in (3.77) is only required for θ) we observe that one can bound this term
similar to ‖∇h±e(t)(·, t)‖L2(Iv(t)). We therefore obtain the bound∣∣∣∣ˆ

Iv(t)
h±(x̃, t)

d

dt
ηe(x̃, t) dS(x̃)

∣∣∣∣
≤ Cr−4

c ‖v‖W 1,∞(1 + e′(t))

(ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|
)1/2

||η||L2(Iv(t))

+ Cr−6
c ‖v‖W 1,∞(1 + e′(t))

(ˆ
Rd
|χu − χv|min

{dist(x, Iv(t))

rc
, 1
}

dx

)1/2

||η||L2(Iv(t)).

Hence, combining (3.79) with these estimates for the fourth term from (3.83) as well as
(3.90) and (3.80), we obtain the desired estimate on the time derivative. This concludes the
proof.

3.5.3 Construction of the compensation function w for the velocity
gradient discontinuity

We turn to the construction of a compensating vector field, which shall be small in the L2-
norm but whose associated viscous stress µ(χu)Dsymw shall compensate for (most of) the
problematic viscous term (µ(χu) − µ(χv))D

symv appearing on the right hand side of the
relative entropy inequality from Proposition 3.10 in the case of different shear viscosities.

Before we state the main result of this section, we introduce some further notation. Let
h+
e(t) be defined as in Proposition 3.27. We then denote by Ph+

e(t)
the downward projection

onto the graph of h+
e(t), i.e.,

Ph+
e(t)

(x, t) := PIv(t)x+ h+
e(t)(PIv(t)x, t)nv(PIv(t)x, t).

for all (x, t) such that dist(x, Iv(t)) < rc. Note that this map does not define an orthogonal
projection. Analogously, one introduces the projection Ph−

e(t)
onto the graph of h−e(t).

Proposition 3.28. Let (χu, u, V ) be a varifold solution to the free boundary problem for
the incompressible Navier-Stokes equation for two fluids (1.1a)-(1.1c) in the sense of Defini-
tion 3.2 on some time interval [0, Tvari). Let (χv, v) be a strong solution to (1.1a)-(1.1c) in
the sense of Definition 3.6 on some time interval [0, Tstrong) with Tstrong ≤ Tvari. Let ξ be the
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

extension of the inner unit normal vector field nv of the interface Iv(t) from Definition 3.13.
Let e : [0, Tstrong)→ (0, rc] be a C1-function and assume that the relative entropy is bounded
by E[χu, u, V |χv, v](t) ≤ e(t)2. Let the regularized local interface error heights h+

e(t) and h−e(t)
be defined as in Proposition 3.27.

Then there exists a solenoidal vector field w ∈ L2([0, Tstrong];H
1(Rd)) such that w is

subject to the estimates
ˆ
Rd
|w|2 dx ≤ C(r−4

c R2‖v‖2W 2,∞(Rd\Iv(t)) + 1) (3.91)

×
ˆ
Iv(t)
|h+
e(t)|

2+|∇h+
e(t)|

2 + |h−e(t)|
2+|∇h−e(t)|

2 dS,

where R > 0 is such that Iv(t) +Brc ⊂ BR(0), and

ˆ
{dist±(x,Iv(t))≥0}

∣∣∇w − χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)W ⊗ nv(PIv(t)x, t)
∣∣2 dx (3.92)

+

ˆ
{dist±(x,Iv(t))≤0}

∣∣∇w − χ−h−
e(t)

(PIv(t)x)≤dist±(x,Iv(t))≤0W ⊗ nv(PIv(t)x, t)
∣∣2 dx

+

ˆ
Rd
χdist±(x,Iv(t))/∈[−h−

e(t)
(PIv(t)x),h+

e(t)
(PIv(t)x)]|∇w|

2 dx

≤ Cr−4
c ‖v‖2W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 + |h−e(t)|
2 + |∇h−e(t)|

2 dS,

where the vector field W is given by

W (x, t) :=
2(µ+ − µ−)

µ+ (1−χv) + µ−χv

(
Id−nv ⊗ nv

)
(PIv(t)x)

(
Dsymv · nv(PIv(t)x)

)
, (3.93)

with the symmetric gradient defined by Dsymv := 1
2(∇v +∇vT ), as well as the estimates

ˆ
Iv(t)

sup
y∈(−rc,rc)

|w(x+ ynv(x, t))|2 dS(x) (3.94)

≤ Cr−4
c ‖v‖2W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 + |h−e(t)|
2 + |∇h−e(t)|

2 dS,

‖∇w‖L∞ ≤ Cr−4
c | log e(t)|‖v‖W 2,∞(Rd\Iv(t)) + Cr−3

c ‖∇3v‖L∞(Rd\Iv(t)) (3.95)

+ Cr−9
c

(
1+Hd−1(Iv(t))

)
‖v‖W 2,∞(Rd\Iv(t)),

( ˆ
Iv(t)

sup
y∈[−rc,rc]

|(∇w)T (x+ ynv(x, t))nv(x, t)|2 dS(x)

) 1
2

(3.96)

≤ Cr−9
c (1 +Hd−1(Iv(t)))‖v‖W 2,∞(Rd\Iv(t))e(t) + Cr−2

c ‖v‖W 3,∞(Rd\Iv(t))e(t)

+ Cr−1
c ‖v‖W 2,∞(Rd\Iv(t))| log e(t)|

1
2 e(t)

and

∂tw(·, t) = −
(
v(·, t) · ∇

)
w(·, t) + g + ĝ, (3.97)
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where the vector fields g and ĝ are subject to the bounds

‖ĝ‖
L

4
3 (Rd)

(3.98)

≤ C
‖v‖W 1,∞‖v‖W 2,∞(Rd\Iv(t))

e(t)r3
c

( ˆ
Iv(t)
|h̄±|4 dS

) 1
4

×
( ˆ

Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 + |h−e(t)|
2 + |∇h−e(t)|

2 dS

) 1
2

+ C
‖v‖W 1,∞

e(t)r2
c

(ˆ
Iv(t)
|h̄±|4 dS

) 1
4

(‖u−v−w‖
1
2

L2‖∇(u−v−w)‖
1
2

L2 + ‖u−v−w‖L2)

+ C
‖v‖W 1,∞(1 + ‖v‖W 1,∞)

e(t)

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|,

and

‖g‖L2(Rd) (3.99)

≤ C 1+‖v‖W 1,∞

r2
c

(‖∂t∇v‖L∞(Rd\Iv(t))+(R2+1)‖v‖W 2,∞(Rd\Iv(t)))

×
(ˆ

Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 + |h−e(t)|
2 + |∇h−e(t)|

2 dS

) 1
2

+ C
‖v‖W 1,∞(1 + ‖v‖W 1,∞)

e(t)rc

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|

+ Cr−2
c (1 + e′(t))‖v‖2W 1,∞

( ˆ
Iv(t)
|h±|2 dS

) 1
2

+ C
‖v‖W 1,∞(1+‖v‖W 2,∞(Rd\Iv(t)))

rc

( ˆ
Rd
|χu−χv|min

{dist(x, Iv(t))

rc
, 1
}

dx

) 1
2

+ C‖v‖W 1,∞(‖u−v−w‖
1
2

L2‖∇(u−v−w)‖
1
2

L2 + ‖u−v−w‖L2),

where h̄± is defined as h± but now with respect to the modified cut-off function θ̄(·) = θ
( ·

2

)
, see

Proposition 3.26. Furthermore, w may be taken to have the regularity ∇w(·, t) ∈W 1,∞(Rd \
(Iv(t) ∪ Ih+

e
(t) ∪ Ih+

e
(t))) for almost every t, where Ih±e (t) denotes the C3-manifold {x ±

h±e(t)(x)nv(x) : x ∈ Iv(t)}.

Proof. Step 1: Definition of w. Let η be a cutoff supported at each t ∈ [0, Tstrong) in
the set Iv(t) + Brc/2 with η ≡ 1 in Iv(t) + Brc/4 and |∇η| ≤ Cr−1

c , |∇2η| ≤ Cr−2
c as well

as |∂tη| ≤ Cr−1
c ‖v‖L∞ and |∂t∇η| ≤ Cr−2

c ‖v‖W 1,∞ . For example, one may choose η(x, t) :=

θ(dist(x,Iv(t))
rc

) where θ : R+ → [0, 1] is the smooth cutoff already used in the definition of the
regularized local interface error heights in Proposition 3.27.

Define the vector field W as given in (3.93) and set (making use of the notation a ∧ b =
min{a, b} and a ∨ b = max{a, b})

w+(x, t) := η

ˆ (dist±(x,Iv(t))∨0)∧h+
e(t)

(PIv(t)x)

0
W (PIv(t)x+ ynv(PIv(t)x, t)) dy (3.100)

as well as

w−(x, t) := η

ˆ 0

(dist±(x,Iv(t))∧0)∨−h−
e(t)

(PIv(t)x)
W (PIv(t)x+ ynv(PIv(t)x, t)) dy. (3.101)
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For this choice, we have

∇w+(x, t) (3.102)
= χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)W (x)⊗ nv(PIv(t)x)

+ η χdist±(x,Iv(t))>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x)⊗∇h+

e(t)(PIv(t)x)∇PIv(t)(x)

+ η

ˆ (dist±(x,Iv(t))∨0)∧h+
e(t)

(PIv(t)x)

0
∇W (PIv(t)x+ynv(PIv(t)x))(∇PIv(t)x+y∇nv(PIv(t)x)) dy

+∇η
ˆ (dist±(x,Iv(t))∨0)∧h+

e(t)
(PIv(t)x)

0
W (PIv(t)x+ynv(PIv(t)x)) dy

(note that this directly implies the last claim about the regularity of w, namely ∇w(·, t) ∈
W 1,∞(Rd \ (Iv(t) ∪ Ih+

e
(t) ∪ Ih+

e
(t))) for almost every t) as well as

∂tw
+(x, t) (3.103)

= χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)W (x)∂t dist±(x, Iv(t))

+ η χdist±(x,Iv(t))>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x)
(
∂th

+
e(t)(PIv(t)x) + ∂tPIv(t)x · ∇h+

e(t)(PIv(t)x)
)

+ η

ˆ (dist±(x,Iv(t))∨0)∧h+
e(t)

(PIv(t)x)

0
∂tW (PIv(t)x+ynv(PIv(t)x)) dy

+ η

ˆ (dist±(x,Iv(t))∨0)∧h+
e(t)

(PIv(t)x)

0
∇W (PIv(t)x+ynv(PIv(t)x))(∂tPIv(t)x+y∂tnv(PIv(t)x)) dy

+ ∂tη

ˆ (dist±(x,Iv(t))∨0)∧h+
e(t)

(PIv(t)x)

0
W (PIv(t)x+ ynv(PIv(t)x)) dy.

Moreover, note that (3.102) entails by the definition of the vector field W

∇ · w+(x, t) (3.104)
= η χdist±(x,Iv(t))>h+

e(t)
(PIv(t)x)W (Ph+

e(t)
x) · ∇h+

e(t)(PIv(t)x)∇PIv(t)(x)

+ η

ˆ (dist±(x,Iv(t))∨0)∧h+
e(t)

(PIv(t)x)

0
tr∇W (PIv(t)x+ynv(PIv(t)x))(∇PIv(t)x+y∇nv(PIv(t)x)) dy

+∇η ·
ˆ (dist±(x,Iv(t))∨0)∧h+

e(t)
(PIv(t)x)

0
W (PIv(t)x+ynv(PIv(t)x)) dy.

Analogous formulas and properties can be derived for w−. The function w+ +w− would then
satisfy our conditions, with the exception of the solenoidality ∇ · w = 0. For this reason, we
introduce the (usual) kernel

θ(x) :=
1

Hd−1(Sd−1)

x

|x|d

and set

w(x, t) := w+(x, t)− (θ ∗ ∇ · w+)(x, t) + w−(x, t)− (θ ∗ ∇ · w−)(x, t). (3.105)

It is immediate that ∇ · w = 0.
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Step 2: Estimates on w and ∇w. From (3.102), |∇η| ≤ Cr−1
c as well as the bounds

(3.15) and (3.24) we deduce the pointwise bound

∣∣∇w+ − χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)W (x)⊗ nv(PIv(t)x)
∣∣

≤ Cχsupp ηr
−1
c ‖∇v‖L∞ |∇h+

e(t)(PIv(t)x)| (3.106)

+ Cχsupp η

(
r−2
c ‖∇v‖L∞ + r−1

c ‖∇2v‖L∞(Rd\Iv(t))

)
|h+
e(t)(PIv(t)x)|

+ Cr−1
c χsupp η‖∇v‖L∞ |h+

e(t)(PIv(t)x)|

and therefore by integration and a change of variables Φt

ˆ
Rd

∣∣∣∇w+ − χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)W (x)⊗ nv(PIv(t)x)
∣∣∣2 dx (3.107)

≤ C(r−4
c ‖∇v‖2L∞ + r−2

c ‖∇2v‖2L∞(Rd\Iv(t)))

ˆ
Rd
χsupp η(|h+

e(t)|
2 + |∇h+

e(t)|
2)(PIv(t)x) dx

≤ Cr−4
c ‖v‖2W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS.

Observe that this also implies by (3.93)

ˆ
Rd
|∇ · w+|2 dx ≤ Cr−4

c ‖v‖2W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS. (3.108)

From this, Theorem 3.38, and the fact that ∇θ is a singular integral kernel subject to the
assumptions of Theorem 3.38, we deduce

ˆ
Rd

∣∣∇(θ ∗ (∇ · w+))
∣∣2 dx ≤ Cr−4

c ‖v‖2W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS. (3.109)

Combining the estimates (3.107) and (3.109) with the corresponding inequalities for w− and
θ ∗ ∇ · w−, we deduce our estimate (3.92).

The trivial estimate |w+(x, t)| ≤ χsupp η(x, t)‖∇v‖L∞h+
e(t)(PIv(t)x) gives by the change of

variables Φt

ˆ
Rd
|w+|2 dx ≤ Crc

ˆ
Iv(t)
|h+
e(t)|

2 dS. (3.110)

Now, let R > 1 be big enough such that Iv(t) + Brc ⊂ BR(0) for all t ∈ [0, Tstrong). We
then estimate with an integration by parts and Theorem 3.38 applied to the singular integral
operator ∇θ

ˆ
Rd\B3R(0)

∣∣θ ∗ (∇ · w+)
∣∣2 dx =

ˆ
Rd\B3R(0)

∣∣∣∣ˆ
BR(0)

θ(x− x̃)(∇ · w+(x̃)) dx̃

∣∣∣∣2 dx

≤
ˆ
Rd

∣∣∣∣ ˆ
BR(0)

∇θ(x− x̃)w+(x̃) dx̃

∣∣∣∣2 dx

≤ C
ˆ
BR(0)

|w+|2 dx. (3.111)
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By Young’s inequality for convolutions, (3.108), (3.110) and (3.111) we then obtain

ˆ
Rd

∣∣θ ∗ (∇ · w+)
∣∣2 dx

=

ˆ
B3R(0)

∣∣θ ∗ (∇ · w+)
∣∣2 dx+

ˆ
Rd\B3R(0)

∣∣θ ∗ (∇ · w+)
∣∣2 dx

≤ C
(ˆ

B3R(0)

1

|x|d−1
dx

)2 ˆ
Rd
|∇ · w+|2 dx+ C

ˆ
Rd
|w+|2 dx (3.112)

≤ C(r−4
c R2‖v‖2W 2,∞(Rd\Iv(t)) + 1)

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS.

Together with the respective estimates for w− and θ ∗ (∇ · w−), this implies (3.91). The
estimate (3.94) follows directly from (3.100) and the estimates (3.109) and (3.112) on the
H1-norm of θ ∗ (∇ · w+) as well as the definition of w− and the analogous estimates for
θ ∗ (∇ · w−).

Step 3: L∞-estimates for ∇w. Regarding the estimate (3.95) on ‖∇w‖L∞ we have by
(3.106) and the estimates |∇h+

e(t)| ≤ Cr
−2
c and |h+

e(t)| ≤ rc ≤ 1 from Proposition 3.27

‖∇w+‖L∞ ≤ Cr−4
c ‖v‖W 2,∞(Rd\Iv(t)). (3.113)

To estimate |∇(θ ∗ (∇ · w+))|, we first compute starting with (3.104)

∇(∇ · w+)(x, t) (3.114)

= η χdist±(x,Iv)>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x) · ∇2h+

e(t)(PIv(t)x)∇PIv(t)(x)∇PIv(t)(x)

+
(
W (Ph+

e(t)
x) · ∇h+

e(t)(PIv(t)x)∇PIv(t)(x)
)
∇χdist±(x,Iv)>h+

e(t)
(PIv(t)x)

+ F (x, t),

where F (x, t) is subject to a bound of the form |F (x, t)| ≤ Cr−5
c ‖v‖W 3,∞(Rd\Iv(t))) and sup-

ported in Iv(t) + Brc . Next, we decompose the kernel θ as θ =
∑∞

k=−∞ θk with smooth
functions θk with supp θk ⊂ B2k+1 \B2k−1 . More precisely, we first choose a smooth function
ϕ : R+ → [0, 1] such that ϕ(s) = 0 whenever s /∈ [−1/2, 2] and such that

∑
k∈Z ϕ(2ks) = 1

for all s > 0. Such a function indeed exists, see for instance [15]. We then let θk(x) :=
ϕ(2k|x|)θ(x). Note that ‖θk‖L1(Rd) ≤ C2k, ‖∇θk‖L1(Rd) ≤ C as well as |∇θk| ≤ C(2k)−d. We
estimate

|∇(θ ∗ (∇ · w+))| ≤
0∑

k=blog e2(t)c

|∇(θk ∗ (∇ · w+))|+
∞∑
k=1

|∇(θk ∗ (∇ · w+))| (3.115)

+

blog e2(t)c−1∑
k=−∞

|θk ∗ ∇(∇ · w+)|.

Using Young’s inequality for convolutions as well as the estimate ‖∇θk‖L1(Rd) ≤ C we obtain

0∑
k=blog e2(t)c

|∇(θk ∗ (∇ · w+))| ≤ 2C| log e(t)|‖∇ · w+‖L∞ . (3.116)
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Moreover, it follows from |∇θk| ≤ C(2k)−d, the precise formula for ∇ ·w+ in (3.104), (3.15),
(3.24), a change of variables and Hölder’s inequality that

∞∑
k=1

|∇(θk ∗ (∇ · w+))| (3.117)

≤ Cr−2
c ‖v‖W 2,∞(Rd\Iv(t))

∞∑
k=1

(2k)−d
ˆ
Iv(t)+Brc/2

|∇h+
e(t)(PIv(t)x)|+ |h+

e(t)(PIv(t)x)| dx

≤ Cr−2
c ‖v‖W 2,∞(Rd\Iv(t))

√
Hd−1(Iv(t))

(ˆ
Iv(t)
|∇h+

e(t)|
2 + |h+

e(t)|
2 dS

) 1
2

.

Using (3.114), the estimate |∇2h±e(t)(·, t)| ≤ Cr
−4
c e(t)−1 from Proposition 3.27, (3.15), (3.24)

and again Young’s inequality for convolutions (recall that ‖θk‖L1(Rd) ≤ C2k), we get

blog e2(t)c−1∑
k=−∞

|θk ∗ ∇(∇ · w+)|(x̃, t) ≤ I + II + III (3.118)

where the three terms on the right hand side are given by

I :=

blog e2(t)c−1∑
k=−∞

2kCr−5
c ‖v‖W 3,∞(Rd\Iv(t)) ≤ Cr−5

c ‖v‖W 3,∞(Rd\Iv(t))e
2(t) (3.119)

and

II := Cr−5
c ‖v‖W 1,∞e(t)−1

blog e2(t)c−1∑
k=−∞

2k ≤ Cr−5
c ‖v‖W 1,∞e(t) (3.120)

as well as

III :=

blog e2(t)c−1∑
k=−∞

∣∣∣∣ˆ
Rd
θk(x−x̃)⊗

(
W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)

)
(3.121)

d∇χdist±(x,Iv(t))>h+
e(t)

(PIv(t)x)(x)

∣∣∣∣.
To estimate the latter term, we proceed as follows. First of all, note that by the defi-

nition of h+
e(t) in (3.73) as well as the trivial bound |h+| ≤ rc it holds |h+

e(t)| ≤ rc. Then
for all x̃ ∈ Iv(t) + {|x| > rc + 2blog e2(t)c} and all k ≤ blog e2(t)c − 1 we observe that
χ{dist±(x,Iv(t))>h+

e(t)
(PIv(t)x)}(x) = 1 for all x ∈ Rd such that |x − x̃| ≤ 2k+1. In particular,

for such x̃ the third term on the right hand side of (3.118) vanishes since the corresponding
second term in the formula for ∇(∇ · w+) (see (3.114)) does not appear anymore.

Hence, let x̃ ∈ Iv(t) + {|x| ≤ rc + 2blog e2(t)c} and denote by F the tangent plane to the
manifold {dist±(x, Iv(t)) = h+

e(t)(PIv(t)x)} at the nearest point to x̃. We then have for any
ψ ∈ C∞cpt(Rd)

ˆ
Rd
ψ(x) d∇χ{dist±(x,Iv(t))>h+

e(t)
(PIv(t)x)}(x)−

ˆ
Rd
ψ(x) d∇χ{dist±(x,F )>0}(x)

=

ˆ
{dist±(x,Iv(t))>h+

e(t)
(PIv(t)x)}

∇ψ(x) dx−
ˆ
{dist±(x,F )>0}

∇ψ(x) dx
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

and as a consequence
ˆ
Rd
θk(x− x̃)⊗

(
W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)

)
d∇χ{dist±(x,Iv(t))>h+

e(t)
(PIv(t)x)}(x)

=

ˆ
F
θk(x− x̃)⊗

(
W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)

)
nF dS(x)

+

ˆ
Rd

(χ{dist±(x,Iv(t))>h+
e(t)

(PIv(t)x)} − χ{dist±(x,F )>0})

∇
(
θk(x− x̃)⊗

(
W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)

))
dx.

Recall that we defined θk(x) := ϕ(2k|x|)θ(x) where ϕ : R+ → [0, 1] is a smooth function such
that ϕ(s) = 0 whenever s /∈ [−1/2, 2] and such that

∑
k∈Z ϕ(2ks) = 1 for all s > 0. Hence,

|nF · θk(x− x̃)| ≤ C |nF ·(x−·x̃)|
|x−x̃|d ≤ C dist(x̃,F )

|x−x̃|d for all x ∈ F . It also follows from the definition of
θ that

´
F (Id−nF ⊗ nF )θk(x− x̃) dS(x) = 0. Hence we may solve (Id−nF ⊗ nF )θk(· − x̃) =

∆tan
x θ̃k(·, x̃) on B2k+2(x̃) ∩ F with vanishing Neumann boundary conditions. In particular,

for θ̂k(x, x̃) := ∇tan
x θ̃k(x, x̃) we obtain (Id−nF ⊗ nF )θk(x− x̃) = ∇tan

x · ∇xθ̂k(x, x̃). It follows
from elliptic regularity that θ̂(·, x̃) is C∞. Moreover, since we could have rescaled θk first to
unit scale, then solved the associated problem on that scale, and finally rescaled the solution
back to the dyadic scale k we see that |θ̂k(x, x̃)| ≤ C(2k)2−d. We then have by an integration
by parts∣∣∣∣ˆ

F
(Id−nF ⊗ nF )θk(x− x̃)⊗ ψ dS(x)

∣∣∣∣ ≤ ˆ
F∩B

2k+1 (x̃)
|θ̂k(x, x̃)||∇tanψ| dS(x)

≤ C(2k)2−d
ˆ
F∩B

2k+1 (x̃)
|∇tanψ| dS(x)

for any ψ ∈ C1
cpt(Rd;Rd). Furthermore, it holds

ˆ
B

2k
(x̃)
|χ{dist±(x,Iv(t))>h+

e(t)
(PIv(t)x)} − χ{dist±(x,F )>0}| dx ≤ C‖∇2h+

e(t)‖L∞(2k)d+1.

Using these considerations in the previous formula, we obtain∣∣∣∣ˆ
Rd
θk(x− x̃)⊗

(
W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)

)
d∇χ{dist±(x,Iv(t))>h+

e(t)
(PIv(t)x)}(x)

∣∣∣∣
(3.122)

≤
ˆ
F∩B

2k+1 (x̃)\B
2k−1 (x̃)

dist(x̃, F )

|x̃− x|d
|W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)| dS(x)

+

ˆ
F∩B

2k+1 (x̃)
C(2k)2−d|∇(W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x))| dS(x)

+ C‖∇2h+
e(t)‖L∞(2k)d+1

∥∥∇(θk(x− x̃)⊗
(
W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)

))∥∥
L∞
.

Making use of the fact that the integral vanishes for dist(x̃, F ) ≥ 2k+1 and the bounds (3.15)
and (3.24) we obtain
ˆ
F∩B

2k+1 (x̃)\B
2k−1 (x̃)

dist(x̃, F )

|x̃− x|d
|W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)| dS(x) (3.123)

≤ χ{dist(x̃,F )<2k}Cr
−3
c ‖v‖W 1,∞

dist(x̃, F )

2k

ˆ
F∩B

2k+1 (x̃)\B
2k−1 (x̃)

|∇h+
e(t)(PIv(t)x)|
|x̃− x|d−1

dS(x).
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3.5. Weak-strong uniqueness of varifold solutions: The case of different viscosities

Using also |∇h+
e(t)| ≤ Cr

−2
c and |∇2h+

e(t)| ≤ Cr
−4
c e(t)−1 from Proposition 3.27, we get

ˆ
F∩B

2k+1 (x̃)
C(2k)2−d|∇(W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x))| dS(x) (3.124)

≤ C2k
(
e(t)−1r−5

c ‖v‖W 1,∞ + r−4
c ‖v‖W 2,∞(Rd\Iv(t))

)
and

C‖∇2h+
e(t)‖L∞(2k)d+1

∥∥∇(θk(x− x̃)⊗
(
W (Ph+

e(t)
x) · (∇PIv(t))

T (x)∇h+
e(t)(PIv(t)x)

))∥∥
L∞

(3.125)

≤ Cr−4
c e(t)−12kr−3

c ‖v‖W 1,∞

+ Cr−4
c e(t)−1(2k)2

(
e(t)−1r−5

c ‖v‖W 1,∞ + r−4
c ‖v‖W 2,∞(Rd\Iv(t))

)
.

Using (3.122), (3.123), (3.124) and (3.125) to estimate the term in (3.121), we get

III ≤ C ‖v‖W 1,∞

r3
c

blog e2(t)c−1∑
k=−∞

χ{dist(x̃,F )<2k}
dist(x̃, F )

2k

ˆ
F∩B

2k+1 (x̃)\B
2k−1 (x̃)

|∇h+
e(t)(PIv(t)x)|
|x̃− x|d−1

dS(x)

(3.126)

+ Cr−9
c ‖v‖W 2,∞(Rd\Iv(t))e(t).

In turn, combining this with (3.119) and (3.120) and gathering also (3.116), (3.117), (3.113)
as well as the corresponding bounds for ∇w− and ∇(θ∗∇·w−), we then finally deduce (3.95).

Step 4: L2L∞-estimate for ∇w. By making use of the precise formula (3.102) for
∇w+ and the definition of the vector field W in (3.93), we immediately getˆ

Iv(t)
sup

y∈[−rc,rc]
|(∇w+)T (x+ ynv(x, t)) · nv(x, t)|2 dS(x) (3.127)

≤ Cr−2
c ‖v‖W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS.

To estimate the contribution from |∇(θ ∗ (∇ · w+))| we use the same dyadic decomposition
as in (3.115). We start with the terms in the range k = blog e2(t)c, . . . , 0.

Let x ∈ Iv(t) and y ∈ (−rc, rc) be fixed. We abbreviate x̄ := x + ynv(x, t). Denote
by Fx the tangent plane of the interface Iv(t) at the point x. Let ΦFx : Fx × R → Rd
be the diffeomorphism given by ΦFx(x̂, ŷ) := x̂ + ŷnFx(x̂). We start estimating using the
change of variables ΦFx , the bound |∇θk(x)| ≤ Cχ2k−1≤|x|≤2k+1 |x|−d, as well as the fact that
x̂+ ynFx(x̂) = x̂+ ynv(x, t) is exactly the point on the ray originating from x̂ ∈ Fx in normal
direction which is closest to x̄

|
(
∇(θk ∗ (∇ · w+))

)T
(x+ ynv(x, t))|

≤
ˆ

(B
2k+1 (x̄)\B

2k−1 (x̄))∩(Iv(t)+Brc/2)
|∇θk(x̄−x̃)||(∇ · w+)(x̃)|dx̃

≤ C
ˆ
Fx∩(B

2k+1 (x)\B
2k−1 (x))

sup
ŷ∈[−rc,rc]

|(∇ · w+)(x̂+ŷnFx(x̂))|
|x− x̂|d−1

dS(x̂).

Note that the right hand side is independent of y. Hence, we may estimate with Minkowski’s
inequality( ˆ

Iv(t)
sup

y∈[−rc,rc]

∣∣∣∣ 0∑
k=blog e2(t)c−1

∇(θk ∗ (∇ · w+))(x+ ynv(x, t))

∣∣∣∣2 dS(x)

) 1
2

≤ C| log e(t)|
(ˆ

Iv(t)

∣∣∣∣ˆ
Fx

sup
ŷ∈[−rc,rc]

|(∇ · w+)(x̂+ŷnFx(x̂))|
|x− x̂|d−1

dS(x̂)

∣∣∣∣2 dS(x)

) 1
2
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The inner integral is to be understood in the Cauchy principal value sense. To proceed we
use the L2-theory for singular operators of convolution type, the precise formula (3.104) for
∇ · w+ as well as (3.15) and (3.24) which entails(ˆ

Iv(t)

∣∣∣∣ˆ
Fx

sup
ŷ∈[−rc,rc]

|(∇ · w+)(x̂+ŷnFx(x̂))|
|x− x̂|d−1

dS(x̂)

∣∣∣∣2 dS(x)

) 1
2

≤ C
( ˆ

Iv(t)
sup

y∈[−rc,rc]
|(∇ · w+)(x+ynv(x, t))|2 dS(x)

) 1
2

≤ Cr−1
c ‖v‖

1
2

W 2,∞(Rd\Iv(t))

( ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS

) 1
2

.

An application of (3.74a) and the assumption E[χu, u, V |χv, v](t) ≤ e2(t) finally yields( ˆ
Iv(t)

sup
y∈[−rc,rc]

∣∣∣∣ 0∑
k=blog e2(t)c−1

∇(θk ∗ (∇ · w+))(x+ ynv(x, t))

∣∣∣∣2 dS(x)

)1/2

(3.128)

≤ Cr−5
c ‖v‖W 2,∞(Rd\Iv(t))| log e(t)|e(t).

We move on with the contributions in the range k = 1, . . . ,∞. Note that by (3.117) we
may directly infer from (3.74a) and the assumption E[χu, u, V |χv, v](t) ≤ e2(t)

ˆ
Iv(t)

sup
y∈[−rc,rc]

∣∣∣ ∞∑
k=1

(
∇(θk ∗ (∇ · w+))

)T
(x+ ynv(x, t)) · nv(x, t)

∣∣∣2 dS(x) (3.129)

≤ Cr−8
c ‖v‖2W 2,∞(Rd\Iv(t))H

d−1(Iv(t))
2e2(t).

Moreover, the contributions estimated in (3.119) and (3.120) result in a bound of the
form (recall that e(t) < rc)

Cr−4
c ‖v‖2W 3,∞(Rd\Iv(t))e

2(t) + Cr−8
c ‖v‖2W 1,∞e

2(t). (3.130)

Note that when summing the respective bounds from (3.124) and (3.125) over the relevant
range k = −∞, . . . , blog e2(t)c − 1, we actually gain a factor e(t), i.e., the contributions
estimated in (3.124) and (3.125) then directly yield a bound of the form

Cr−18
c ‖v‖2W 2,∞(Rd\Iv(t))e

2(t). (3.131)

Finally, the contribution from (3.123) may be estimated as follows. Let x ∈ Iv(t), y ∈ [−rc, rc]
and denote by Fx̄ the tangent plane to the manifold {dist±(x, Iv(t)) = h+

e(t)(PIv(t)x)} at the
nearest point to x̄ = x+ynv(x, t). In light of (3.123), we start estimating for k ≤ blog e2(t)c−1
by using Jensen’s inequality, the bound |∇h+

e(t)| ≤ Cr
−2
c from Proposition 3.27, as well as the

fact that |x̄− x̃| ≥ |x− x̃| for all x̃ ∈ Iv(t) (since x = PIv(t)x̄ is the closest point to x̄ on the
interface Iv(t)) ∣∣∣∣ ˆ

Fx̄∩B2k+1 (x̄)\B
2k−1 (x̄)

|∇h+
e(t)(PIv(t)x̃)|
|x̄− x̃|d−1

dS(x̃)

∣∣∣∣2
≤
ˆ
Fx̄∩B2k+1 (x̄)\B

2k−1 (x̄)

|∇h+
e(t)(PIv(t)x̃)|2

|x̄− x̃|d−1
dS(x̃)

≤ Cr−2(d−1)
c

ˆ
Iv(t)∩B

Cr−2
c 2k+1 (x)

|∇h+
e(t)(x̃)|2

|x− x̃|d−1
dS(x̃).
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Since this bound does not depend anymore on y ∈ [−rc, rc], we may estimate the contributions
from (3.123) using Minkowski’s inequality as well as once more the L2-theory for singular
operators of convolution type to reduce everything to the H1-bound (3.74a) for the local
interface error heights. All in all, the contributions from (3.123) are therefore bounded by

Cr−14
c ‖v‖2W 1,∞e

2(t). (3.132)

The asserted bound (3.96) then finally follows from collecting the estimates (3.127), (3.128),
(3.129), (3.130), (3.131) and (3.132) together with the analogous bounds for ∇w− and ∇(θ ∗
∇ · w−).

Step 5: Estimate on the time derivative ∂tw. To estimate ∂tw+, we first deduce
using (3.103), |∂tη| ≤ Cr−1

c ‖v‖L∞ , | d
dtnv(PIv(t)x)| ≤ C

r2
c
‖v‖W 1,∞ (which follows from (3.30)),

(3.17) and finally (3.68) that

∂tw
+(x, t)

= χ0≤dist±(x,Iv)≤h+
e(t)

(PIv(t)x)W (x)∂t dist±(x, Iv(t))

+ η χdist±(x,Iv)>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x)
(
∂th

+
e(t)(PIv(t)x) + ∂tPIv(t)x · ∇h+

e(t)(PIv(t)x)
)

+ g̃+

for some vector field g̃+ subject to ‖g̃+(·, t)‖L2 ≤ Cr−2
c (1+‖v‖W 1,∞)(‖v‖W 1,∞+‖∂t∇v‖L∞(Rd\Iv(t))+

‖v‖W 2,∞(Rd\Iv(t)))(
´
Iv(t) |h

+
e(t)(·, t)|

2 dS)1/2. Using (3.102), (3.17) as well as (3.68) we may
compute

(v(x) · ∇)w+(x, t)

+ χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)W (x)∂t dist±(x, Iv(t))

+ η χdist±(x,Iv(t))>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x)∂tPIv(t)x · ∇h+

e(t)(PIv(t)x)

= η χdist±(x,Iv(t))>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x)(Id−nv ⊗ nv)v(PIv(t)x) · ∇h+

e(t)(PIv(t)x)

+ χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)W (x)
(
(v(x)− v(PIv(t)x)

)
· nv(PIv(t))

+ η χdist±(x,Iv(t))>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x)
(
∇PIv(t)(x)v(x)− v(PIv(t)x)

)
· ∇h+

e(t)(PIv(t)x)

+ g̃+
1 ,

for some ‖g̃+
1 ‖L2 ≤ Cr−2

c ‖v‖W 2,∞(Rd\Iv(t))(
´
Iv(t) |h

+
e(t)(·, t)|

2 + |∇h+
e(t)(·, t)|

2 dS)
1
2 . This com-

putation in turn implies

∂tw
+(x, t) (3.133)

= −(v(x) · ∇)w+(x, t)

+ η χdist±(x,Iv(t))>h+
e(t)

(PIv(t)x)W (Ph+
e(t)
x)
(
∂th

+
e(t)(PIv(t)x) + (Id−nv ⊗ nv)v(PIv(t)x) · ∇h+

e(t)(PIv(t)x)
)

+ g+

for some g+ with

‖g+‖L2

≤ Cr−2
c (1+‖v‖W 1,∞)(‖∂t∇v‖L∞(Rd\Iv(t))+‖v‖W 2,∞(Rd\Iv(t)))

( ˆ
Iv(t)
|h+
e(t)|

2+|∇h+
e(t)|

2 dS

) 1
2

.

We now aim to make use of (3.74d) to further estimate the second term in the right hand
side of (3.133). To establish the corresponding L2- resp. L

4
3 -contributions, we first need to
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

perform an integration by parts in order to use (3.74d). The resulting curvature term as well
as all other terms which do not appear in the third term of (3.133) can be directly bounded
by a term whose associated L2-norm is controlled by

Cr−1
c ‖v‖W 1,∞‖v‖W 2,∞(Rd\Iv(t))(

ˆ
Iv(t)
|h+
e(t)(·, t)|

2+|∇h+
e(t)(·, t)|

2 dS)
1
2 .

Hence, using (3.74d) in (3.133) implies

∂tw
+(x, t) = −(v · ∇)w+(x, t) + ḡ+ + ĝ+ (3.134)

with the corresponding L2-bound

‖ḡ+‖L2(Rd) (3.135)

≤ C 1+‖v‖W 1,∞

r2
c

(‖∂t∇v‖L∞(Rd\Iv(t))+‖v‖W 2,∞(Rd\Iv(t))

( ˆ
Iv(t)
|h+
e(t)|

2+|∇h+
e(t)|

2 dS

) 1
2

+ C
‖v‖W 1,∞(1 + ‖v‖W 1,∞)

e(t)rc

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|

+ Cr−2
c ‖v‖2W 1,∞(1 + e′(t))

(
‖h±(·, t)‖L2(Iv(t)) + ‖∇h±e(t)(·, t)‖L2(Iv(t))

)
+ C
‖v‖W 1,∞(1+‖v‖W 2,∞(Rd\Iv(t)))

rc

(ˆ
Rd
|χu−χv|min

{dist(x, Iv(t))

rc
, 1
}

dx

) 1
2

+ C‖v‖W 1,∞

(ˆ
Iv(t)
|u− v|2 dS

) 1
2

and L
4
3 -estimate

‖ĝ+‖
L

4
3 (Rd)

(3.136)

≤ C ‖v‖W 1,∞

e(t)r2
c

( ˆ
Iv(t)
|h̄±|4 dS

) 1
4
(ˆ

Iv(t)
sup

y∈[−rc,rc]
|u−v|2(x+ynv(x, t), t) dS(x)

) 1
2

+ C
‖v‖W 1,∞(1 + ‖v‖W 1,∞)

e(t)

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu|.

In both bounds, we add and subtract the compensation function w and therefore obtain
together with (3.94) and (3.38)ˆ

Iv(t)
|u− v|2 dS ≤

ˆ
Iv(t)

sup
y∈[−rc,rc]

|u−v|2(x+ynv(x, t), t) dS(x)

≤
ˆ
Iv(t)

sup
y∈[−rc,rc]

|u− v − w|2(x+ ynv(x, t), t) dS(x)

+

ˆ
Iv(t)

sup
y∈[−rc,rc]

|w(x+ ynv(x, t), t)|2 dS(x)

≤ Cr−4
c ‖v‖2W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h±e(t)|

2 + |∇h±e(t)|
2 dS (3.137)

+ C(‖u−v−w‖L2‖∇(u−v−w)‖L2 + ‖u−v−w‖2L2).

Analogous estimates may be derived for w−. We therefore proceed with the terms related
to θ ∗ ∇ · w±. First of all, note that the singular integral operator (θ ∗ ∇·) satisfies (see
Theorem 3.38)

‖θ ∗ ∇ · ĝ‖
L

4
3 (Rd)

≤ C‖ĝ‖
L

4
3 (Rd)

, ‖θ ∗ ∇ · ḡ‖L2(Rd) ≤ C‖ḡ‖L2(Rd). (3.138)
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3.5. Weak-strong uniqueness of varifold solutions: The case of different viscosities

Furthermore, to estimate ‖θ ∗ ∇ · ((v · ∇)w+) − (v · ∇)(θ ∗ ∇ · w+)‖L2(Rd) we first replace
v with its normal velocity Vn(x) := (v(x) · nv(PIv(t)x))nv(PIv(t)x). We want to exploit the
fact that the vector field Vn has bounded derivatives up to second order, see (3.39) and
(3.40). Moreover, the kernel ∇2θ(x − x̃) ⊗ (x̃ − x) gives rise to a singular integral operator
of convolution type, as does ∇θ. To see this, we need to check whether its average over Sd−1

vanishes. We write x⊗∇2θ(x) = ∇F (x)− δijei ⊗∇θ ⊗ ej , where F (x) = x⊗∇θ(x). Now,
since ∇θ is homogeneous of degree −d, F itself is homogeneous of degree −(d − 1). Hence,
we compute

´
B1\Br ∇F dx =

´
Sd−1 n ⊗ F dS −

´
rSd−1 n ⊗ F dS = 0 for every 0 < r < 1.

Passing to the limit r → 1 shows that ∇F , and therefore also ∇2θ(x) ⊗ x, have vanishing
average on Sd−1. We may now compute (where the integrals are well defined in the Cauchy
principal value sense due to the above considerations) for almost every x ∈ Rd

ˆ
Rd
∇θ(x− x̃) · (Vn(x̃, t) · ∇x̃)w+(x̃, t)− (Vn(x, t) · ∇x)∇θ(x− x̃) · w+(x̃, t) dx̃

=

ˆ
Rd
∇θ(x− x̃)((Vn(x̃, t)− Vn(x, t)) · ∇x̃)w+(x̃, t) dx̃

=

ˆ
Rd
∇2θ(x− x̃) : (Vn(x̃, t)− Vn(x, t)− (x̃− x) · ∇Vn(x̃, t))⊗ w+(x̃, t) dx̃

−
ˆ
Rd
∇θ(x− x̃) · (∇ · Vn)(x̃, t)w+(x̃, t) dx̃

+

ˆ
Rd
∇2θ(x− x̃) : ((x̃− x) · ∇)Vn(x̃, t)⊗ w+(x̃, t) dx̃.

Note that we have |Vn(x̃, t)−Vn(x, t)−(x̃−x) ·∇Vn(x, t)| ≤ ‖∇2Vn‖L∞ |x̃−x|2 and |Vn(x̃, t)−
Vn(x, t)− (x̃− x) · ∇Vn(x, t)| ≤ ||∇Vn||L∞ |x̃− x|. We then estimate using Young’s inequality
for convolutions and |∇2θ(x)| ≤ |x|−d−1

ˆ
Rd\B3R(0)

∣∣∣∣ˆ
BR(0)

∇2θ(x− x̃) : (Vn(x̃)− Vn(x)− (x̃− x) · ∇Vn(x̃))⊗ w+(x̃) dx̃

∣∣∣∣2 dx

(3.139)

≤ C‖∇Vn‖2L∞
ˆ
Rd\B3R(0)

∣∣∣∣ˆ
BR(0)

1

|x− x̃|d
|w+(x̃)| dx̃

∣∣∣∣2 dx

≤ C‖∇Vn‖2L∞ || | · |−d ||2L2(Rd\BR)

∣∣∣∣ ˆ
BR(0)

|w+| dx

∣∣∣∣2
≤ CR−dRd

ˆ
BR(0)

|w+|2 dx.

As a consequence, we obtain from (3.139), Young’s inequality for convolutions, (3.110) as
well as (3.40)

ˆ
Rd

∣∣∣∣ ˆ
Rd
∇2θ(x− x̃) : (Vn(x̃)− Vn(x)− (x̃− x) · ∇Vn(x̃))⊗ w+(x̃) dx̃

∣∣∣∣2 dx (3.140)

≤ C‖∇2Vn‖2L∞
ˆ
B3R(0)

∣∣∣∣ ˆ
Rd

|w+(x̃)|
|x− x̃|d−1

dx̃

∣∣∣∣2 dx+ C‖∇Vn‖2L∞
ˆ
BR(0)

|w+|2 dx

≤ Cr−4
c ‖v‖2W 2,∞(Rd\Iv(t))(1+R2)

ˆ
Iv(t)
|h+
e(t)|

2 dS.

Applying Theorem 3.38 to the singular integral operators ∇θ resp. ∇2θ⊗x as well as making
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

use of (3.39), (3.110) and (3.140) we then obtain the estimateˆ
Rd
|θ ∗ ∇ · ((Vn · ∇)w+)− (Vn · ∇)(θ ∗ ∇ · w+)|2 dx (3.141)

≤ Cr−4
c ‖v‖2W 2,∞(Rd\Iv(t))(1+R2)

ˆ
Iv(t)
|h+
e(t)|

2 dS

+ C‖∇Vn‖2L∞
ˆ
Rd
|w+|2 dx

≤ Cr−4
c ‖v‖2W 2,∞(Rd\Iv(t))(1+R2)

ˆ
Iv(t)
|h+
e(t)|

2 dS.

It remains to estimate ‖θ ∗ ∇ · ((Vtan · ∇)w+)− (Vtan · ∇)(θ ∗ ∇ · w+)‖L2(Rd) with Vtan(x) =
(Id − nv(PIv(t)x) ⊗ nv(PIv(t)x))v(x) denoting the tangential velocity of v. To this end, note
that we may rewriteˆ

Rd
∇θ(x− x̃) · (Vtan(x̃, t) · ∇x̃)w+(x̃, t)− (∇ · w+(x̃, t))(Vtan(x, t) · ∇x)θ(x− x̃) dx̃

=

ˆ
Rd
∇θ(x−x̃)

(
∇w+(x̃)−χ0≤dist±(x̃,Iv(t))≤h+

e(t)
(PIv(t)x̃)W (x̃)⊗ nv(PIv(t)x̃)

)
Vtan(x̃, t) dx̃

−
ˆ
Rd

(∇ · w+(x̃, t))(Vtan(x, t) · ∇x)θ(x− x̃) dx̃.

Using Theorem 3.38, (3.107) as well as (3.108) we then obtain

‖θ ∗ ∇ · ((Vtan · ∇)w+)− (Vtan · ∇)(θ ∗ ∇ · w+)‖2L2(Rd)

≤ Cr−4
c ‖v‖2L∞‖v‖2W 2,∞(Rd\Iv(t))

ˆ
Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS. (3.142)

Putting all the estimates (3.135), (3.136), (3.137), (3.138), (3.141) and (3.142) together, we
get

∂tw(x, t) + (v · ∇)w(x, t) = g + ĝ

with the asserted bounds. This concludes the proof.

3.5.4 Estimate for the additional surface tension terms

Having established all the relevant properties of the compensating vector field w in Proposi-
tion 3.28, we can now estimate the additional terms in the relative entropy inequality from
Proposition 3.10. To this end, we start with the additional surface tension terms given by

AsurTen = −σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
w dVt(x, s) dt (3.143)

+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)w d|Vt|Sd−1(x) dt

+ σ

ˆ T

0

ˆ
Rd

(χu − χv)(w · ∇)(∇ · ξ) dx dt

+ σ

ˆ T

0

ˆ
Rd

(χu − χv)∇w : ∇ξT dx dt

− σ
ˆ T

0

ˆ
Rd
ξ ·
(
(nu − ξ) · ∇

)
w d|∇χu| dt

=: I + II + III + IV + V.

A precise estimate for these terms is the content of the following result.
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3.5. Weak-strong uniqueness of varifold solutions: The case of different viscosities

Lemma 3.29. Let the assumptions and notation of Proposition 3.28 be in place. In partic-
ular, we assume that there exists a C1-function e : [0, Tstrong)→ [0, rc) such that the relative
entropy is bounded by E[χu, u, V, |χv, v](t) ≤ e2(t). Then the additional surface tension terms
AsurTen are bounded by a Gronwall-type term

AsurTen ≤
C

r10
c

(1 + ‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

+ ‖v‖
L∞t W

3,∞
x (Rd\Iv(t))

) (3.144)
ˆ T

0
(1 + | log e(t)|)E[χu, u, V |χv, v](t) dt

+
C

r10
c

(1 + ‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

+ ‖v‖
L∞t W

3,∞
x (Rd\Iv(t))

)

ˆ T

0
(1 + | log e(t)|)e(t)E[χu, u, V |χv, v]

1
2 (t) dt.

Proof. We estimate term by term in (3.143). A straightforward estimate for the first two
terms using also the coercivity property (3.35) yields

I + II ≤ C
ˆ T

0
‖∇w(t)‖L∞x

ˆ
Rd×Sd−1

|s− ξ|2 dVt(x, s) dt (3.145)

+ C

ˆ T

0
‖∇w(t)‖L∞x

ˆ
Rd

(1− θt) d|Vt|Sd−1(x) dt

≤ C
ˆ T

0
‖∇w(t)‖L∞x E[χu, u, V |χv, v](t) dt.

Making use of (3.15), a change of variables Φt, Hölder’s and Young’s inequality, (3.94), (3.37),
(3.74a) as well as the coercivity property (3.32) the term III may be bounded by

III ≤ C

r2
c

ˆ T

0

ˆ
Iv(t)

sup
y∈[−rc,rc]

|w(x+ynv(x, t))|
ˆ rc

−rc
|χu−χv|(x+ynv(x, t)) dy dS dt (3.146)

≤ C

r2
c

ˆ T

0

ˆ
Iv(t)

sup
y∈[−rc,rc]

|w(x+ynv(x, t))|2 dS dt

+
C

r2
c

ˆ T

0

ˆ
Iv(t)

∣∣∣∣ ˆ rc

−rc
|χu−χv|(x+ynv(x, t)) dy

∣∣∣∣2 dS dt

≤ C

r6
c

‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

ˆ T

0

ˆ
Iv(t)
|h±e(t)|

2 + |∇h±e(t)|
2 dS dt

+
C

r2
c

ˆ T

0

ˆ
Rd
|χu−χv|min

{dist(x, Iv(t))

rc
, 1
}

dx dt

≤ C

r10
c

‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

ˆ T

0

ˆ
Rd

1− ξ · ∇χu
|∇χu|

d|∇χu| dt

+
C

r10
c

(1 + ‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0

ˆ
Rd
|χu−χv|min

{dist(x, Iv(t))

rc
, 1
}

dx dt

≤ C

r10
c

(1 + ‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0
E[χu, u, V |χv, v](t) dt.

For the term IV , we first add zero, then perform an integration by parts which is followed
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

by an application of Hölder’s inequality to obtain

IV ≤ C
ˆ T

0

( ˆ
Rd
|χu − χv,h+

e(t)
,h−
e(t)
| dx

) 1
2
(ˆ

Rd
|(∇w)T : ∇ξ|2 dx

) 1
2

dt (3.147)

+ C

ˆ T

0

∣∣∣∣ˆ
Rd

(χv − χv,h+
e(t)

,h−
e(t)

)(w · ∇)(∇ · ξ) dx

∣∣∣∣ dt

+ C

ˆ T

0

∣∣∣∣ˆ
Rd

((w · ∇)ξ) · d∇(χv − χv,h+
e(t)

,h−
e(t)

)

∣∣∣∣ dt

=: (IV )a + (IV )b + (IV )c.

By definition of ξ, see (3.28), recall that

∇ξ =
ζ ′
(dist±(x,Iv(t))

rc

)
rc

nv(PIv(t)x)⊗ nv(PIv(t)x) + ζ
(dist±(x, Iv(t))

rc

)
∇2 dist±(x, Iv(t)).

Recalling also (3.92), (3.93) and (3.109) as well as making use of (3.74c), (3.15), (3.24),
(3.74a) and finally the coercivity property (3.32) the term (IV )a from (3.147) is estimated
by

(IV )a ≤
C

rc

ˆ T

0
E[χu, u, V |χv, v](t) + e(t)E[χu, u, V |χv, v]

1
2 (t) dt (3.148)

+
C

r4
c

‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

ˆ T

0

ˆ
Iv(t)
|h±e(t)|

2 + |∇h±e(t)|
2 dS dt

≤ C

r8
c

(1+‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0
E[χu, u, V |χv, v](t)+e(t)E[χu, u, V |χv, v]

1
2 (t) dt.

Recalling from (3.74b) the definition of χv,h+
e(t)

,h−
e(t)

, we may estimate the term (IV )b from

(3.147) by a change of variables Φt, (3.15), Hölder’s and Young’s inequality, (3.94) as well as
(3.74a)

(IV )b ≤
C

r2
c

ˆ T

0

ˆ
Iv(t)
|h±e(t)|

2 dS dt (3.149)

+
C

r2
c

ˆ T

0

ˆ
Iv(t)

sup
y∈[−rc,rc]

|w(x+ynv(x, t))|2 dS dt

≤ C

r10
c

‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

ˆ T

0
E[χu, u, V |χv, v](t) dt.

To estimate the term (IV )c from (3.147), we again make use of the definition of χv,h+
e(t)

,h−
e(t)

,

(3.15), Hölder’s and Young’s inequality, (3.94) as well as (3.74a) which yields the following
bound

(IV )c ≤
C

rc

ˆ T

0

ˆ
Iv(t)
|∇h±e(t)| sup

y∈[−rc,rc]
|w(x+ynv(x, t))| dS dt (3.150)

≤ C

r9
c

‖v‖
L∞t W

2,∞
x (Rd\Iv(t))

ˆ T

0
E[χu, u, V |χv, v](t) dt.

Hence, taking together the bounds from (3.148), (3.149) and (3.150) we obtain

IV ≤ C

r10
c

(1+‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0
E[χu, u, V |χv, v](t) dt (3.151)

+
C

r10
c

(1+‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0
e(t)E

1
2 [χu, u, V |χv, v](t) dt.
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In order to estimate the term V , we argue as follows. In a first step, we split Rd into the
region Iv(t) + Brc near to and the region Rd \ (Iv(t) + Brc) away from the interface of the
strong solution. Recall then that the indicator function χu(·, t) of the varifold solution is of
bounded variation in Iv(t) + Brc . In particular, E+ := {x ∈ Rd : χu > 0} ∩ (Iv(t) + Brc)
is a set of finite perimeter in Iv(t) + Brc . Applying Theorem 3.39 in local coordinates, the
sections

E+
x = {y ∈ (−rc, rc) : χu(x+ ynv(x, t)) > 0}

are guaranteed to be one-dimensional Caccioppoli sets in (−rc, rc), and such that all of the
four properties listed in Theorem 3.39 hold true for Hd−1-almost every x ∈ Iv(t). Recall
from [12, Proposition 3.52] that one-dimensional Caccioppoli sets are in fact finite unions of
disjoint intervals. We then distinguish for Hd−1-almost every x ∈ Iv(t) between the cases
that H0(∂∗E+

x ) ≤ 2 or H0(∂∗E+
x ) > 2. In other words, we distinguish between those sections

which consist of at most one interval and those which consist of at least two intervals. It also
turns out to be useful to further keep track of whether nv · nu ≤ 1

2 or nv · nu ≥ 1
2 holds.

We then obtain by Young’s and Hölder’s inequality as well as the fact that due to Defi-
nition 3.13 the vector field ξ is supported in Iv(t) +Brc

V ≤
ˆ T

0

(ˆ
{x+ynv(x,t)∈∂∗E+ : x∈Iv(t), |y|<rc,H0(∂∗E+

x )≤2, nv(x)·nu(x+ynv(x,t))≥ 1
2
}
|(∇w)T ξ|2 dHd−1

)1/2

(3.152)

×
(ˆ

Rd
|nu − ξ|2 d|∇χu|

)1/2

dt

+ C

ˆ T

0
‖∇w(t)‖L∞x

( ˆ
{x+ynv(x,t)∈∂∗E+ : x∈Iv(t), |y|<rc,H0(∂∗E+

x )>2,nv(x)·nu(x+ynv(x,t))≥ 1
2
}

1 dHd−1

)
dt

+ C

ˆ T

0
‖∇w(t)‖L∞x

( ˆ
{x+ynv(x,t)∈∂∗E+ : x∈Iv(t), |y|<rc,nv(x)·nu(x+ynv(x,t))≤ 1

2
}

1 dHd−1

)
dt

+ C

ˆ T

0
‖∇w(t)‖L∞x

( ˆ
Rd\(Iv(t)+Brc )

1 d|∇χu|
)

dt

≤ C
ˆ T

0
‖∇w(t)‖L∞x E[χu, u, V |χv, v](t) dt

+ C

ˆ T

0

(ˆ
{x+ynv(x,t)∈∂∗E+ : x∈Iv(t), |y|<rc,H0(∂∗E+

x )≤2,nv(x)·nu(x+ynv(x,t))≥ 1
2
}
|(∇w)T ξ|2 dHd−1

) 1
2

×
(ˆ

Rd
|nu − ξ|2 d|∇χu|

)1/2

dt

+ C

ˆ T

0
‖∇w(t)‖L∞x

( ˆ
{x+ynv(x,t)∈∂∗E+ : x∈Iv(t), |y|<rc,H0(∂∗E+

x )>2,nv(x)·nu(x+ynv(x,t))≥ 1
2
}

1 dHd−1

)
dt

=: C

ˆ T

0
‖∇w(t)‖L∞x E[χu, u, V |χv, v](t) dt+ Va + Vb.

To estimate Va from (3.152), we use the co-area formula for rectifiable sets (see [12, (2.72)]),
(3.96), Hölder’s inequality and the coercivity property (3.34) which together yield (we ab-
breviate in the first line F (x, y, t) := (∇w)T (x+ynv(x, t))nv(x, t))

Va ≤ C
ˆ T

0

( ˆ
{x∈Iv(t) : H0(∂∗E+

x )≤2}

ˆ
{y∈∂∗E+

x : nv(x)·nu(x+ynv(x,t))≥ 1
2
}
|F (x, y, t)|2 dH0(y) dS(x)

) 1
2

(3.153)
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×
(ˆ

Rd
|nu − ξ|2 d|∇χu|

)1/2

dt

≤ C
ˆ T

0

( ˆ
Iv(t)

sup
y∈[−rc,rc]

|(∇w)T (x+ynv(x, t)) · nv(x, t)|2 dS(x)

) 1
2

×
(ˆ

Rd
|nu − ξ|2 d|∇χu|

)1/2

dt

≤ C

r9
c

‖v‖
L∞t W

3,∞
x (Rd\Iv(t))

ˆ T

0
(1 + | log e(t)|)e(t)E[χu, u, V |χv, v]

1
2 (t) dt.

It remains to bound the term Vb from (3.152). To this end, we make use of the fact that it
follows from property iv) in Theorem 3.39 that every second point y ∈ ∂∗E+

x ∩ (−rc, rc) has
to have the property that nv(x) · nu(x+ynv(x, t)) < 0, i.e., 1 ≤ 1 − nv(x) · nu(x+ynv(x, t)).
We may therefore estimate with the help of the co-area formula for rectifiable sets (see [12,
(2.72)]) and the bound (3.95)

Vb ≤ C
ˆ T

0
‖∇w(t)‖L∞x

ˆ
{x∈Iv(t) : H0(∂∗E+

x )>2}

ˆ
{y∈∂∗E+

x : nv(x)·nu(x+ynv(x,t))≥ 1
2
}

1 dH0(y) dS(x) dt

(3.154)

≤ C
ˆ T

0
‖∇w(t)‖L∞x

ˆ
Iv(t)

ˆ
∂∗E+

x

1− nv(x, t) · nu(x+ynv(x, t)) dH0(y) dS(x) dt

≤ C

r9
c

| log e(t)|‖v‖
L∞t W

3,∞
x (Rd\Iv(t))

ˆ T

0
E[χu, u, V |χv, v](t) dt.

All in all, we obtain from the assumption E[χu, u, V |χv, v](t) ≤ e2(t) as well as (3.152),
(3.153), (3.154) and (3.95)

V ≤ C

r9
c

‖v‖
L∞t W

3,∞
x (Rd\Iv(t))

ˆ T

0
(1 + | log e(t)|)e(t)E[χu, u, V |χv, v]

1
2 (t) dt. (3.155)

Hence, we deduce from the bounds (3.145), (3.146), (3.151), (3.155) as well as (3.95) the
asserted estimate for the additional surface tension terms.

3.5.5 Estimate for the viscosity terms

In contrast to the case of equal shear viscosities µ+ = µ−, we have to deal with the problematic
viscous stress term given by (µ(χv) − µ(χu))(∇v +∇vT ). We now show that the choice of
w indeed compensates for (most of) this term in the sense that the viscosity terms from
Proposition 3.10

Rvisc +Avisc = −
ˆ T

0

ˆ
Rd

2
(
µ(χu)− µ(χv)

)
Dsymv : Dsym(u− v) dx dt (3.156)

+

ˆ T

0

ˆ
Rd

2
(
µ(χu)− µ(χv)

)
Dsymv : Dsymw dx dt

−
ˆ T

0

ˆ
Rd

2µ(χu)Dsymw : Dsym(u− v − w) dx dt

may be bounded by a Gronwall-type term.

Lemma 3.30. Let the assumptions and notation of Proposition 3.28 be in place. In partic-
ular, we assume that there exists a C1-function e : [0, Tstrong)→ [0, rc) such that the relative
entropy is bounded by E[χu, u, V, |χv, v](t) ≤ e2(t).
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Then, for any δ > 0 there exists a constant C > 0 such that the viscosity terms Rvisc+Avisc
may be estimated by

Rvisc +Avisc ≤
C

r8
c

‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

ˆ T

0
E[χu, u, V |χv, v](t) dt (3.157)

+
C

rc
‖v‖2

L∞t W
1,∞
x

ˆ T

0
e(t)E[χu, u, V |χv, v]

1
2 (t) dt

+ δ

ˆ T

0

ˆ
Rd
|Dsym(u− v − w)|2 dx dt.

Proof. We argue pointwise for the time variable and start by adding zero

Rvisc +Avisc (3.158)

= −2

ˆ
Rd

(µ(χu)− µ(χv))D
symv : Dsym(u−v−w) dx

− 2

ˆ
Rd
µ(χu)Dsymw : Dsym(u− v − w) dx

= −2

ˆ
Rd

(
µ(χu)− µ(χv)− (µ− − µ+)χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)

− (µ+ − µ−)χ−h−
e(t)

(PIv(t)x)≤dist±(x,Iv(t))≤0

)
Dsymv : Dsym(u−v−w) dx

− 2

ˆ
Rd
χdist±(x,Iv(t))/∈[−h−

e(t)
(PIv(t)x),h+

e(t)
(PIv(t)x)]µ(χu)Dsymw : Dsym(u−v−w) dx

− 2

ˆ
Rd
χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)(µ(χu)− µ−)Dsymw : Dsym(u−v−w) dx

− 2

ˆ
Rd
χ−h−

e(t)
(PIv(t)x)≤dist±(x,Iv(t))≤0(µ(χu)− µ+)Dsymw : Dsym(u−v−w) dx

− 2

ˆ
Rd
χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)((µ

−−µ+)Dsymv + µ−Dsymw) : ∇(u−v−w) dx

− 2

ˆ
Rd
χ−h−

e(t)
(PIv(t)x)≤dist±(x,Iv(t))≤0((µ+−µ−)Dsymv + µ+Dsymw) : ∇(u−v−w) dx

=: I + II + III + IV + V + V I.

We start by estimating the first four terms. Note that µ(χu)−µ− = (µ+−µ−)χu. Recalling
the definition of χv,h+

e(t)
,h−
e(t)

from (3.74b) we see that

χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)χu = χ0≤dist±(x,Iv(t))≤h+
e(t)

(PIv(t)x)(χu − χv,h+
e(t)

,h−
e(t)

).

Hence, we may rewrite

III = −2

ˆ
Rd
χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)(µ+ − µ−)(χu − χv,h+

e(t)
,h−
e(t)

)

× (W ⊗ nv(PIv(t)x)) : Dsym(u−v−w) dx

− 2

ˆ
Rd
χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)(µ+ − µ−)

× (∇w −W ⊗ nv(PIv(t)x)) : Dsym(u−v−w) dx.

Carrying out an analogous computation for IV , using again the definition of the smoothed
approximation χv,h+

e(t)
,h−
e(t)

for χu from (3.74b) and using (3.92) as well as (3.93), we then get
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the bound

I + II + III + IV

≤ C‖v‖W 1,∞

(ˆ
Rd
|χu − χv,h+

e(t)
,h−
e(t)
| dx

)1/2( ˆ
Rd
|Dsym(u−v−w)|2 dx

)1/2

+
C

r2
c

‖v‖W 2,∞(Rd\Iv(t))

(ˆ
Iv(t)
|h±e(t)|

2+|∇h±e(t)|
2 dS

)1/2( ˆ
Rd
|Dsym(u−v−w)|2 dx

)1/2

.

Plugging in the estimates (3.74a) and (3.74c), we obtain by Young’s inequality

I + II + III + IV ≤ Cδ−1

r8
c

‖v‖2W 2,∞(Rd\Iv(t))E[χu, u, V |χv, v](t) (3.159)

+
Cδ−1

rc
‖v‖2W 1,∞e(t)E[χu, u, V |χv, v]

1
2 (t)

+ Cδ−1‖v‖2W 1,∞E[χu, u, V |χv, v](t)

+ δ‖Dsym(u− v − w)‖L2

for every δ ∈ (0, 1). To estimate the last two terms V and V I in (3.158), we may rewrite
making use of the definition (3.93) of the vector field W and abbreviating nv = nv(PIv(t)x),
dist± = dist±(x, Iv(t)) as well as h+

e(t) = h+
e(t)(PIv(t)x)

−
ˆ
Rd
χ0≤dist±≤h+

e(t)
((µ−−µ+)Dsymv + µ−Dsymw) : ∇(u−v−w) dx

= −
ˆ
Rd
χ0≤dist±≤h+

e(t)
((µ−−µ+)(Id−nv ⊗ nv)(D

symv · nv)⊗ nv + µ−Dsymw)

: ∇(u−v−w) dx

−
ˆ
Rd
χ0≤dist±≤h+

e(t)
(µ−−µ+)Dsymv (Id−nv ⊗ nv) : ∇(u−v−w) dx

−
ˆ
Rd
χ0≤dist±≤h+

e(t)
(µ−−µ+)(nv ·Dsymv · nv)(nv ⊗ nv) : ∇(u−v−w) dx

= −
ˆ
Rd
χ0≤dist±≤h+

e(t)
((µ−−µ+)(Id−nv ⊗ nv)(D

symv · nv)⊗ nv + µ−Dsymw)

: ∇(u−v−w) dx

−
ˆ
Rd
χ0≤dist±≤h+

e(t)
(µ−−µ+)Dsymv (Id−nv ⊗ nv) : ∇(u−v−w) dx

+

ˆ
Rd
χ0≤dist±≤h+

e(t)
(µ−−µ+)(nv ·Dsymv · nv)(Id−nv ⊗ nv) : ∇(u−v−w) dx,

=
1

2

ˆ
Rd
χ0≤dist±≤h+

e(t)
((W ⊗ nv −∇w) + (W ⊗ nv −∇w)T ) : ∇(u−v−w) dx

+ (µ− − µ+)

ˆ
Rd
χ0≤dist±≤h+

e(t)
((Id−nv ⊗ nv)(D

symv · nv)⊗ nv) : ∇(u−v−w) dx

−
ˆ
Rd
χ0≤dist±≤h+

e(t)
(µ−−µ+)Dsymv (Id−nv ⊗ nv) : ∇(u−v−w) dx

+

ˆ
Rd
χ0≤dist±≤h+

e(t)
(µ−−µ+)(nv ·Dsymv · nv)(Id−nv ⊗ nv) : ∇(u−v−w) dx,

where in the penultimate step we have used the fact that ∇ · (u− v−w) = 0, and in the last
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step we added zero. This yields after an integration by parts

−
ˆ
Rd
χ0≤dist±≤h+

e(t)
((µ−−µ+)Dsymv + µ−Dsymw) : ∇(u−v−w) dx

=
1

2

ˆ
Rd
χ0≤dist±≤h+

e(t)
((W ⊗ nv −∇w) + (W ⊗ nv −∇w)T ) : ∇(u−v−w) dx

− (µ−−µ+)

ˆ
Rd
χ0≤dist±≤h+

e(t)
∇ · (nv ⊗ (Id−nv ⊗ nv)(D

symv · nv)) · (u−v−w) dx

+ (µ−−µ+)

ˆ
Rd

(nv · (u−v−w))(Id−nv ⊗ nv)(D
symv · nv) · d∇χ0≤dist±≤h+

e(t)

+ (µ−−µ+)

ˆ
Rd
χ0≤dist±≤h+

e(t)
∇ ·
(
(Dsymv−(nv ·Dsymv · nv) Id)(Id−nv ⊗ nv)

)
· (u−v−w) dx

+ (µ−−µ+)

ˆ
Rd

(u−v−w)

· (Dsymv−(nv ·Dsymv · nv) Id)(Id−nv ⊗ nv) d∇χ0≤dist±≤h+
e(t)
.

As a consequence of (3.92), (3.74a), (3.15) and the global Lipschitz estimate |∇h±e (·, t)| ≤
Cr−2

c from Proposition 3.27, we obtain∣∣∣∣ ˆ
Rd
χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)((µ

− − µ+)Dsymv + µ−Dsymw) : ∇(u− v − w) dx

∣∣∣∣
≤ C

r
7/2
c

‖v‖W 2,∞(Rd\Iv(t))E
[
χu, u, V

∣∣χv, v]1/2‖∇(u− v − v)‖L2

+
C

rc
‖v‖W 2,∞(Rd\Iv(t))

ˆ
Rd
χ0≤dist±(x,Iv(t))≤h+

e(t)
(PIv(t)x)|u− v − w| dx

+
C

r2
c

‖v‖W 1,∞

ˆ
Iv(t)

sup
y∈(−rc,rc)

|u− v − w|(x+ ynv(x, t))|∇h+
e(t)(x)| dS(x).

By a change of variables Φt, (3.14), (3.38), (3.74a) and an application of Young’s and Korn’s
inequality, the latter two terms may be further estimated by

C

r2
c

‖v‖W 2,∞(Rd\Iv(t))

( ˆ
Iv(t)

sup
y∈(−rc,rc)

|u− v − w|2(x+ ynv(x, t)) dS

) 1
2

×
(ˆ

Iv(t)
|h+
e(t)|

2 + |∇h+
e(t)|

2 dS

) 1
2

≤ C

r3
c

‖v‖W 2,∞(Rd\Iv(t))E[χu, u, V |χv, v]
1
2 (t)‖u− v − w‖L2

+
C

r2
c

‖v‖W 2,∞(Rd\Iv(t))E[χu, u, V |χv, v]
1
2 (t)‖∇(u− v − w)‖L2

≤ Cδ−1

r4
c

‖v‖2W 2,∞(Rd\Iv(t))E[χu, u, V |χv, v](t) + δ‖Dsym(u− v − w)‖L2

for every δ ∈ (0, 1]. In total, we obtain the bound

V ≤ Cδ−1

r4
c

‖v‖2W 2,∞(Rd\Iv(t))E[χu, u, V |χv, v](t) + δ‖Dsym(u− v − w)‖L2 (3.160)

where δ ∈ (0, 1) is again arbitrary. Analogously, one can derive a bound of the same form for
the last term V I in (3.158). Together with the bounds from (3.159) as well as (3.160) this
concludes the proof.
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3.5.6 Estimate for terms with the time derivative of the compensation
function

We proceed with the estimate for the terms from the relative entropy inequality of Proposi-
tion 3.10

Adt :=−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · ∂tw dx dt (3.161)

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · (v · ∇)w dx dt,

which are related to the time derivative of the compensation function w.

Lemma 3.31. Let the assumptions and notation of Proposition 3.28 be in place. In partic-
ular, we assume that there exists a C1-function e : [0, Tstrong)→ [0, rc) such that the relative
entropy is bounded by E[χu, u, V, |χv, v](t) ≤ e2(t).

Then, for any δ > 0 there exists a constant C > 0 such that Adt may be estimated by

Adt ≤
C

r22
c

‖v‖2
L∞t W

1,∞
x

(1+‖v‖
L∞t W

2,∞
x (Rd\Iv(t))

)2

ˆ T

0
(1+| log e(t)|)E[χu, u, V |χv, v](t) dt

(3.162)

+
C

r11
c

‖v‖
L∞t W

1,∞
x

(1+‖v‖
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0
(1+| log e(t)|)E[χu, u, V |χv, v](t) dt

+
C

r8
c

(1+‖v‖
L∞t W

1,∞
x

)(‖∂t∇v‖L∞x,t+(R2+1)‖v‖
L∞t W

2,∞
x (Rd\Iv(t))

)

×
ˆ T

0
E[χu, u, V |χv, v](t) dt

+
C

r2
c

‖v‖2
L∞t W

1,∞
x

ˆ T

0
(1 + e′(t))E[χu, u, V |χv, v](t) dt

+ δ

ˆ T

0

ˆ
Rd
|Dsym(u− v − w)|2 dx dt.

Proof. To estimate the terms involving the time derivative of w we make use of the decom-
position of ∂tw + (v · ∇)w from (3.97):∣∣∣∣− ˆ T

0

ˆ
Rd
ρ(χu)(u−v−w) · ∂tw dx dt−

ˆ T

0

ˆ
Rd
ρ(χu)(u−v−w) · (v · ∇)w dx dt

∣∣∣∣
≤
ˆ T

0
‖g‖L2‖u− v − w‖L2 dt+

ˆ T

0
‖ĝ‖

L
4
3
‖u− v − w‖L4 dt.

Employing the bounds (3.55a), (3.55b) and the assumption E[χu, u, V |χv, v](t) ≤ e(t)2 to-
gether with the Orlicz-Sobolev embedding (3.224) from Proposition 3.41 or (3.227) from
Lemma 3.42 depending on the dimension, we obtain

(ˆ
Iv(t)
|h̄±|4 dS

) 1
4

≤ C

r6
c

e(t)
(

1 + log
1

e(t)

) 1
4
. (3.163)

Making use of (3.74a), the bound for the vector field ĝ from (3.98), the Gagliardo-Nirenberg-
Sobolev embedding ‖u−v−w‖L4 ≤ C‖∇(u−v−w)‖1−α

L2 ‖u−v−w‖αL2 , with α = 1
2 for d = 2
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and α = 1
4 for d = 3, as well as the assumption E[χu, u, V |χv, v](t) ≤ e(t)2 we obtain

‖ĝ‖
L

4
3
‖u− v − w‖L4 (3.164)

≤ C
‖v‖W 1,∞‖v‖W 2,∞(Rd\Iv(t))

r11
c

(
1 + log

1

e(t)

) 1
4

× (‖∇(u−v−w)‖L2 + ‖u−v−w‖L2)E[χu, u, V |χv, v]
1
2 (t)

+ C
‖v‖W 1,∞

r8
c

(
1 + log

1

e(t)

) 1
4
(‖∇(u−v−w)‖L2+‖u−v−w‖L2)‖u−v−w‖L2

+ C
‖v‖W 1,∞

r8
c

(
1 + log

1

e(t)

) 1
4 ‖∇(u−v−w)‖

3
2
−α

L2 ‖u−v−w‖
1
2

+α

L2

+ C‖v‖W 1,∞(1+‖v‖W 1,∞)E[χu, u, V |χv, v]
1
2 (t)(‖∇(u−v−w)‖L2+‖u−v−w‖L2).

Now, by an application of Young’s and Korn’s inequality for all the terms on the right hand
side of (3.164) which include an L2-norm of the gradient of u − v − w (in the case d = 3

we use a
5
4 b

3
4 = (a(8δ/5)

1
2 )

5
4 (b(8δ/5)−

5
6 )

3
4 ≤ δa2 + 3

8

(
8
5

)− 5
3 δ−

5
3 b2, which follows from Young’s

inequality with exponents p = 8
5 and q = 8

3) we obtain

‖ĝ‖
L

4
3
‖u− v − w‖L4

≤ C

δ
5
3 r22
c

‖v‖2W 1,∞(1+‖v‖W 2,∞(Rd\Iv(t)))
2(1+| log e(t)|)E[χu, u, V |χv, v](t) (3.165)

+
C

r11
c

‖v‖W 1,∞(1+‖v‖W 2,∞(Rd\Iv(t)))(1+| log e(t)|)E[χu, u, V |χv, v](t)

+ δ‖Dsym(u−v−w)‖2L2 ,

where δ ∈ (0, 1) is arbitrary. This gives the desired bound for the L
4
3 -contribution of ∂tw +

(v · ∇)w. Concerning the L2-contribution, we estimate using (3.55a), (3.74a), the bound for
‖g‖L2 from (3.99) as well as the assumption E[χu, u, V |χv, v](t) ≤ e(t)2

‖g‖L2‖u− v − w‖L2 (3.166)

≤ C 1+‖v‖W 1,∞

r8
c

(‖∂t∇v‖L∞(Rd\Iv(t))+(R2+1)‖v‖W 2,∞(Rd\Iv(t)))E[χu, u, V |χv, v]
1
2 (t)‖u−v−w‖L2

+ C‖v‖W 1,∞(1 + ‖v‖W 1,∞)E[χu, u, V |χv, v]
1
2 (t)‖u−v−w‖L2

+
C

r2
c

(1 + e′(t))‖v‖2W 1,∞E[χu, u, V |χv, v]
1
2 (t)‖u−v−w‖L2

+ C
‖v‖W 1,∞(1+‖v‖W 2,∞(Rd\Iv(t)))

rc
E[χu, u, V |χv, v]

1
2 (t)‖u−v−w‖L2

+ C‖v‖W 1,∞(‖∇(u−v−w)‖L2 + ‖u−v−w‖L2)‖u−v−w‖L2 .

Hence, by another application of Young’s and Korn’s inequality, we may bound

‖g‖L2‖u− v − w‖L2 (3.167)

≤ C

r8
c

(1+‖v‖W 1,∞)(‖∂t∇v‖L∞(Rd\Iv(t))+(R2+1)‖v‖W 2,∞(Rd\Iv(t)))E[χu, u, V |χv, v](t)

+
C

r2
c

‖v‖2W 1,∞(1 + e′(t))E[χu, u, V |χv, v](t)

+ Cδ−1‖v‖2W 1,∞E[χu, u, V |χv, v](t)

+ δ‖Dsym(u−v−w)‖2L2

where δ ∈ (0, 1] is again arbitrary. All in all, (3.165) and (3.167) therefore imply the desired
bound.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

3.5.7 Estimate for the additional advection terms

We move on with the additional advection terms from the relative entropy inequality of
Proposition 3.10

Aadv =−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · (w · ∇)(v + w) dx dt (3.168)

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) ·

(
(u− v − w) · ∇

)
w dx dt.

A precise estimate is the content of the following result.

Lemma 3.32. Let the assumptions and notation of Proposition 3.28 be in place. In partic-
ular, we assume that there exists a C1-function e : [0, Tstrong)→ [0, rc) such that the relative
entropy is bounded by E[χu, u, V, |χv, v](t) ≤ e2(t). Then the additional advection terms Aadv
may be bounded by a Gronwall-type term

Aadv ≤
C

r14
c

(1+R)‖v‖2
L∞t W

3,∞
x (Rd\Iv(t))

ˆ T

0
(1+| log e(t)|)E[χu, u, V |χv, v](t) dt. (3.169)

Proof. A straightforward estimate yields

Aadv ≤ C(‖v‖
L∞t W

1,∞
x

+‖∇w‖L∞x,t)‖u−v−w‖L2
x,t

( ˆ T

0

ˆ
Rd
|w|2 dx dt

) 1
2

+ C‖∇w‖L∞x,t‖u−v−w‖
2
L2
x,t
.

Making use of (3.91), (3.95) as well as (3.74a) immediately shows that the desired bound
holds true.

3.5.8 Estimate for the additional weighted volume term

It finally remains to state the estimate for the additional weighted volume term from the
relative entropy inequality of Proposition 3.10

AweightV ol :=

ˆ T

0

ˆ
Rd

(χu−χv)(w · ∇)β
(dist±(·, Iv)

rc

)
dx dt. (3.170)

Lemma 3.33. Let the assumptions and notation of Proposition 3.28 be in place. In partic-
ular, we assume that there exists a C1-function e : [0, Tstrong)→ [0, rc) such that the relative
entropy is bounded by E[χu, u, V, |χv, v](t) ≤ e2(t). Then the additional weighted volume term
AweightV ol may be bounded by a Gronwall term

AweightV ol ≤
C

r10
c

(1 + ‖v‖2
L∞t W

2,∞
x (Rd\Iv(t))

)

ˆ T

0
E[χu, u, V |χv, v](t) dt. (3.171)

Proof. We may use the exact same argument as in the derivation of the estimate for the term
III from the additional surface tension terms AsurTen, see (3.146).

3.5.9 The weak-strong uniqueness principle with different viscosities

Before we proceed with the proof of Theorem 3.1, let us summarize the estimates from the
previous sections in the form of a post-processed relative entropy inequality. The proof is a
direct consequence of the relative entropy inequality from Proposition 3.10 and the bounds
(3.42), (3.50), (3.51), (3.52), (3.144), (3.157), (3.162), (3.169) and (3.171).
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3.5. Weak-strong uniqueness of varifold solutions: The case of different viscosities

Proposition 3.34 (Post-processed relative entropy inequality). Let d ≤ 3. Let (χu, u, V ) be
a varifold solution to the free boundary problem for the incompressible Navier–Stokes equation
for two fluids (1.1a)-(1.1c) in the sense of Definition 3.2 on some time interval [0, Tvari). Let
(χv, v) be a strong solution to (1.1a)-(1.1c) in the sense of Definition 3.6 on some time interval
[0, Tstrong) with Tstrong ≤ Tvari.

Let ξ be the extension of the inner unit normal vector field nv of the interface Iv(t)
from Definition 3.13. Let w be the vector field contructed in Proposition 3.28. Let β be the
truncation of the identity from Proposition 3.10, and let θ be the density θt = d|∇χu(·,t)|

d|Vt|Sd−1
. Let

e : [0, Tstrong)→ (0, rc] be a C1-function and assume that the relative entropy

E
[
χu, u, V

∣∣χv, v](T ) := σ

ˆ
Rd

1− ξ(·, T ) · ∇χu(·, T )

|∇χu(·, T )|
d|∇χu(·, T )|

+

ˆ
Rd

1

2
ρ
(
χu(·, T )

)∣∣u− v − w∣∣2(·, T ) dx

+

ˆ
Rd

∣∣χu(·, T )− χv(·, T )
∣∣ ∣∣∣β(dist±(·, Iv(T ))

rc

)∣∣∣ dx

+ σ

ˆ
Rd

1− θT d|VT |Sd−1

is bounded by E[χu, u, V |χv, v](t) ≤ e(t)2.
Then the relative entropy is subject to the estimate

E[χu, u, V |χv, v](T ) + c

ˆ T

0

ˆ
Rd
|∇(u− v − w)|2 dx dt (3.172)

≤ E[χu, u, V |χv, v](0)

+ C

ˆ T

0
(1 + | log e(t)|)E[χu, u, V |χv, v](t) dt

+ C

ˆ T

0
(1 + | log e(t)|) e(t)

√
E[χu, u, V |χv, v](t) dt

+ C

ˆ T

0

( d

dt
e(t)

)
E[χu, u, V |χv, v](t) dt

for almost every T ∈ [0, Tstrong). Here, C > 0 is a constant which is structurally of the form
C = C̃r−22

c with a constant C̃ = C̃(rc, ‖v‖L∞t W 3,∞
x

, ‖∂tv‖L∞t W 1,∞
x

), depending on the various
norms of the velocity field of the strong solution, the regularity parameter rc of the interface
of the strong solution, and the physical parameters ρ±, µ±, and σ.

We have everything in place to to prove the main result of this work.

Proof of Theorem 3.1. The proof of Theorem 3.1 is based on the post-processed relative
entropy inequality of Proposition 3.34. It amounts to nothing but a more technical version
of the upper bound

E(t) ≤ ee−Ct logE(0)

valid for all solutions of the differential inequality d
dtE(t) ≤ CE(t)| logE(t)|. However, it

is made more technical by the more complex right-hand side (3.34) in the relative entropy
inequality (which involves the anticipated upper bound e(t)2) and the smallness assumption
on the relative entropy E[χu, u, V |χv, v](t) needed for the validity of the relative entropy
inequality.
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

We start the proof with the precise choice of the function e(t) as well as the neces-
sary smallness assumptions on the initial relative entropy. We then want to exploit the
post-processed form of the relative entropy inequality from Proposition 3.34 to compare
E[χu, u, V |χv, v](t) with e(t).

Let C > 0 be the constant from Proposition 3.34 and choose δ > 0 such that δ < 1
6(C+1) .

Let ε > 0 (to be chosen in a moment, but finally we will let ε→ 0) and consider the strictly
increasing function

e(t) := e
1
2
e−

t
δ log(E[χu,u,V |χv ,v](0)+ε). (3.173)

Note that e2(0) = E[χu, u, V |χv, v](0) + ε which strictly dominates the relative entropy at
the initial time. To ensure the smallness of this function, let us choose c > 0 small enough
such that whenever we have E[χu, u, V |χv, v](0) < c and ε < c, it holds that

e(t) <
1

3C
∧ rc (3.174)

for all t ∈ [0, Tstrong). This is indeed possible since the condition in (3.174) is equivalent to
1
2 log(E[χu, u, V |χv, v](0) + ε) < e

Tstrong
δ log( 1

3C ∧ rc). For technical reasons to be seen later,
we will also require c > 0 be small enough such that

e−
Tstrong

δ
1

6δ

∣∣ log(E[χu, u, V |χv, v](0) + ε)
∣∣ > C (3.175)

whenever E[χu, u, V |χv, v](0) < c and ε < c. We proceed with some further computations.
We start with

d

dt
e(t) =

1

2δ
| log(E[χu, u, V |χv, v](0) + ε)|e(t)e−

t
δ =

1

δ
| log e(t)|e(t). (3.176)

This in particular entails

e2(T )− e2(τ) =

ˆ T

τ

d

dt
e2(t) dt

=
1

δ
| log(E[χu, u, V |χv, v](0) + ε)|

ˆ T

τ
e2(t)e−

t
δ dt. (3.177)

After these preliminary considerations, let us consider the relative entropy inequality
from Proposition 3.10. Arguing similarly to the derivation of the relative entropy inequality
in Proposition 3.10 but using the energy dissipation inequality in its weaker form

E[χu, u, V |χv, v](T ) ≤ E[χu, u, V |χv, v](τ)

for a. e. τ ∈ [0, T ], we may deduce (upon modifying the solution on a subset of [0, Tstrong) of
vanishing measure)

lim sup
T↓τ

E[χu, u, V |χv, v](T ) ≤ E[χu, u, V |χv, v](τ) (3.178)

for all τ ∈ [0, Tstrong). Now, consider the set T ⊂ [0, Tstrong) which contains all τ ∈ [0, Tstrong)
such that lim supT↓τ E[χu, u, V |χv, v](T ) > e2(τ). Arguing by contradiction, we assume
T 6= ∅ and define

T ∗ := inf T .
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3.6. Derivation of the relative entropy inequality

Since E[χu, u, V |χv, v](0) < e2(0) and e2 is strictly increasing, we deduce by the same ar-
gument which established (3.178) that T ∗ > 0. Hence, we can apply Proposition 3.34
at least for times T < T ∗ (with τ = 0). However, by the same argument as before
the relative entropy inequality from Proposition 3.10 shows that E[χu, u, V |χv, v](T ∗) ≤
E[χu, u, V |χv, v](T )+C(T ∗−T ) for all T < T ∗, whereas E[χu, u, V |χv, v](T ) may be bounded
by means of the post-processed relative entropy inequality. Hence, we obtain using also
(3.173) and (3.176)

E[χu, u, V |χv, v](T ∗) ≤ E[χu, u, V |χv, v](0) (3.179)

+ C

ˆ T ∗

0
e2(t) dt

+ C
1

2δ

∣∣ log(E[χu, u, V |χv, v](0) + ε)
∣∣ˆ T ∗

0
e3(t)e−

t
δ dt

+ C
1

2

∣∣ log(E[χu, u, V |χv, v](0) + ε)
∣∣ ˆ T ∗

0
e2(t)e−

t
δ dt.

We compare this to the equation (3.177) for e2(t) (with τ = 0 and T = T ∗). Recall that e2(0)
strictly dominates the relative entropy at the initial time. Because of (3.175), the second term
on the right hand side of (3.179) is dominated by one third of the right hand side of (3.177).
Because of (3.174) and the choice δ < 1

6(C+1) the same is true for the other two terms on the
right hand side of (3.179). In particular, we obtain using also (3.178)

lim sup
T↓T ∗

E[χu, u, V |χv, v](T )− e2(T ∗) ≤ E[χu, u, V |χv, v](T ∗)− e2(T ∗) < 0,

which contradicts the definition of T ∗. This concludes the proof since the asserted stability
estimate as well as the weak-strong uniqueness principle is now a consequence of letting
ε→ 0.

3.6 Derivation of the relative entropy inequality

Proof of Proposition 3.10. We start with the following observation. Since the phase-dependent
density ρ(χv) depends linearly on the indicator function χv of the volume occupied by the
first fluid, it consequently satisfies

ˆ
Rd
ρ(χv(·, T ))ϕ(·, T ) dx−

ˆ
Rd
ρ(χ0

v)ϕ(·, 0) dx

=

ˆ T

0

ˆ
Rd
ρ(χv)(∂tϕ+ (v · ∇)ϕ) dx dt (3.180)

for almost every T ∈ [0, Tstrong) and all ϕ ∈ C∞cpt(Rd × [0, Tstrong)). By approximation, the
equation holds for all ϕ ∈ W 1,∞(Rd × [0, Tstrong)). Testing this equation with v · η, where
η ∈ C∞cpt(Rd × [0, Tstrong);Rd) is a smooth vector field, we then obtain

ˆ
Rd
ρ(χv(·, T ))v(·, T ) · η(·, T ) dx−

ˆ
Rd
ρ(χ0

v)v0 · η(·, 0) dx

=

ˆ T

0

ˆ
Rd
ρ(χv)(v · ∂tη + η · ∂tv) dx dt

+

ˆ T

0

ˆ
Rd
ρ(χv)(η · (v · ∇)v + v · (v · ∇)η) dx dt

(3.181)
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

for almost every T ∈ [0, Tstrong). Note that the velocity field v of a strong solution has the
required regularity to justify the preceding step. Next, we subtract from (3.181) the equation
for the momentum balance (3.7a) of the strong solution evaluated with a test function η ∈
C∞cpt(Rd × [0, Tstrong);Rd) such that ∇ · η = 0. This shows that the velocity field v of the
strong solution satisfies

0 =

ˆ T

0

ˆ
Rd
ρ(χv)η · (v · ∇)v dx dt+

ˆ T

0

ˆ
Rd
µ(χv)(∇v +∇vT ) : ∇η dx dt

+

ˆ T

0

ˆ
Rd
ρ(χv)η · ∂tv dx dt− σ

ˆ T

0

ˆ
Iv(t)

H · η dS dt

(3.182)

which holds for almost every T ∈ [0, Tstrong) and all η ∈ C∞cpt(Rd × [0, Tstrong);Rd) such that
∇ · η = 0. The aim is now to test the latter equation with the field u− v − w. To this end,
we fix a radial mollifier φ : Rd → [0,∞) such that φ is smooth, supported in the unit ball and´
Rd φ dx = 1. For n ∈ N we define φn(·) := ndφ(n ·) as well as un := φn ∗ u and analogously
vn and wn. We then test (3.182) with the test function un − vn − wn and let n→∞. Since
the traces of un, vn and wn on Iv(t) converge pointwise almost everywhere to the respective
traces of u, v and w, we indeed may pass to the limit in the surface tension term of (3.182).
Hence, we obtain the identity

−
ˆ T

0

ˆ
Rd
µ(χv)(∇v +∇vT ) : ∇(u− v − w) dx dt

=

ˆ T

0

ˆ
Rd
ρ(χv)(u− v − w) · (v · ∇)v dx dt (3.183)

+

ˆ T

0

ˆ
Rd
ρ(χv)(u− v − w) · ∂tv dx dt

− σ
ˆ T

0

ˆ
Iv(t)

H · (u− v − w) dS dt,

which holds true for almost every T ∈ [0, Tstrong).
In the next step, we test the analogue of (3.180) for the phase-dependent density ρ(χu)

of the varifold solution with the test function 1
2 |v + w|2 and obtain

ˆ
Rd

1

2
ρ(χu(·, T ))|v + w|2(·, T ) dx−

ˆ
Rd

1

2
ρ(χ0

u)|v0 + w(·, 0)|2 dx

=

ˆ T

0

ˆ
Rd
ρ(χu)(v + w) · ∂t(v + w) dx dt

+

ˆ T

0

ˆ
Rd
ρ(χu)(v + w) · (u · ∇)(v + w) dx dt

(3.184)

for almost every T ∈ [0, Tstrong). Recall also from the definition of a varifold solution that
we are equipped with the energy dissipation inequality

ˆ
Rd

1

2
ρ(χu(·, T ))|u(·, T )|2 dx+ σ|VT |(Rd × Sd−1)

+

ˆ T

0

ˆ
Rd

µ(χu)

2

∣∣∇u+∇uT
∣∣2 dx dt (3.185)

≤
ˆ
Rd

1

2
ρ(χ0

u)|u0|2 dx+ σ|∇χ0
u|(Rd),

which holds for almost every T ∈ [0, Tstrong).
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Finally, we want to test the equation for the momentum balance (3.2a) of the varifold
solution with the test function v + w. Since the normal derivative of the tangential velocity
of a strong solution may feature a discontinuity at the interface, we have to proceed by an
approximation argument, i.e., we use the mollified version vn + wn as a test function. Note
that vn resp. wn are elements of L∞([0, Tstrong);C

0(Rd)). Hence, we may indeed use vn +wn
as a test function in the surface tension term of the equation for the momentum balance
(3.2a) of the varifold solution. However, it is not clear a priori why one may pass to the limit
n→∞ in this term.

To argue that this is actually possible, we choose a precise representative for ∇v resp.
∇w on the interface Iv(t). This is indeed necessary also for the velocity field of the strong
solution since the normal derivative of the tangential component of v may feature a jump
discontinuity at the interface. However, by the regularity assumptions on v, see Definition 3.6
of a strong solution, and the assumptions on the compensating vector field w, for almost every
t ∈ [0, Tstrong) every point x ∈ Rd is either a Lebesgue point of ∇v (respectively ∇w) or there
exist two half spaces H1 and H2 passing through x such that x is a Lebesgue point for both
∇v|H1 and ∇v|H2 (respectively ∇w|H1 and ∇w|H2). In particular, by the L∞ bounds on ∇v
and ∇w the limit of the mollifications ∇vn respectively ∇wn exist at every point x ∈ Rd and
we may define ∇v respectively ∇w at every point x ∈ Rd as this limit.

Recall then that we have chosen the mollifiers φn to be radially symmetric. Hence,
the approximating sequences ∇vn resp. ∇wn converge pointwise everywhere to the precise
representation as chosen before. Since both limits are bounded, we may pass to the limit
n→∞ in every term appearing from testing the equation for the momentum balance (3.2a)
of the varifold solution with the test function vn + wn. This entails

−
ˆ
Rd
ρ(χu(·, T ))u(·, T ) · (v + w)(·, T ) dx+

ˆ
Rd
ρ(χ0

u)u0 · (v + w)(·, 0) dx (3.186)

−
ˆ T

0

ˆ
Rd
µ(χu)(∇u+∇uT ) : ∇(v + w) dx dt

= −
ˆ T

0

ˆ
Rd
ρ(χu)u · ∂t(v + w) dx dt−

ˆ T

0

ˆ
Rd
ρ(χu)u · (u · ∇)(v + w) dx dt

+ σ

ˆ T

0

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇(v + w) dVt(x, s) dt

for almost every T ∈ [0, Tstrong). The next step consists of summing (3.183), (3.184), (3.185)
and (3.186). We represent this sum as follows:

LHSkin(T ) + LHSvisc + LHSsurEn(T ) (3.187)
≤ RHSkin(0) +RHSsurEn(0) +RHSdt +RHSadv +RHSsurTen,

where each individual term is obtained in the following way. The terms related to kinetic
energy at time T on the left hand side of (3.184), (3.185) and (3.186) in total yield the
contribution

LHSkin(T ) =

ˆ
Rd

1

2
ρ(χu(·, T ))|u− v − w|2(·, T ) dx. (3.188)

The same computation may be carried out for the initial kinetic energy terms

RHSkin(0) =

ˆ
Rd

1

2
ρ(χ0

u)|u0 − v0 − w(·, 0)|2 dx. (3.189)

Note that because of (3.4) it holds

σ|VT |(Rd × Sd−1) = σ|∇χu(·, T )|(Rd) + σ

ˆ
Rd

1− θT d|VT |Sd−1 .

123



3. Weak-strong uniqueness for two-phase Navier–Stokes flow

The terms in the energy dissipation inequality related to surface energy are therefore given
by

LHSsurEn(T ) = σ|∇χu(·, T )|(Rd) + σ

ˆ
Rd

1− θT d|VT |Sd−1 (3.190)

as well as

RHSsurEn(0) = σ|∇χ0
u|(Rd). (3.191)

Moreover, collecting all advection terms on the right hand side of (3.183), (3.184), and (3.186)
as well as adding zero gives the contribution

RHSadv = −
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · (v · ∇)w dx dt

−
ˆ T

0

ˆ
Rd

(
ρ(χu)− ρ(χv)

)
(u− v − w) · (v · ∇)v dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) ·

(
(u− v) · ∇

)
(v + w) dx dt

= −
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · (v · ∇)w dx dt (3.192)

−
ˆ T

0

ˆ
Rd

(
ρ(χu)− ρ(χv)

)
(u− v − w) · (v · ∇)v dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) ·

(
(u− v − w) · ∇

)
v dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · (w · ∇)(v + w) dx dt

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) ·

(
(u− v − w) · ∇

)
w dx dt.

Next, we may rewrite those terms on the right hand side of (3.183), (3.184), and (3.186)
which contain a time derivative as follows

RHSdt =−
ˆ T

0

ˆ
Rd

(
ρ(χu)− ρ(χv)

)
(u− v − w) · ∂tv dx dt (3.193)

−
ˆ T

0

ˆ
Rd
ρ(χu)(u− v − w) · ∂tw dx dt.

Furthermore, the terms related to surface tension on the right hand side of (3.183) and (3.186)
are given by

RHSsurTen = σ

ˆ T

0

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇v dVt(x, s) dt− σ
ˆ T

0

ˆ
Iv(t)

H · (u−v) dS dt

(3.194)

+ σ

ˆ T

0

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇w dVt(x, s) dt+ σ

ˆ T

0

ˆ
Iv(t)

H · w dS dt.

We proceed by rewriting the surface tension terms. For the sake of brevity, let us abbreviate
from now on nu = ∇χu

|∇χu| . Using the incompressibility of v and adding zero, we start by
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rewriting

σ

ˆ T

0

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇v dVt(x, s) dt

= σ

ˆ T

0

ˆ
Rd

nu · (nu · ∇)v d|∇χu| dt− σ
ˆ T

0

ˆ
Rd×Sd−1

s · (s · ∇)v dVt(x, s) dt

− σ
ˆ T

0

ˆ
Rd

nu · (nu · ∇)v d|∇χu| dt.

Next, by means of the compatibility condition (3.2e) we can write

σ

ˆ T

0

ˆ
Iv(t)

nu · (nu · ∇)v dS dt− σ
ˆ T

0

ˆ
Rd×Sd−1

s · (s · ∇)v dVt(x, s) dt

= −σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
v dVt(x, s) dt

− σ
ˆ T

0

ˆ
Rd×Sd−1

ξ ·
(
(s−ξ) · ∇

)
v dVt(x, s) dt

+ σ

ˆ T

0

ˆ
Rd

nu ·
(
(nu − ξ) · ∇

)
v d|∇χu| dt.

Moreover, the compatibility condition (3.2e) also ensures that

−σ
ˆ T

0

ˆ
Rd×Sd−1

ξ · (s · ∇)v dVt(x, s) dt = −σ
ˆ T

0

ˆ
Rd
ξ · (nu · ∇)v d|∇χu|dt,

whereas it follows from (3.4)

σ

ˆ T

0

ˆ
Rd×Sd−1

ξ · (ξ · ∇)v dVt(x, s) dt

= σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)v d|Vt|Sd−1(x) dt+ σ

ˆ T

0

ˆ
Rd
ξ · (ξ · ∇)v d|∇χu|dt.

Using that the divergence of ξ equals the divergence of nv(PIv(t)x) on the interface of the
strong solution (i. e. H = −(∇ · ξ)nv; see Definition 3.13, i.e., the cutoff function does not
contribute to the divergence on the interface), that the latter quantity equals the scalar mean
curvature (recall that nv = ∇χv

|∇χv | points inward) as well as once more the incompressibility
of the velocity fields v resp. u we may also rewrite

−σ
ˆ T

0

ˆ
Iv(t)

H · (u− v) dS dt = −σ
ˆ T

0

ˆ
Rd
χv
(
(u− v) · ∇

)
(∇ · ξ) dx dt.

The preceding five identities together then imply that

σ

ˆ T

0

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇v dVt(x, s) dt− σ
ˆ T

0

ˆ
Iv(t)

H · (u−v) dS dt

= −σ
ˆ T

0

ˆ
Rd

nu · (nu · ∇)v d|∇χu| dt (3.195)

− σ
ˆ T

0

ˆ
Rd
χv
(
(u− v) · ∇

)
(∇ · ξ) dx dt

− σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
v dVt(x, s) dt
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+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)v d|Vt|Sd−1(x) dt

+ σ

ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(nu − ξ) · ∇

)
v d|∇χu|dt.

Following the computation which led to (3.195) we also obtain the identity

σ

ˆ T

0

ˆ
Rd×Sd−1

(Id−s⊗ s) : ∇w dVt(x, s) dt

= −σ
ˆ T

0

ˆ
Rd

nu · (nu · ∇)w d|∇χu| dt

− σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
w dVt(x, s) dt

+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)w d|Vt|Sd−1(x) dt

+ σ

ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(nu − ξ) · ∇

)
w d|∇χu|dt.

Using the fact that w is divergence-free, we may also rewrite

− σ
ˆ T

0

ˆ
Rd

nu · (nu · ∇)w d|∇χu| dt

= −σ
ˆ T

0

ˆ
Rd

nu ·
(
(nu − ξ) · ∇

)
w d|∇χu| dt+ σ

ˆ T

0

ˆ
Rd
χu∇ ·

(
(ξ · ∇)w

)
dx dt

= −σ
ˆ T

0

ˆ
Rd
ξ ·
(
(nu − ξ) · ∇

)
w d|∇χu| dt

− σ
ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(nu − ξ) · ∇

)
w d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
χu∇w : ∇ξT dx dt.

Appealing once more to the fact that ξ = nv on the interface Iv of the strong solution (see
Definition 3.13) and ∇ · w = 0, we obtain

σ

ˆ T

0

ˆ
Iv(t)

H · w dS dt

= −σ
ˆ T

0

ˆ
Rd

(Id−nv ⊗ nv) : ∇w dS dt = σ

ˆ T

0

ˆ
Rd

nv · (ξ · ∇)w dS dt

= −σ
ˆ T

0

ˆ
Rd
χv∇ ·

(
(ξ · ∇)w

)
dx dt = −σ

ˆ T

0

ˆ
Rd
χv∇w : ∇ξT dx dt.

The last three identities together with (3.195) and (3.194) in total finally yield the following
representation of the surface tension terms on the right hand side of (3.183) and (3.186)

RHSsurTen = −σ
ˆ T

0

ˆ
Rd

nu · (nu · ∇)v d|∇χu| dt (3.196)

+ σ

ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(nu − ξ) · ∇

)
v d|∇χu|dt

− σ
ˆ T

0

ˆ
Rd
χv
(
(u− v) · ∇

)
(∇ · ξ) dx dt
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− σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
v dVt(x, s) dt

+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)v d|Vt|Sd−1(x) dt

− σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
w dVt(x, s) dt

+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)w d|Vt|Sd−1(x) dt

− σ
ˆ T

0

ˆ
Rd
ξ ·
(
(nu − ξ) · ∇

)
w d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

(χu − χv)∇w : ∇ξT dx dt.

It remains to collect the viscosity terms from the left hand side of (3.183), (3.185) and (3.186).
Adding also zero, we obtain

LHSvisc =

ˆ T

0

ˆ
Rd

2
(
µ(χu)− µ(χv)

)
Dsymv : Dsym(u− v − w) dx dt

−
ˆ T

0

ˆ
Rd

2µ(χu)Dsymv : Dsym(u− v − w) dx dt

+

ˆ T

0

ˆ
Rd

2µ(χu)Dsymu : Dsymu dx dt

−
ˆ T

0

ˆ
Rd

2µ(χu)Dsymu : Dsym(v + w) dx dt

=

ˆ T

0

ˆ
Rd

2µ(χu)|Dsym(u− v − w)|2 dx dt (3.197)

+

ˆ T

0

ˆ
Rd

2
(
µ(χu)− µ(χv)

)
Dsymv : Dsym(u− v − w) dx dt

+

ˆ T

0

ˆ
Rd

2µ(χu)Dsymw : Dsym(u− v − w) dx dt.

In particular, as an intermediate summary we obtain the following bound making already use
of the notation of Proposition 3.10: Taking the bound (3.187) together with the identities
from (3.188) to (3.193) as well as (3.196) and (3.197) yields

ˆ
Rd

1

2
ρ(χu(·, T ))|u− v − w|2(·, T ) dx+

ˆ T

0

ˆ
Rd

2µ(χu)|Dsym(u− v − w)|2 dx dt

+ σ|∇χu(·, T )|(Rd) + σ

ˆ
Rd

1− θT d|VT |Sd−1

≤
ˆ
Rd

1

2
ρ(χ0

u)|u0 − v0 − w(·, 0)|2 dx+ σ|∇χ0
u|(Rd) (3.198)

+Rdt +Rvisc +Radv +Avisc +Adt +Aadv +AsurTen

− σ
ˆ T

0

ˆ
Rd

nu · (nu · ∇)v d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(nu − ξ) · ∇

)
v d|∇χu| dt

− σ
ˆ T

0

ˆ
Rd
χv
(
(u− v − w) · ∇

)
(∇ · ξ) dx dt
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− σ
ˆ T

0

ˆ
Rd
χu
(
w · ∇

)
(∇ · ξ) dx dt

− σ
ˆ T

0

ˆ
Rd×Sd−1

(s−ξ) ·
(
(s−ξ) · ∇

)
v dVt(x, s) dt

+ σ

ˆ T

0

ˆ
Rd

(1− θt) ξ · (ξ · ∇)v d|Vt|Sd−1(x) dt.

The aim of the next step is to use σ(∇ · ξ) (see Definition 3.13) as a test function in the
transport equation (3.2b) for the indicator function χu of the varifold solution. For the sake
of brevity, we will write again nu = ∇χu

|∇χu| . Plugging in σ(∇ · ξ) and integrating by parts
yields

−σ
ˆ
Rd

nu(·, T ) · ξ(·, T ) d|∇χu(·, T )|+ σ

ˆ
Rd

n0
u · ξ(·, 0) d|∇χ0

u|

= −σ
ˆ T

0

ˆ
Rd

nu · ∂tξ d|∇χu| dt+ σ

ˆ T

0

ˆ
Rd
χu(u · ∇)(∇ · ξ ) dx dt

for almost every T ∈ [0, Tstrong). Making use of the evolution equation (3.29) for ξ and the
fact that ξ is supported in the space-time domain {dist(x, Iv(t)) < rc}, we get by adding zero

− σ
ˆ
Rd

nu(·, T ) · ξ(·, T ) d|∇χu(·, T )|+ σ

ˆ
Rd

n0
u · ξ(·, 0) d|∇χ0

u| (3.199)

= σ

ˆ T

0

ˆ
Rd

nu ·
((

Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇v)T ξ

)
d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

nu · (v · ∇)ξ d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
χu(u · ∇)(∇ · ξ ) dx dt

+ σ

ˆ T

0

ˆ
Rd

nu ·
((

Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇V̄n −∇v)T ξ

)
d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

nu ·
(
(V̄n − v) · ∇

)
ξ d|∇χu| dt

which holds for almost every T ∈ [0, Tstrong). Next, we study the quantity

RHStilt := σ

ˆ T

0

ˆ
Rd

nu · (v · ∇)ξ d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
χu(u · ∇)(∇ · ξ ) dx dt (3.200)

+ σ

ˆ T

0

ˆ
Rd

nu ·
((

Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇v)T · ξ

)
d|∇χu| dt.

Due to the regularity of v resp. ξ as well as the incompressibility of the velocity field v we
get

σ

ˆ T

0

ˆ
Rd

nu · (v · ∇)ξ d|∇χu| dt = −σ
ˆ T

0

ˆ
Rd
χu∇ · (v · ∇)ξ dx dt

= −σ
ˆ T

0

ˆ
Rd
χu∇2 : v ⊗ ξ dx dt

= −σ
ˆ T

0

ˆ
Rd
χu∇ ·

(
(ξ · ∇)v

)
dx dt
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− σ
ˆ T

0

ˆ
Rd
χu∇ ·

(
v(∇ · ξ)

)
dx dt

= −σ
ˆ T

0

ˆ
Rd
χu(v · ∇)(∇ · ξ ) dx dt (3.201)

+ σ

ˆ T

0

ˆ
Rd

nu · (ξ · ∇)v d|∇χu| dt.

Exploiting the fact that ξ(x) = nv(PIv(t)x)ζ(x) and nv(PIv(t)x) only differ by a scalar prefac-
tor, namely the cut-off multiplier ζ(x) which one can shift around, it turns out to be helpful
to rewrite

σ

ˆ T

0

ˆ
Rd

nu ·
((

Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇v)T · ξ

)
d|∇χu| dt

= σ

ˆ T

0

ˆ
Rd
ξ ·
(
(Id−nv(PIv(t)x)⊗ nv(PIv(t)x))nu · ∇)v d|∇χu| dt (3.202)

= σ

ˆ T

0

ˆ
Rd
ξ ·
((

nu − (nv(PIv(t)x) · nu)nv(PIv(t)x)
)
· ∇
)
v d|∇χu| dt

= σ

ˆ T

0

ˆ
Rd
ξ ·
(
(nu − ξ) · ∇

)
v d|∇χu| dt

− σ
ˆ T

0

ˆ
Rd

(ξ · nu) nv(PIv(t)x) ·
(
nv(PIv(t)x) · ∇

)
v d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
ξ · (ξ · ∇)v d|∇χu| dt.

Hence, by using (3.201) and (3.202) we obtain

RHStilt = σ

ˆ T

0

ˆ
Rd

nu · (nu · ∇)v d|∇χu| dt (3.203)

− σ
ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(nu − ξ) · ∇

)
v d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
χu
(
(u− v) · ∇

)
(∇ · ξ) dx dt

− σ
ˆ T

0

ˆ
Rd

(ξ · nu) nv(PIv(t)x) ·
(
nv(PIv(t)x) · ∇

)
v d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
ξ · (ξ · ∇)v d|∇χu| dt.

This in turn finally entails

− σ
ˆ
Rd

nu(·, T ) · ξ(·, T ) d|∇χu(·, T )|+ σ

ˆ
Rd

n0
u · ξ(·, 0) d|∇χ0

u| (3.204)

= σ

ˆ T

0

ˆ
Rd

nu · (nu · ∇)v d|∇χu| dt

− σ
ˆ T

0

ˆ
Rd

(nu − ξ) ·
(
(nu − ξ) · ∇

)
v d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd
χu
(
(u− v) · ∇

)
(∇ · ξ) dx dt

− σ
ˆ T

0

ˆ
Rd

(ξ · nu) nv(PIv(t)x) ·
(
nv(PIv(t)x) · ∇

)
v − ξ · (ξ · ∇)v d|∇χu| dt

129



3. Weak-strong uniqueness for two-phase Navier–Stokes flow

+ σ

ˆ T

0

ˆ
Rd

nu ·
((

Id−nv(PIv(t)x)⊗ nv(PIv(t)x)
)
(∇V̄n−∇v)T ξ

)
d|∇χu| dt

+ σ

ˆ T

0

ˆ
Rd

nu ·
(
(V̄n−v) · ∇

)
ξ d|∇χu| dt,

which holds for almost every T ∈ [0, Tstrong).
In a last step, we use the truncation of the identity β from Proposition 3.10 composed

with the signed distance to the interface of the strong solution as a test function in the
transport equations (3.2b) resp. (3.7b) for the indicator functions χv resp. χu of the two
solutions. However, observe first that by the precise choice of the weight function β it holds

(χu − χv)β
(dist±(·, Iv)

rc

)
= |χu − χv|

∣∣∣β(dist±(·, Iv)
rc

)∣∣∣.
Hence, when testing the equation (3.2b) for the indicator function of the varifold solution and
then subtracting the corresponding result from testing the equation (3.7b) for the indicator
function of the strong solution, we obtainˆ

Rd

∣∣χu(·, T )− χv(·, T )
∣∣∣∣∣β(dist±(·, Iv(T ))

rc

)∣∣∣ dx

=

ˆ
Rd

∣∣χ0
u − χ0

v

∣∣∣∣∣β(dist±(·, Iv(0))

rc

)∣∣∣ dx (3.205)

+

ˆ T

0

ˆ
Rd
χu

(
∂tβ
(dist±(·, Iv)

rc

)
+ (u · ∇)β

(dist±(·, Iv)
rc

))
dx dt

−
ˆ T

0

ˆ
Rd
χv

(
∂tβ
(dist±(·, Iv)

rc

)
+ (v · ∇)β

(dist±(·, Iv)
rc

))
dx dt,

which holds for almost every T ∈ [0, Tstrong). Note that testing with the function β(dist±(x,Iv(t))
rc

)

is admissible due to the bound χu, χv ∈ L∞([0, Tstrong);L
1(Rd)) (recall that we assume

χu, χv ∈ L∞([0, Tstrong); BV(Rd)) in our definition of solutions) and due to the fact that
β(dist±(x,Iv(t))

rc
) is of class C1. Indeed, one first multiplies β by a cutoff θR̃ ∈ C∞cpt(Rd) on

a scale R̃, i.e. θ ≡ 1 on {x ∈ Rd : |x| ≤ R̃}, θ ≡ 0 outside of {x ∈ Rd : |x| ≥ 2R̃} and
‖∇θR‖L∞(Rd) ≤ CR̃−1 for some universal constant C > 0. Then, one can use θR̃β in the
transport equations as test functions and pass to the limit R̃→∞ because of the integrability
of χv and χu. From this, one obtains the above equation.

Since the weight β vanishes at r = 0, we may infer from the incompressibility of the
velocity fields that ˆ T

0

ˆ
Rd
χv
(
(u−v) · ∇

)
β
(dist±(·, Iv)

rc

)
dx dt

= −
ˆ T

0

ˆ
Iv(t)

(
nv · (u−v)

)
β(0) dS dt = 0.

Hence, we can rewrite (3.205) asˆ
Rd

∣∣χu(·, T )− χv(·, T )
∣∣∣∣∣β(dist±(·, Iv(T ))

rc

)∣∣∣ dx

=

ˆ
Rd

∣∣χ0
u − χ0

v

∣∣∣∣∣β(dist±(·, Iv(0))

rc

)∣∣∣ dx

+

ˆ T

0

ˆ
Rd

(χu−χv)
(
∂tβ
(dist±(·, Iv)

rc

)
+
(
(u−v) · ∇

)
β
(dist±(·, Iv)

rc

))
dx dt

+

ˆ T

0

ˆ
Rd

(χu−χv)(v · ∇)β
(dist±(·, Iv)

rc

)
dx dt
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for almost every T ∈ [0, Tstrong). It remains to make use of the evolution equation for β
composed with the signed distance function to the interface of the strong solution. But
before we do so, let us remark that because of (3.19)

(v · ∇)β
(dist±(·, Iv)

rc

)
= (Vn · ∇)β

(dist±(·, Iv)
rc

)
,

where the vector field Vn is the projection of the velocity field v of the strong solution onto
the subspace spanned by the unit normal nv(PIv(t)x):

Vn(x, t) :=
(
v(x, t) · nv(PIv(t)x, t)

)
nv(PIv(t)x, t)

for all (x, t) such that dist(x, Iv(t)) < rc. Thus, using the evolution equation (3.31) we finally
obtain the identity

ˆ
Rd

∣∣χu(·, T )− χv(·, T )
∣∣∣∣∣β(dist±(·, Iv(T ))

rc

)∣∣∣ dx

=

ˆ
Rd

∣∣χ0
u − χ0

v

∣∣∣∣∣β(dist±(·, Iv(0))

rc

)∣∣∣ dx (3.206)

+

ˆ T

0

ˆ
Rd

(χu−χv)
(
(u−v) · ∇

)
β
(dist±(·, Iv)

rc

)
dx dt

+

ˆ T

0

ˆ
Rd

(χu−χv)
(
(Vn−V̄n) · ∇

)
β
(dist±(·, Iv)

rc

)
dx dt,

which holds true for almost every T ∈ [0, Tstrong).
The asserted relative entropy inequality now follows from a combination of the bounds

(3.198), (3.204) as well as (3.206). This concludes the proof.

Remark 3.35. Let us comment on the minor changes that occur in the proof of Proposi-
tion 3.10 when allowing for a bulk force ρ(χ)f such as gravity in Definition 3.2 of a varifold
solution (resp. Definition 3.6 of a strong solution), where

f ∈W 1,∞([0, Tvari];H
1(Rd;Rd)) ∩W 1,∞([0, Tvari];W

1,∞(Rd;Rd)).

In this case, the right hand side of the equation for the momentum balance (3.2a) for the
varifold solution (χu, u, V ) has to be amended by the term

+

ˆ T

0

ˆ
Rd
ρ(χu)f · η dx dt, (3.207)

whereas the right hand side of (3.7a) for the strong solution (χv, v) in addition includes

+

ˆ T

0

ˆ
Rd
ρ(χv)f · η dx dt. (3.208)

Moreover, the energy dissipation inequality (3.2c) of the varifold solution (χu, u, V ) now also
features on the right hand side the term

+

ˆ T

0

ˆ
Rd
ρ(χu)f · u dx dt. (3.209)

Hence, as a consequence of including a bulk force it is clear that an additional term
RHSbulkForce has to appear in the inequality (3.187), and therefore also in the relative entropy
inequality of Proposition 3.10. We derive the term RHSbulkForce by a quick review of the
changes to be made for the argument from (3.181) to (3.186) which are the basis for (3.187).
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First, the identity (3.182) was obtained from (3.181) (which itself remains unchanged)
by subtracting the equation for the momentum balance of the strong solution. Due to the
additional term (3.208), this means that we pick up in (3.183) after essentially testing with
η = u− v − w an extra term of the form

−
ˆ T

0

ˆ
Rd
ρ(χv)f · (u− v − w) dx dt. (3.210)

Second, we note that (3.184) remains unchanged under the inclusion of bulk forces, whereas
(3.185) now includes on the right hand side the term (3.209) as it is merely a reminder of the
energy dissipation inequality for the varifold solution. Third, since (3.186) arose essentially
from testing (3.2a) with η = v + w and multiplying the resulting identity by −1, we pick up
in (3.186) due to (3.207) the additional term

−
ˆ T

0

ˆ
Rd
ρ(χu)f · (v + w) dx dt. (3.211)

Finally, as (3.187) was obtained by summing (3.183), (3.184), (3.185) and (3.186), it thus
follows from (3.209), (3.210) and (3.211) that

RHSbulkForce =

ˆ T

0

ˆ
Rd

(ρ(χu)−ρ(χv))(u−v−w) · f dx dt. (3.212)

Since the whole argument after the derivation of (3.187) is unaffected from the inclusion
of bulk forces, we deduce that the only additional term appearing in the relative entropy
inequality from Proposition 3.10 is given by (3.212). Because of the simple computation
ρ(χu)−ρ(χv) = (ρ+−ρ−)(χu−χv) and f ∈ L∞(Rd×[0, Tstrong);Rd) it follows from an appli-
cation of Lemma 3.20 and an absorption argument that the weak-strong uniqueness principle
as well as the stability estimate of Theorem 3.1 are still valid.

3.7 Appendix

We begin with a remark on the higher order compatibility conditions (3.6b)–(3.8c) for the
initial data in Definition 3.6 of a strong solution.

Remark 3.36. The conditions (3.6b)–(3.8b) are standard in the literature on strong solutions
for the two-phase Navier-Stokes problem with surface tension, see, for example, the works
[125] and [127]. Denoting by v± :

⋃
t∈[0,Tstrong ] Ω±t ×{t} → Rd the velocity fields of the two

respective fluids, then (3.6b)–(3.8b) are necessary to have continuity up to the initial time
and up to the interface for the velocity fields v± and their spatial gradients ∇v±.

The condition in (3.8c) is necessary for ∂tv± being continuous up to the initial time and
the interface. Indeed, writing v̄±(x, t) := v±(Ψtx, t) by making use of the diffeomorphisms
from Definition 3.5 we compute

∂tv̄
±|t=0 = ∂tv

±|t=0 + (∂tΨ
t|t=0 · ∇)v±|t=0

since Ψ0 = Id. Moreover, we have [[v̄±(t)]] = 0 on Iv(0) for all t ∈ [0, Tstrong], and therefore in
particular [[∂tv̄

±|t=0]] = 0. Hence, it follows from Remark 3.9 and the fact that the tangential
derivatives of v± naturally coincide on the interface that (3.8c) has to hold. One then verifies
similarly that the conditions (3.8d)–(3.8e) are necessary for ∂t∇v± being continuous up to
the initial time and the interface.

One may also allow here for sufficiently regular, density-dependent bulk forces like gravity.
The only difference concerns the compatibility conditions (3.8c)–(3.8e) for which one has to
include ρ(χ0)f(·, 0) in the obvious way.
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We proceed with a remark on the existence of strong solutions in the precise functional
framework of Definition 3.6 based on the assumption of the higher order regularity and
compatibility conditions for the initial data (3.6a)–(3.8c).

Remark 3.37. We start by making precise what one can infer from the existing literature
about the existence of strong solutions to the two-phase Navier-Stokes problem with surface
tension. Note that all what is said until (3.216) also holds true if one considers gravity, see
for instance the works of Prüss and Simonett [125], [127] and [128, p. 581]. The remaining
claims hold true after a suitable adaptation of the higher order compatibility conditions for
the initial data, see the end of Remark 3.36.

It follows from [89, Theorem 2]—up to the technicality that the authors consider the
problem in a bounded domain and not the full space Rd, in which case one may also consult
[126]—that under the assumptions on the initial data in Definition 3.6 there exists a uniformly
continuous, bounded velocity field v ∈ C(Rd×[0, Tstrong];Rd) which is of Sobolev regularity at
least (where q > d+ 2 is arbitrary):

v ∈ Lq([0, Tstrong];W 2,q(Rd \ Iv(t);Rd)) ∩H1([0, Tstrong];L
q(Rd;Rd)). (3.213)

This regularity directly implies by interpolation

sup
t∈[0,Tstrong ]

sup
Rd\Iv(t)

|∇v| <∞. (3.214)

Furthermore, it entails the existence of a pressure field p with ∇p ∈ Lq([0, Tstrong];Lq(Rd)),
as well as a family of smoothly evolving sets (Ω+

t )t∈[0,Tstrong ] with smoothly evolving surfaces
(Iv(t))t∈[0,Tstrong ] with indicator function χ in the sense of Definition 3.5. More precisely, the
diffeomorphisms in Definition 3.5 inherit the regularity of the height function h constructed
in [89, Theorem 2] and are thus, for the time being, short of one degree of spatial regularity
to what is called for in Definition 3.5.

Moreover, it is proved in [89] that in the time interval (0, Tstrong] the interface is actually
real analytic and that the velocity field v and the pressure p are real analytic as well; at
least for positive times and away from the interface. Hence, the triple (v, p, χ) is for positive
times a classical solution to the free boundary problem for the incompressible Navier–Stokes
equation for two fluids (1.1a)-(1.1c). Since (3.213) also entails that

v ∈ H1([0, Tstrong];L
2(Rd;Rd)) ∩ L∞([0, Tstrong];H

1(Rd;Rd)), (3.215)

∇v ∈ L1([0, Tstrong]; BV(Rd;Rd×d)), (3.216)

it remains to establish the estimate (3.7c) for spatial derivatives of order k ∈ {2, 3}, for the
time derivative ∂tv, and the mixed derivative ∂t∇v, as well as that the diffeomorphisms from
Definition 3.5 have one additional order of spatial regularity. For this, one relies on the higher
order regularity and compatibility conditions for the initial data as given in Definition 3.6.
Let us sketch how this works.

The argument uses the transformed formulation of the problem, see [89, (2.2)], stating it
on a fixed domain Rd \Σ with a real analytic reference interface Σ. At least for short times,
the evolving interface Iv(t) is then described by means of the graph of a height function h
over this reference surface Σ. Moreover, the evolving domains occupied by the two fluids are
described by means of the associated Hanzawa transform (see [89, p. 740] for the definition
of the diffeomorphisms Θh). Defining the transformed velocity field v̄ := v ◦ Θh and the
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

transformed pressure p̄ := p ◦Θh one obtains a quasilinear problem for (v̄, p̄, h) of the type

ρ∂tv̄ − µ∆v̄ +∇p̄ = F1(h,∇tanh, ∂th,∇v̄,∇2v̄,∇p̄) in Rd \ Σ,

∇ · v̄ = F2(h,∇tanh,∇v̄) in Rd \ Σ,

−[[µ(∇v̄+∇v̄T )− p̄Id]]nΣ = F3(h,∇tanh,∇v̄) on Σ, (3.217)
[[v̄]] = 0 on Σ,

∂th− nΣ · v̄ = F4(h,∇tanh, v̄) on Σ,

where we abbreviated with ∇tan the surface gradient on Σ. It is crucial that the non-linearities
on the right hand side are at least quadratic, and that each term which is of the same order as
the principal linear part on the left hand side comes with a factor of h or its derivative. Let
us denote in the following by v̄± resp. p̄± the transformed velocity fields resp. the transformed
pressures of the two fluids in their respective domains Ω±h .

All regularity properties stated before hold naturally for the transformed data (v̄, p̄, h).
Moreover, regularity up to the interface is established in [128, Section 9.4] in the sense that
we have for the respective one-sided traces

v̄± ∈ C∞(Σ× (0, Tstrong];Rd), (3.218)

((Id−nΣ ⊗ nΣ)∇)v̄± ∈ C∞(Σ× (0, Tstrong];Rd×d), (3.219)
p̄± ∈ C∞(Σ× (0, Tstrong]). (3.220)

Let us only focus on how to establish the estimate (3.7c) in the vicinity of the inter-
face; in the bulk one may proceed more directly without having to distinguish between tan-
gential and normal directions. The first step then consists of taking the derivative with
respect to a tangential vector field tΣ in the transformed problem (3.217); this shows that
the tangential derivatives (tΣ · ∇)v̄, (tΣ · ∇)p̄ and (tΣ · ∇)h satisfy a system analogous
to (3.217). Recalling that we have assumed the higher regularity conditions (3.8a), we con-
clude that the theory of [89] applies to the tangential derivatives, yielding the regularity
(tΣ ·∇)v̄ ∈ Lq([0, Tstrong];W 2,q(Rd \ Iv(t);Rd))∩H1([0, Tstrong];L

q(Rd;Rd)). Since this holds
for all tangential vector fields tΣ, we conclude that

sup
t∈[0,Tstrong ]

sup
x∈Ω±h (t)

|∇((Id−nΣ ⊗ nΣ)∇)v̄±(x, t)| <∞. (3.221)

By transforming back to the original variables, we deduce a corresponding estimate for the
term ∇((Id−nIv ⊗ nIv)∇)v±. Differentiating the constraint ∇ · v± = 0 in the bulk and
using Schwarz’s theorem to change the order of differentiation (which is admissible by the
smoothness of the velocity in the bulk), one infers that actually all components of the second
derivative ∇2v± except for the normal-normal second derivative of the tangential velocity sat-
isfy an analogous bound to (3.221). To establish the regularity for the last missing component,
the idea is to extract from the Laplacian the normal-normal second derivative and to use the
equation for v±. For this, however, we first need to establish regularity for the time derivative
∂tv
±.
This is basically done by differentiating the transformed problem (3.217) in time, from

which one derives an analogous problem for the time derivative time derivatives ∂tv̄, ∂tp̄, and
∂th of the transformed velocity v̄, pressure p̄, and height h. Arguing as before and using the
compatibility conditions (3.8c)–(3.8d), we infer that

sup
t∈[0,Tstrong ]

sup
x∈Ω±h (t)

|∂tv̄±(x, t)| <∞ (3.222)
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and thus that also ∂tv satisfies a corresponding estimate, since we already know that ∂th is
continuous up to the initial time t = 0. From this one may then infer that (3.7c) holds true
for k = 2 by using the equation for v± as already explained before.

Up until now, we only know that h ∈ C([0, Tstrong];C
2(Σ)) ∩ C1([0, Tstrong];C

1(Σ)) such
that sup(x,t)∈Σ×[0,Tstrong ] |∇tan∇tanh(x, t)| + |∂t∇tanh(x, t)| < ∞. However, taking tangen-
tial derivatives of the equation for h in the transformed problem (3.217) together with the
one order higher regularity for the velocity field shows that h ∈ C([0, Tstrong];C

3(Σ)) ∩
C1([0, Tstrong];C

2(Σ)) with a corresponding bound for the highest derivatives. In particular,
the diffeomorphisms Θh share the same properties from which we conclude that the diffeo-
morphisms from Definition 3.5 satisfy the required regularity and bounds.

Finally, one may follow the above argument to verify that (3.7c) also holds true for k = 3
and the mixed derivative ∂t∇v. To this end, one relies on the higher regularity condition
(3.8a) as well as the higher compatibility conditions (3.8d)–(3.8e). First, one differentiates
the equation for the tangential derivatives of v± another time in the tangential direction
to obtain boundedness of the gradient of the tangential-tangential second derivatives of the
velocity fields v±. Differentiating the constraint ∇· v± = 0 in the bulk twice, using Schwarz’s
theorem to change the order of differentiation, and differentiating in time the equation for ∇v
(leading again to a similar system) yields the bound for ∂t∇v± and all third spatial derivatives
of v± except for the normal-normal-normal third derivative.

For this, one differentiates in the bulk the equation for v± in normal direction concluding
that the missing third derivative can be expressed by terms which are already controlled. This
concludes the remark on the existence of strong solutions in the precise functional framework
of Definition 3.6.

We rely several times in this work on the following standard result for singular integral
operators of convolution type.

Theorem 3.38 (Boundedness of singular integral operators of convolution type in Lp). Let
d ≥ 2, p ∈ (1,∞), and let K : Sd−1 → R be a function of class C1 with vanishing average.
Let f ∈ Lp(Rd) and define

Kf(x) :=

ˆ
Rd

K
(
x−x̃
|x−x̃|

)
|x− x̃|d

f(x̃) dx̃,

where the integral is understood in the Cauchy principal value sense. Then there exists a
constant C > 0 depending only on d, p, and K such that

‖Kf‖Lp(Rd) ≤ C‖f‖Lp(Rd).

We also state a non-trivial result from geometric measure theory on properties of one-
dimensional sections of Caccioppoli sets.

Theorem 3.39 ([39, Theorem G]). Consider a set G of finite perimeter in Rd, denote by
ν G = (νGx1

, . . . , νGxd−1
, νGy ) ∈ Rd the associated measure theoretic inner unit normal vector

field of the reduced boundary ∂∗G, and let χ∗G be the precise representative of the bounded
variation function χG. Then for Lebesgue almost every x ∈ Rd−1 the one-dimensional sections
Gx := {y ∈ R : (x, y) ∈ G} satisfy the following properties:

i) Gx is a set of finite perimeter in R, χG(x, ·) = χ∗G(x, ·) Lebesgue almost everywhere in
Gx,

ii) (∂∗G)x = ∂∗Gx,

iii) νGy (x, y) 6= 0 for all y ∈ R such that (x, y) ∈ ∂∗G, and
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3. Weak-strong uniqueness for two-phase Navier–Stokes flow

iv) limy→y+
0
χ∗G(x, y) = 1 and limy→y−0

χ∗G(x, y) = 0 whenever νGy (x, y0) > 0, and vice versa
if νGy (x, y0) < 0.

In particular, for every Lebesgue measurable set M ⊂ Rd−1 there exists a Borel measurable
subsetMG ⊂M such that Ld−1(M \MG) = 0 and the four properties stated above are satisfied
for all y ∈MG.

To bound the L4-norm of the interface error heights h± in the case of a two-dimensional
interface, we employ the following optimal Orlicz–Sobolev embedding.

Theorem 3.40 (Optimal Orlicz-Sobolev embedding, [40, Theorem 1]). For every d ≥ 2,
there exists a constant K depending only on d such that the following holds true: Let A :
[0,∞)→ [0,∞) be a convex function with A(0) = 0, A(t)→∞ for t→∞, and

ˆ 1

0

(
t

A(t)

)1/(d−1)

dt <∞.

Define

H(r) :=

(ˆ r

0

(
t

A(t)

)1/(d−1)

dt

)(d−1)/d

and

B(s) := A(H−1(s)).

Then for any weakly differentiable function u decaying to 0 at infinity in the sense {|u(x)| >
s} <∞ for all s > 0, the following estimate holds true:

ˆ
Rd
B

(
|u(x)|

K
( ´

Rd A(|∇u(x)|) dx
)1/d

)
dx ≤

ˆ
Rd
A(|∇u(x)|) dx. (3.223)

The application of the optimal Orlicz-Sobolev embedding to our setting is stated and
proved next.

Proposition 3.41. Let T > 0 and (I(t))t∈[0,T ] be a family of smoothly evolving surfaces in
R3 in the sense of Definition 3.5. Consider u ∈ L∞([0, T ]; BV(I(t))) such that |u| ≤ 1. Let
e : [0, T ]→ (0,∞) be a measurable function. We define

Ae(t)(s) :=


e(t)s for s ≤ e(t),
s2 for e(t) ≤ s ≤ 1,

2s− 1 for s ≥ 1.

We also set Ae(t)(Du(t)) :=
´
I(t)Ae(t)(|∇u(t)|) dS + |Dsu(t)|(I(t)). Then the following esti-

mate holds true
ˆ
I(t)
|u(x, t)|4 dS ≤ C

r12
c

(
1+ log

1

e(t)

)
(3.224)

×
(
e(t)4 +

1

e(t)2

(
‖u(t)‖6L2(I(t))+A

3
e(t)(Du(t))

)
+ ‖u(t)‖4L2(I(t)) +A2

e(t)(Du(t))
)

for almost every t ∈ [0, T ] and a constant C > 0.
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Proof. Let U ⊂ R2 be an open and bounded set and consider u ∈ C1
cpt(U) such that ‖u‖L∞ ≤

1. For the sake of brevity, let us suppress for the moment the dependence on the variable
t ∈ [0, T ). The idea is to apply the optimal Orlicz–Sobolev embedding provided by the
preceding theorem with respect to the convex function Ae. Observe first that Ae indeed
satisfies all the assumptions. Moreover, since d = 2 we compute

(H(r))2 =

ˆ r

0

s

Ae(s)
ds =


r
e for r ≤ e,
1 + log r

e for e ≤ r ≤ 1,

1 + log 1
e + r−1

2 + 1
4 log(2r − 1) for r ≥ 1.

As a consequence, we get

H−1(y) =



= ey2 for y ≤ 1,

= e exp(y2 − 1) for 1 ≤ y ≤
√

1 + log 1
e ,

≥ (y2 − 1− log 1
e ) + 1 for y ≥

√
1 + log 1

e ,

≤ 2(y2 − 1− log 1
e ) + 1 for y ≥

√
1 + log 1

e .

This in turn entails

B(s) = Ae(H
−1(s)) =


= e2s2 for s ≤ 1,

= e2 exp(2s2 − 2) for 1 ≤ s ≤
√

1 + log 1
e ,

≥ s2 − log 1
e for s ≥

√
1 + log 1

e .

(3.225)

We then deduce from Theorem 3.40, d = 2, ‖u‖L∞ ≤ 1, the bound exp(s2) ≥ 1
2s

4 for all

s ≥ 0 as well as the bound s2 − log 1
e ≥

s2

1+log 1
e

for all s ≥
√

1 + log 1
e

ˆ
U
|u(x)|4 dx

=

ˆ
U∩
{
|u|≤K

√
Ae(Du)

} |u(x)|4 dx

+

ˆ
U∩
{
K
√
Ae(Du)≤|u|≤K

√
Ae(Du)

√
1+log 1

e

} |u(x)|4 dx

+

ˆ
U∩
{
|u|≥K

√
Ae(Du)

√
1+log 1

e

} |u(x)|4 dx

≤ K4A
2
e(Du)

e2

ˆ
U∩
{
|u|≤K

√
Ae(Du)

} e2 |u(x)|2

K2Ae(Du)
dx

+K4A
2
e(Du)

e2

ˆ
U∩
{
K
√
Ae(Du)≤|u|≤K

√
Ae(Du)

√
1+log 1

e

} e2 |u(x)|4

K4A2
e(Du)

dx

+K2
(

1 + log
1

e

)
Ae(Du)

ˆ
U∩
{
|u|≥K

√
Ae(Du)

√
1+log 1

e

} |u(x)|4

K2
(
1 + log 1

e

)
Ae(Du)

dx

≤ C
(

1 + log
1

e

)( 1

e2
A3
e(Du) +A2

e(Du)
)
,

which is precisely what is claimed. Note that since u is continuously differentiable, the
singular part in the definition of Ae(Du) vanishes.

In a next step, we want to extend to smooth functions u on the manifold I(t). By
assumption, we may cover I(t) with a finite family of open sets of the form U(xi) := I(t) ∩
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B2rc(xi), xi ∈ I(t), such that U(xi) can be represented as the graph of a function g : B1(0) ⊂
R2 → R with |∇g| ≤ 1 and |∇2g| ≤ r−1

c . We fix a partition of unity {ϕi}i subordinate to
this finite cover of I(t). Note that |∇ϕi| ≤ Cr−1

c . Note also that the cardinality of the open
cover is uniformly bounded in t. Hence, we proceed with deriving the desired bound only for
one uϕ, where ϕ = ϕi is supported in U = U(xi). Abbreviating ũ = u ◦ g and ϕ̃ = ϕ ◦ g, we
obtain from the previous stepˆ

U
|uϕ|4 dS =

ˆ
B1(0)

|(uϕ)(g(x))|4
√

1 + |∇g(x)|2 dx

≤
√

2C
(

1 + log
1

e

)( 1

e2
A3
e

(
D(ũϕ̃)

)
+A2

e

(
D(ũϕ̃)

))
.

Using the bounds Ae(t+ t̃) ≤ CAe(t) +CAe(t̃) and Ae(λt) ≤ C(λ+λ2)Ae(t), which hold for
all λ > 0 and all t, t̃ ≥ 0, as well as the product and chain rule we compute

Ae(D(ũϕ̃)) ≤ Cr−2
c

ˆ
B1(0)

Ae
(
|u|(g(x))

)
dx+ C

ˆ
B1(0)

Ae
(
|∇u|(g(x))

)
dx.

By definition of Ae we can further estimateˆ
B1(0)

Ae
(
|u|(g(x))

)
dx ≤ Ce2 +

ˆ
B1(0)

|u|2(g(x)) dx.

Changing back to the local coordinates on the manifold I(t) we deduce
ˆ
U
|u|4 dS ≤ C

r6
c

(
1+ log

1

e

)
(3.226)

×
(
e4 +

1

e2

(
‖u‖6L2(I(t))+A

3
e(Du)

)
+ ‖u‖4L2(I(t)) +A2

e(Du)
)
.

This yields the claim in the case of a smooth function u : I(t)→ R.
In a last step, we extend this estimate by mollification to u ∈ BV(I(t)) with ‖u‖L∞ ≤ 1.

To this end, let θ : R+ → [0, 1] be a smooth cutoff with θ(s) = 1 for s ∈ [0, 1
4 ] and θ(s) = 0

for s ≥ 1
2 . We then define for each n ∈ N

un(x, t) :=

´
I(t) θ(n|x̃− x|)u(x̃, t) dS(x̃)´

I(t) θ(n|x̃− x|) dS(x̃)
.

Since the analogous bound to (3.77) holds true, we infer ‖un‖L∞ ≤ 1 as well as ‖un −
u‖L1(I(t)) → 0 as n→∞. In particular, we have pointwise almost everywhere convergence at
least for a subsequence. This in turn implies by Lebesgue’s dominated convergence theorem
that ‖un − u‖L4(I(t)) → 0 as n → ∞ at least for a subsequence. Moreover, the exact same
computation which led to (3.76) shows

Ae(t)(|∇un(x, t)|) ≤ C

´
I(t) θ(n|x̃− x|)

(
Ae(t)(|∇u(x̃, t)|) +Ae(t)(r

−1
c |u(x̃, t)|)

)
dS(x̃)´

I(t) θ(n|x̃− x|) dS(x̃)

+ C

´
I(t) θ(n|x̃− x|) d|Dsu|(x̃, t)´

I(t) θ(n|x̃− x|) dS(x̃)
.

Integrating this bound over the manifold and then using Fubini shows that

Ae(t)(Dun(t)) ≤ Cr−2
c Ae(t)(Du(t))

holds true uniformly over all n ∈ N. By applying the bound (3.226) from the second step,
we may conclude the proof.
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In the case where the interface Iv is a curve in R2, a much more elementary argument
yields the following bound.

Lemma 3.42. Let T > 0 and let (I(t))t∈[0,T ] be a family of smoothly evolving curves in R2

in the sense of Definition 3.5. Let u ∈ L∞([0, T ]; BV(I(t))) such that |u| ≤ 1. Consider the
convex function

G(s) :=

{
s2, |s| ≤ 1,

2s− 1, |s| > 1.

We also define |Du(t)|G :=
´
I(t)G(|∇u(x, t)|) dS + |Dsu(t)|(Γ). Then,

ˆ
I(t)
|u(x, t)|4 dS ≤ C(1 +H1(I(t)))3

r4
c

(
|Du(t)|2G + |Du(t)|4G + ||u||4L2(I(t))

)
(3.227)

holds true for almost every t ∈ [0, T ] with some universal constant C > 0.

Proof. Fix t > 0. First, observe that I(t) essentially consists of a finite number of noninter-
secting curves. By approximation, we may assume u(t) ∈W 1,1(I(t)).

Let ηi be a partition of unity on I(t) with |∇tanηi(x)| ≤ Cr−1
c such that the support of

each ηi is isometrically equivalent to a bounded interval (note that the Definition 3.5 implies
a lower bound of crc for the length of any connected component of I(t)) and such that at
any point x ∈ I(t) there are at most two i with ηi(x) > 0.

Treating by abuse of notation the function ηiu as if defined on a real interval I = (a, b),
we then write

ηi(x)u(x) =

ˆ x

a
ηi(y)u′(y) + η′i(y)u(y) dy

=

ˆ x

a
η′i(y)u(y) dy +

ˆ x

a
ηi(y)

(
max

{
min{u′(y), 1},−1

})
dy

+

ˆ x

a
ηi(y)

((
u′(y)− 1

)
+
−
(
u′(y)− (−1)

)
−
)

dy.

Hence, we may estimate using Jensen’s inequality

ηi(x)|u(x)| ≤ |I(t)|1/2
( ˆ

I(t)
ηi|max

{
min{|∇tanu|, 1},−1

}
|2 dS

)1/2

+

ˆ
I(t)

ηi (|∇tanu| − 1)+ dS + Cr−1
c

ˆ
I(t)∩supp ηi

|u| dS

for any x ∈ I(t). Taking the fourth power, integrating over x, and summing over i, we deduce

ˆ
I(t)
|u(x)|4 dS ≤ C|I(t)|3

( ˆ
I(t)
|max

{
min{|∇tanu|, 1},−1

}
|2 dy

)2

+ C|I(t)|
(ˆ

I(t)
(|∇tanu| − 1)+ dS

)4

+ Cr−4
c |I(t)|3

(ˆ
I(t)
|u|2 dy

)2

.

From this we infer the desired estimate by approximation.
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CHAPTER 4
Weak-strong uniqueness for planar

multiphase mean curvature flow

Abstract. We prove that in the absence of topological changes, the notion of
BV solutions to planar multiphase mean curvature flow does not allow for a
mechanism for (unphysical) non-uniqueness. Our approach is based on the local
structure of the energy landscape near a classical evolution by mean curvature.
Mean curvature flow being the gradient flow of the surface energy functional,
we develop a gradient-flow analogue of the notion of calibrations. Just like the
existence of a calibration guarantees that one has reached a global minimum in
the energy landscape, the existence of a “gradient flow calibration” ensures that
the route of steepest descent in the energy landscape is unique and stable.

4.1 Main results & definitions

In the following, we present our weak-strong uniqueness principle for BV solutions of mul-
tiphase mean curvature flow in the plane. In addition, we provide a quantitative stability
estimate, i. e., as long as a strong solution exists, any solution to the BV formulation of
multiphase mean curvature flow with slightly perturbed initial data remains close to it. Our
results are valid under minimal assumptions on the surface tensions, see Definition 4.8.

Theorem 4.1 (Weak-strong uniqueness and quantitative stability). Let d = 2 and P ∈ N,
P ≥ 2. Let χ = (χ1, . . . , χP ) be a BV solution of multiphase mean curvature flow in the
sense of Definition 4.11 on some time interval [0, TBV). Let χ̄ = (χ̄1, . . . , χ̄P ) be a strong
solution of multiphase mean curvature flow on Rd in the sense of Definition 4.14 on some
time interval [0, Tstrong) with Tstrong ≤ TBV.

Then, the BV solution χ must coincide with the strong solution χ̄ for almost all 0 ≤ t <
Tstrong, provided that it starts from the same initial data.

Furthermore, the evolution by multiphase mean curvature is stable with respect to pertur-
bations in the initial data in the sense that for every T ∈ (0, Tstrong) the stability estimates

E[χ|ξ](t) ≤ eCtE[χ|ξ](0)

Evolume[χ|χ̄](t) ≤ eCt
(
Evolume[χ|χ̄](0) + E[χ|ξ](0)

)
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hold true for almost every t ∈ [0, T ], where the constant C > 0 only depends on χ̄ and T
through certain higher derivatives of functions associated to χ̄. The interface error functional
E[χ|ξ] is defined in (4.2), with ξi,j denoting the gradient flow calibration for the classical
solution χ̄ as constructed in Proposition 4.6, and the bulk error functional Evolume[χ|χ̄] is
defined in (4.5).

Proof. This is an immediate consequence of the conditional weak-strong uniqueness principle
of Proposition 4.5, and the existence results of Proposition 4.6 and Lemma 4.7 realizing the
assumptions of Proposition 4.5 in the planar setting.

4.1.1 Calibrations and inclusion principle

The key ingredient for our uniqueness result prior to topology changes is the following gra-
dient flow analogue of the notion of calibrations for minimal partitions. Our main result,
Theorem 4.1, is then an immediate consequence of two implications: First, the existence of a
gradient flow calibration guarantees uniqueness of the BV solution (see Proposition 4.3 and
Proposition 4.5) in arbitrary ambient dimension d ≥ 2; second, classical solutions to planar
multiphase mean curvature flow are calibrated in the sense that a gradient flow calibration
exists (see Proposition 4.6 and Lemma 4.7).

Definition 4.2 (Calibrations for the gradient flow and calibrated flows). Let d ≥ 2, P ≥ 2
be integers and let σ ∈ RP×P be an admissible matrix of surface tensions in the sense of
Definition 4.8. Let T > 0, and for all i ∈ {1, . . . , P} let Ω̄i :=

⋃
t∈[0,T ] Ω̄i(t)×{t} such that

for all t ∈ [0, T ] the family (Ω̄1(t), . . . , Ω̄P (t)) is a partition of finite surface energy of Rd
in the sense of Definition 4.10. For each i, j ∈ {1, . . . , P} with i 6= j and all t ∈ [0, T ], let
Īi,j(t) := ∂∗Ω̄i(t) ∩ ∂∗Ω̄j(t) be the interface between the phases i and j at time t.

A pair (ξ = (ξi)i∈{1,...,P}, B) consisting of vector fields

ξi ∈ C1([0, T ];C0
cpt(Rd;Rd)) ∩ C0([0, T ];C1

cpt(Rd;Rd)), i ∈ {1, . . . , P},
B ∈ C0([0, T ];C1

cpt(Rd;Rd))

is called a calibration for the gradient flow for the calibrated flow (Ω̄1, . . . , Ω̄P ) on [0, T ] if
the following conditions are satisfied:

• For each pair of phases i, j ∈ {1, . . . , P} and all t ∈ [0, T ], the vector field

ξi,j(·, t) :=
1

σi,j
(ξi − ξj)(·, t) (4.1a)

coincides on Īi,j(t) with the associated unit normal vector field n̄i,j(·, t) (with the con-
vention that n̄i,j(·, t) points from phase i into phase j), and it satisfies an estimate of
the form

|ξi,j(x, t)| ≤ 1− cmin{dist2(x, Īi,j(t)), 1} (4.1b)

for some c ∈ (0, 1) and all (x, t) ∈ Rd × [0, T ].

• The evolution of the vector fields ξi,j is approximately transported by the velocity field
B in the sense∣∣∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j

∣∣(x, t) ≤ C( dist(x, Īi,j(t)) ∧ 1
)

(4.1c)

and ∣∣∂t|ξi,j |2 + (B · ∇)|ξi,j |2
∣∣(x, t) ≤ C( dist2(x, Īi,j(t)) ∧ 1

)
(4.1d)

for some C > 0 and all (x, t) ∈ Rd × [0, T ].
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• For each t ∈ [0, T ], the normal component of the velocity field B(·, t) near the interface
Īi,j(t) is approximately given by the mean curvature of Īi,j(t) in the sense that∣∣ξi,j ·B +∇ · ξi,j

∣∣(x, t) ≤ C( dist(x, Īi,j(t)) ∧ 1
)

(4.1e)

for some C > 0 and all (x, t) ∈ Rd × [0, T ].

Note that, at least heuristically, such a calibrated flow is a solution to mean curvature
flow as on Īi,j the normal velocity n̄i,j ·B coincides with the mean curvature due to (4.1e).

The next proposition states that for general d ≥ 2 the existence of a gradient flow cal-
ibration for a given time-evolving partition of Rd into P domains (Ω̄1, . . . , Ω̄P ) constrains
the possible locations of the interfaces in weak (BV) solutions to mean curvature flow to the
corresponding interfaces of the partition (Ω̄1, . . . , Ω̄P ). This assertion may be seen as a multi-
phase analogue of the varifold comparison principle by Ilmanen [82, Theorem 10.7], which for
two-phase mean curvature flow provides a corresponding inclusion given any Brakke solution
and a level set solution. Note that such an inclusion does not yet yield uniqueness of BV
solutions, as it does not exclude the sudden vanishing of all phases except one.

Proposition 4.3 (Quantitative inclusion principle). Let d ≥ 2 and P ≥ 2 be integers and
let σ ∈ RP×P be an admissible matrix of surface tensions, see Definition 4.8. Let T > 0, and
let (Ω̄1, . . . , Ω̄P ) be a calibrated flow on [0, T ] in the sense of Definition 4.2.

Then the interfaces Ii,j(t) := ∂∗{χi(t) = 1}∩∂∗{χj(t) = 1} of any BV solution (χ1, . . . , χP )
to mean curvature flow on [0, T ] in the sense of Definition 4.11 with the same initial data
as the calibrated flow must be contained in the corresponding interfaces Īi,j(t) := ∂∗Ω̄i(t) ∩
∂∗Ω̄j(t) for a. e. 0 < t < T , i.e., it holds Ii,j(t) ⊂ Īi,j(t) for all i, j with i 6= j up to Hd−1

null sets.
Furthermore, the existence of a gradient flow calibration also implies a stability estimate:

Introducing the interface error functional

E[χ|ξ](t) :=

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(t)

1− ξi,j(·, t) · ni,j(·, t) dHd−1, (4.2)

there exists a constant C > 0 depending on the calibrated flow such that we have the stability
estimate

E[χ|ξ](t) ≤ eCtE[χ|ξ](0) (4.3)

for general BV solutions χ = (χ1, . . . χP ) and almost every t ∈ [0, T ].

As already discussed, the interface error control provided by the functional (4.2) suffers
from a lack of coercivity concerning the vanishing of interface length in a BV solution. For
this reason, we also have to consider a lower-order term Evolume[χ|χ̄], see (4.5) below, which
controls bulk deviations from the grains of the strong solution Ω̄. The main input for the
bulk error functional is captured in the following notion of transported weights.

Definition 4.4 (Transported weights). Let d ≥ 2, P ≥ 2 be integers and denote by T ∈ (0,∞)
a finite time horizon. For all i ∈ {1, . . . , P} let Ω̄i :=

⋃
t∈[0,T ] Ω̄i(t)×{t} such that for all

t ∈ [0, T ] the family (Ω̄1(t), . . . , Ω̄P (t)) is a partition of finite surface energy of Rd in the
sense of Definition 4.10. Denote by χ̄ = (χ̄1, . . . , χ̄P ) the associated family of indicator
functions for Ω̄ = (Ω̄1, . . . , Ω̄P ). Assume that for all i ∈ {1, . . . , P} the measure ∂tχ̄i is
absolutely continuous with respect to the measure |∇χ̄i|, and that the boundary ∂Ω̄i(·, t) is
Lipschitz at all times t ∈ [0, T ]. Let finally B ∈ C0([0, T ];C1

cpt(Rd;Rd)).
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In this setting, a family of measurable maps

ϑi : Rd × [0, T ]→ [−1, 1], i ∈ {1, . . . , P},

is called a family of transported weights with respect to (Ω̄, B) on [0,T] if the following
conditions are satisfied:

• (Regularity) For all phases i ∈ {1, . . . , P} it holds

ϑi ∈W 1,1(Rd × [0, T ]) ∩W 1,∞(Rd × [0, T ]).

• (Coercivity) For all phases i ∈ {1, . . . , P} and all t ∈ [0, T ], we have ϑi(·, t) < 0 in the
essential interior of Ω̄i(t), ϑi(·, t) > 0 in the essential exterior of Ω̄i(t), and ϑi(·, t) = 0
on ∂Ω̄i(t).

• (Advection equation) The weights are transported by the vector field B in the sense that

|∂tϑi + (B · ∇)ϑi| ≤ C|ϑi| (4.4)

holds true in Rd × [0, T ] for all phases i ∈ {1, . . . , P}.

The merit of the previous definition is that it allows to sharpen the quantitative inclusion
principle of Proposition 4.3 to a conditional weak-strong uniqueness principle (with an asso-
ciated conditional stability estimate) for BV solutions of multiphase mean curvature flow; see
Proposition 4.5 below for the precise statement. The result is conditional in the sense that
in addition to the existence of a gradient flow calibration (see Definition 4.2), the existence
of a family of transported weights (see Definition 4.4) is assumed. However, the crucial point
is that it already holds in arbitrary ambient dimension d ≥ 2.

Proposition 4.5 (Conditional weak-strong uniqueness and quantitative stability). Let d ≥ 2,
P ≥ 2 be integers and σ ∈ RP×P be an admissible matrix of surface tensions in the sense of
Definition 4.8. Let χ = (χ1, . . . , χP ) be a BV solution of multiphase mean curvature flow in
the sense of Definition 4.11 on [0, T ]. Let moreover Ω̄ = (Ω̄1, . . . , Ω̄P ) be as in Definition 4.4
on [0, T ]. The associated family of indicator functions is denoted by χ̄ = (χ̄1, . . . , χ̄P ).

Assume also that there exists a gradient flow calibration ((ξi)i∈{1,...,P}, B) with respect
to Ω̄ on [0, T ] in the sense of Definition 4.2, and that there exists a family of transported
weights (ϑi)i∈{1,...,P} with respect to (Ω̄, B) on [0, T ] in the sense of Definition 4.4. Recall the
definition (4.2) of the interface error functional, and define a bulk error functional by

Evolume[χ|χ̄](t) :=

P∑
i=1

ˆ
Rd
|χi(·, t)−χ̄i(·, t)||ϑi(·, t)|dx, t ∈ [0, T ]. (4.5)

Then it holds

χ(·, 0) = χ̄(·, 0) a.e. in Rd ⇒ χ(·, t) = χ̄(·, t) a.e. in Rd for a.e. t ∈ [0, T ].

Moreover, the interface error functional E[χ|ξ] from (4.2) and the bulk error functional
Evolume[χ|χ̄] from (4.5) satisfy quantitative stability estimates of the form

E[χ|ξ](t) ≤ eCtE[χ|ξ](0) (4.6)

Evolume[χ|χ̄](t) ≤ eCt
(
Evolume[χ|χ̄](0) + E[χ|ξ](0)

)
(4.7)

for almost every t ∈ [0, T ].
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4.1.2 Gradient flow calibrations for regular networks

In view of Proposition 4.5 above, the question of weak-strong uniqueness for BV solutions
of multiphase mean curvature flow is reduced to the task of constructing a gradient flow
calibration and a family of transported weights. As it turns out, in the planar case the
existence of a classical solution to mean curvature flow — in the sense of a smooth evolution
of curves meeting at triple junctions with the correct contact angle, see Definition 4.14 —
entails the existence of a calibration for the gradient flow:

Proposition 4.6. Let d = 2 and P ∈ N, P ≥ 2. Let (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow on [0, T ] in the sense of Definition 4.14. Then there exists
an associated gradient flow calibration on [0, T ] in the sense of Definition 4.2.

In the same setting as above, one can in addition establish the existence of a family of
transported weights.

Lemma 4.7. Let d = 2 and P ∈ N, P ≥ 2. Let (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow on [0, T ] in the sense of Definition 4.14. Let B denote the
velocity field from Proposition 4.6. Then there exists a family of transported weights on [0, T ]
with respect to (Ω̄, B) in the sense of Definition 4.4.

4.1.3 Basic definitions

In the following, we recall the precise definitions of the solution concepts for multiphase
mean curvature flow which our main results are concerned with. We begin with the notion
of admissible surface tensions.

Definition 4.8 (Admissible matrix of surface tensions). Let P ≥ 2 be an integer and σ =
(σi,j)i,j=1,...,P ∈ RP×P . The matrix σ is called an admissible matrix of surface tensions if the
following conditions are satisfied:

i) (Symmetry) It holds that σi,j = σj,i and σi,i = 0 for every i, j ∈ {1, . . . , P}.

ii) (Positivity) We have σmin := min{σi,j : i, j ∈ {1, . . . , P}, i 6= j} > 0.

iii) (Coercivity) The matrix of surface tensions σ is non-degenerately `2-embeddable into
RP−1, i.e., there exists a non-degenerate (P − 1)-simplex (q1, . . . , qP ) in RP−1 such that
σi,j = |qi − qj | for all i, j ∈ {1, . . . , P}, see Figure 4.1b.

We briefly comment on the previous definition.

Remark 4.9. The above conditions on the matrix of surface tensions are natural, which is
clear for the first two items, while condition iii) already appeared in [102] as being necessary
for the existence of calibrations in the static case. It implies another coercivity condition in
the form of the strict triangle inequality

σi,j < σi,k + σk,j (4.8)

for all choices of pairwise distinct i, j, k ∈ {1, . . . , P}.
We call condition iii) of Definition 4.8 and condition (4.8) coercivity properties for the

following reasons: First, the strict triangle inequality (4.8) will ensure that our relative en-
tropy functional provides control on wetting, i.e., the nucleation of a thin layer of a third
phase along the smooth part of an interface between two phases. Second, the embeddability
condition iii) will prevent the nucleation of a fourth phase (or clusters of phases) at a triple
junction.
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a)

nk,i

ni,j

nj,k

b)

σk,i

σi,jσj,k

qk qi

qj

Figure 4.1: a) Normals ni,j , nj,k and nk,i satisfying the balance-of-forces condition σi,jni,j +
σj,knj,k + σk,ink,i = 0. b) Sketch of the points qi, qj and qk of the l2-embedding of σ.

It is well known, see [137, Section 3], that condition iii) of Definition 4.8 may be equiv-
alently phrased as follows: The symmetric (P × P )-matrix Q = (σ2

i,j)i,j=1,...,P is strictly
conditionally negative definite in the sense that

z ·Qz < 0 for all z ∈ RP \ {0} with
P∑
i=1

zi = 0. (4.9)

In a second step, we turn to the notion of partitions with finite interface energy.

Definition 4.10 (Partitions with finite interface energy, cf. [12]). Let d ≥ 2, let P ≥ 2 be
an integer and let σ ∈ RP×P be an admissible matrix of surface tensions in the sense of
Definition 4.8. Let (Ω1, . . . ,ΩP ) be a partition of Rd in the sense that for i, j = 1, . . . , P with
i 6= j we have Ωi ⊂ Rd and the sets Ωi ∩ Ωj and Rd \

⋃P
i=1Ωi have Ld-measure zero. Let

χi := χΩi denote the characteristic function of the Ld-measurable set Ωi for i = 1, . . . , P .
We call χ = (χ1, . . . , χP ), or equivalently (Ω1, . . . ,ΩP ), a partition of Rd with finite

interface energy if the energy

E[χ] :=

P∑
i,j=1,i 6=j

σi,j

ˆ
Rd

1

2

(
d|∇χi|+ d|∇χj | − d|∇(χi+χj)|

)
(4.10)

is finite.

Note that for a partition of Rd with finite interface energy, each Ωi is a set of finite
perimeter. By introducing the interfaces Ii,j := ∂∗Ωi ∩ ∂∗Ωj as the intersection of the
respective reduced boundaries, the energy of a partition χ can be rewritten in the equivalent
form

E[χ] =

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j

1 dHd−1. (4.11)

We next recall the notion of BV solutions to multiphase mean curvature flow, cf. [98, 99].

Definition 4.11 (BV solutions for multiphase mean curvature flow). Let d ≥ 2 and P ≥ 2
be integers. Let σ ∈ RP×P be an admissible matrix of surface tensions in the sense of
Definition 4.8, and let TBV > 0 be a finite time horizon. Let χ0 = (χ0,1, . . . , χ0,P ) be an
initial partition of Rd with finite interface energy in the sense of Definition 4.10.

A measurable map

χ = (χ1, . . . , χP ) : Rd × [0, TBV)→ {0, 1}P ,

or the corresponding tuple of sets Ωi :=
⋃
t∈[0,TBV) Ωi(t)×{t}, Ωi(t) := {χi(t)=1} for i ∈

{1, . . . , P} and t ∈ [0, TBV), is called a BV solution for multiphase mean curvature flow with
initial data χ0 if the following conditions are satisfied:
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i) (Partition with finite interface energy) For almost every t ∈ [0, TBV), χ(·, t) is a partition
of Rd with finite interface energy in the sense of Definition 4.10 and

ess sup
t∈[0,TBV)

E[χ(·, t)] = ess sup
t∈[0,TBV)

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(t)

1 dHd−1 <∞, (4.12a)

where for all t ∈ [0, T ] we denote by Ii,j(t) = ∂∗Ωi(t) ∩ ∂∗Ωj(t) for i 6= j the interface
between the phases Ωi(t) and Ωj(t).

ii) (Evolution equation) For all i ∈ {1, . . . , P}, there exist normal velocities Vi ∈ L2(Rd ×
[0, TBV), |∇χi| ⊗ L1) in the sense that each χi satisfies the evolution equation

ˆ
Rd
χi(·, T )ϕ(·, T ) dx−

ˆ
Rd
χ0,iϕ(·, 0) dx

=

ˆ T

0

ˆ
Rd
Viϕd|∇χi| dt+

ˆ T

0

ˆ
Rd
χi∂tϕdx dt (4.12b)

for almost every T ∈ [0, TBV) and all ϕ ∈ C∞cpt(Rd × [0, TBV)). Moreover, the (reflec-
tion) symmetry condition Vi ∇χi|∇χi| = Vj

∇χj
|∇χj | shall hold H

d−1 ⊗ L1-almost everywhere on⋃
t∈[0,TBV) Ii,j(t)×{t}, i 6= j.

iii) (BV formulation of mean curvature) The normal velocities satisfy the equation

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

Vi
∇χi
|∇χi|

· B dHd−1 dt

=
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(
Id− ∇χi
|∇χi|

⊗ ∇χi
|∇χi|

)
: ∇B dHd−1 dt (4.12c)

for almost every T ∈ [0, TBV) and all B ∈ C∞cpt(Rd × [0, TBV);Rd).

iv) (Energy dissipation inequality) The sharp energy dissipation inequality

E[χ(·, T )] +
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

|Vi|2 dHd−1 dt ≤ E[χ0] (4.12d)

holds true for almost every T ∈ [0, TBV).

The same definition can be used to define a BV solution for multiphase mean curvature
flow on [0, TBV] for maps χ = (χ1, . . . , χP ) : Rd × [0, TBV]→ {0, 1}P .

Next, we give the definition of strong solutions to multiphase mean curvature flow. To
this end, we first define a notion of regular partitions and regular networks of interfaces (cf.
[110, Definitions 2.1, 2.7 and 4.7]).

Definition 4.12 (Regular partitions and networks of interfaces). Let d = 2, let P ≥ 2 be
an integer, and let (Ω̄1, . . . , Ω̄P ) be a partition with finite interface energy of open subsets
of R2 such that the closure of ∂∗Ω̄i is given by ∂Ω̄i. Moreover, let χ̄i := χΩ̄i

denote the
characteristic function of the Ld-measurable set Ω̄i, and let Īi,j := ∂Ω̄i ∩ ∂Ω̄j denote the
respective interfaces for i 6= j.

We call χ̄ = (χ̄1, . . . , χ̄P ), or equivalently (Ω̄1, . . . , Ω̄P ), a regular partition of R2 and
I :=

⋃
i 6=j Īi,j a regular network of interfaces in R2 if the following properties are satisfied:
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i) (Regularity) Each interface Īi,j is a one-dimensional manifold with boundary of class C5.
The interior of each interface is embedded. Moreover, each interface Īi,j is compact and
consists of finitely many connected components.

ii) (Multi-points are triple junctions) Only different interfaces may intersect, and if this is
the case then only at their boundary. Moreover, at each intersection point exactly three
interfaces meet. In other words, all multi-points of the network of interfaces are triple
junctions.

iii) (Balance-of-forces condition) Let p ∈ R2 be a triple junction present in the network.
Assume for notational concreteness that at the triple junction p, the three phases Ω̄i, Ω̄j

and Ω̄k meet. Then, the balance-of-forces condition.

σi,j n̄i,j(p) + σj,kn̄j,k(p) + σk,in̄k,i(p) = 0 (4.13)

has to be satisfied, see Figure 4.1a. Here, n̄i,j(x) denotes the unit normal vector of the
interface Īi,j at x ∈ Īi,j pointing from phase Ω̄i towards phase Ω̄j.

iv) (Second- and third-order compatibility) We additionally have the second-order compati-
bility condition

σi,jHi,j(p) + σj,kHj,k(p) + σk,iHk,i(p) = 0 (4.14)

for the scalar mean curvatures Hi,j := −∇tan · n̄i,j, which is equivalent to the existence of
a “velocity” vector B(p) ∈ R2 with Hl,m(p) = n̄l,m(p) ·B(p) for all distinct l,m ∈ {i, j, k}.
For the choice of tangent vectors τ̄i,j := J−1n̄i,j with J :=

(
0 −1
1 0

)
, we furthermore have

the third-order condition

τ̄i,j(p) · (Hi,jB +∇Hi,j) (p) = τ̄j,k(p) · (Hj,kB +∇Hj,k) (p)

= τ̄k,i(p) · (Hk,iB +∇Hk,i) (p).
(4.15)

Here, we slightly abuse notation by denoting the tangential derivative of Hi,j in direction
τ̄i,j by τ̄i,j · ∇Hi,j.

Let σ ∈ RP×P be an admissible matrix of surface tensions in the sense of Definition 4.8.
We call χ̄ = (χ̄1, . . . , χ̄P ), or equivalently (Ω̄1, . . . , Ω̄P ), a regular partition of R2 with finite
interface energy, if χ̄ satisfies

E[χ̄] :=
P∑

i,j=1,i 6=j
σi,j

ˆ
Īi,j

1 dS <∞ (4.16)

in addition to the previous requirements.

Interpreting the triple junction as a free boundary of the interfaces, the identities (4.14)
and (4.15) can be viewed as parabolic compatibility conditions: They arise from differentiat-
ing in time the zero-th order condition of p being the common endpoint of Īi,j , Īj,k, and Īk,i;
and the first-order condition (4.13) in time, respectively. Keeping in mind parabolic scaling,
the condition (4.14) is indeed second order, while (4.15) is third order.

We say that a regular partition along with its associated regular network of interfaces
evolves smoothly if no topological changes occur in the sense of the following definition:

Definition 4.13 (Smoothly evolving partitions and smoothly evolving networks of inter-
faces). Let d = 2, let P ≥ 2 be an integer and let χ̄0 = (χ̄0

1, . . . , χ̄
0
P ) be a regular par-

tition of R2 with a regular network of interfaces I0 =
⋃
i 6=j Ī

0
i,j in the sense of Defini-

tion 4.12. Let T > 0, and consider Ω̄i :=
⋃
t∈[0,T ] Ω̄i(t)×{t}, i ∈ {1, . . . , P}, so that for
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Ω̄i

Ω̄j

Īi,j

Figure 4.2: Sketch of a regular partition of the plane and the corresponding regular network.

all t ∈ [0, T ] the family (Ω̄1(t), . . . , Ω̄P (t)) is a regular partition of R2 in the sense of Defi-
nition 4.12. For each i ∈ {1, . . . , P} let χ̄i : R2×[0, T ] → R2 be the characteristic function
of Ω̄i, and for each pair i 6= j with i, j ∈ {1, . . . , P} and all t ∈ [0, T ] define the interfaces
Īi,j(t) := ∂Ω̄i(t) ∩ ∂Ω̄j(t).

We say that χ̄ = (χ̄1, . . . , χ̄P ), or equivalently (Ω̄1, . . . , Ω̄P ), is a smoothly evolving regular
partition of R2×[0, T ] and I :=

⋃
i,j∈{1,...,P},i 6=j Īi,j is a smoothly evolving regular network of

interfaces in R2×[0, T ], where Īi,j :=
⋃
t∈[0,T ] Īi,j(t)×{t} for all i, j ∈ {1, . . . , P} with i 6= j,

if there exists a time-dependent family of diffeomorphisms

ψt : R2 → R2, t ∈ [0, T ],

with the following properties:

i) ψ0 = Id, χ̄i(t) = χ̄0
i ◦
(
ψt
)−1 and Īi,j(t) = ψt(Ī 0

i,j) for all i, j ∈ {1, . . . , P} with i 6= j and
all t ∈ [0, T ],

ii) for all i, j ∈ {1, . . . , P} with i 6= j, the map

ψi,j : Ī 0
i,j×[0, T ]→ Īi,j , (x, t)→ (ψt(x), t)

is a diffeomorphism of class (C0
t C

5
x ∩ C1

t C
3
x)(Ī 0

i,j×[0, T ]).

We have everything in place to proceed with the definition of strong solutions for multi-
phase mean curvature flow.

Definition 4.14 (Strong solution for multiphase mean curvature flow). Let d = 2, P ≥
2 be an integer, σ ∈ RP×P be an admissible matrix of surface tensions in the sense of
Definition 4.8, and let Tstrong > 0 be a finite time horizon. Let χ̄0 = (χ̄0

1, . . . , χ̄
0
P ) be an

initial regular partition of R2 with finite interface energy in the sense of Definition 4.12.
A measurable map

χ̄ = (χ̄1, . . . , χ̄P ) : Rd × [0, Tstrong)→ {0, 1}P ,

or the corresponding tuple of sets Ω̄i :=
⋃
t∈[0,Tstrong) Ω̄i(t)×{t}, Ω̄i(t) := {χ̄i(t)=1} for i ∈

{1, . . . , P} and t ∈ [0, Tstrong), is called a strong solution for multiphase mean curvature flow
with initial data χ̄0 if for all T ∈ [0, Tstrong) it is a strong solution for multiphase mean
curvature flow on [0, T ] in the following sense:
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i) (Smoothly evolving regular partition with finite interface energy) The map χ̄ is a smoothly
evolving regular partition of R2×[0, T ] and I :=

⋃
i,j∈{1,...,P},i 6=j Īi,j is a smoothly evolving

regular network of interfaces in R2×[0, T ] in the sense of Definition 4.13. In particular,
for every t ∈ [0, T ], χ̄(·, t) is a regular partition of R2 and

⋃
i 6=j Īi,j(t) is a regular network

of interfaces in R2 in the sense of Definition 4.12 such that

sup
t∈[0,T ]

E[χ̄(·, t)] = sup
t∈[0,T ]

P∑
i,j=1,i 6=j

σi,j

ˆ
Īi,j(t)

1 dS <∞. (4.17a)

ii) (Evolution by mean curvature) For i, j = 1, . . . , P with i 6= j and (x, t) ∈ Īi,j let
V̄i,j(x, t) denote the normal speed of the interface at the point x ∈ Īi,j(t), i.e., V̄i,j(x, t) :=
(n̄i,j(x, t), 0) · ∂tψi,j(y, t) at y = (ψt)−1(x) ∈ Īi,j(0), where ψi,j and ψt are the maps from
Definition 4.13. Denoting by Hi,j(x, t) the mean curvature vector of Īi,j(t) at x ∈ Īi,j(t),
we then assume that

V̄i,j(x, t)n̄i,j(x, t) = Hi,j(x, t), for all t ∈ [0, T ], x ∈ Īi,j(t). (4.17b)

iii) (Initial conditions) We have χ̄i(x, 0) = χ̄0,i(x) for all points x ∈ Rd and each phase
i ∈ {1, . . . , P}.

4.1.4 Relative entropy inequality

The key ingredient for the proof of Proposition 4.3 is the derivation of a Gronwall-type
inequality for the tilt-excess-like error functional (4.2): We aim to derive an estimate of the
form

E[χ|ξ](T ) ≤ E[χ|ξ](0) + C(ξ)

ˆ T

0
E[χ|ξ](t) dt (4.18)

for almost all admissible times T ≥ 0 from which one may infer the desired stability estimate
(4.3) by an application of Gronwall’s lemma. The weak-strong uniqueness principle then
follows by means of the coercivity properties of the relative entropy error functional (4.2) and
a subsequent estimate for Evolume[χ|χ̄], see Proposition 4.5. The following result contains the
first key step in the derivation of the Gronwall-type inequality (4.18); it is valid for general
vector fields ξi and B with sufficient smoothness (not just for gradient flow calibrations).

Proposition 4.15 (Relative entropy inequality). Let d ≥ 2, P ≥ 2 be integers, and let
σ ∈ RP×P be an admissible matrix of surface tensions in the sense of Definition 4.8. Let
χ = (χ1, . . . , χP ) be a BV solution of multiphase mean curvature flow in the sense of Defini-
tion 4.11 on some time interval [0, T ′] with T ′ > 0. For i, j = 1, . . . , P with i 6= j we denote
by

ni,j :=
∇χj
|∇χj |

= − ∇χi
|∇χi|

, Hd−1-a.e. on Ii,j , (4.19)

the (measure-theoretic) unit normal vector of the interface Ii,j pointing from the i-th to the
j-th phase of the BV solution. Moreover, let

Vi,j := Vi = −Vj , Hd−1-a.e. on Ii,j . (4.20)

Let (ξi,j)i 6=j∈{1,...,P} and (ξi)i=1,...,P be families of compactly supported vector fields such
that

ξi,j , ξi ∈ C1([0, T ′];C0
cpt(Rd;Rd)) ∩ C0([0, T ′];C1

cpt(Rd;Rd))
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as well as σi,jξi,j = ξi − ξj for all i 6= j. Let

B ∈ C0([0, T ′];C1
cpt(Rd;Rd))

be an arbitrary compactly supported vector field. Consistently with (4.2), define the interface
error control

E[χ|ξ](t) :=

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(t)

1− ξi,j(·, t) · ni,j(·, t) dHd−1. (4.21)

Then the interface error control is subject to the estimate

E[χ|ξ](T )

+

P∑
i,j=1,i 6=j

σi,j
2

ˆ T

0

ˆ
Ii,j(t)

|Vi,j+∇ · ξi,j |2 + |Vi,jni,j−(B · ξi,j)ξi,j |2 dHd−1 dt

≤ E[χ|ξ](0) +Rdt +Rdissip (4.22)

for almost every T ∈ [0, T ′]. Here, we made use of the abbreviations

Rdt := −
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2

(
∂t|ξi,j |2+(B · ∇)|ξi,j |2

)
dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(
∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

)
· (ni,j−ξi,j) dHd−1 dt,

Rdissip :=

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2
|(∇ · ξi,j) +B · ξi,j |2 dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2
|B · ξi,j |2(1− |ξi,j |2) dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(1− ni,j · ξi,j)(∇ · ξi,j)(B · ξi,j) dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(
(Id−ξi,j ⊗ ξi,j)B

)
· (Vi,j+∇ · ξi,j)ni,j dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(1− ni,j · ξi,j)(∇ ·B) dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(ni,j−ξi,j)⊗ (ni,j−ξi,j) : ∇B dHd−1 dt.

4.1.5 Structure of the paper

The remaining part of the paper is organized as follows. Section 4.2 illustrates our strategy
at the two most important examples, a smooth interface and a triple junction.

In Section 4.3, we prove the stability of calibrated flows and exploit all properties of our
gradient flow calibrations and the weak solution: In Subsection 4.3.1 we derive the relative
entropy inequality in its full generality of Proposition 4.15; and in Subsection 4.3.2, we prove
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the quantitative inclusion principle, Proposition 4.3. The latter is lifted to the conditional
weak-strong uniqueness principle of Proposition 4.5 in Subsection 4.3.3.

The next three sections of the manuscript are devoted to the construction of our gradient
flow calibrations given a strong solution. First, we provide explicit constructions at a smooth
interface (Section 4.4) and at a triple junction (Section 4.5). These cases do not only serve
as model examples but they also form the building blocks for our general construction in
Section 4.6. Therein, we glue together these local constructions to obtain a gradient flow
calibration for regular networks, which establishes Proposition 4.6.

Section 4.7 finally provides the construction of a family of transported weights given a
strong solution.

4.2 Outline of the strategy

4.2.1 Idea of proof for a smooth interface

Let us give a brief idea of the proof, ignoring technical difficulties in the simplest case of
two phases sharing one single interface with σ = 1. In that case, it is sufficient to describe
the weak solution and the calibrated flow by a single phase Ω(t) ⊂ Rd, resp. Ω̄(t) ⊂ Rd for
t ∈ [0, T ], the first being a set of finite perimeter and the second being a simply connected,
smooth set. The relative entropy is then simply given by

E[χ|ξ](t) =

ˆ
∂∗Ω(t)

(1− n · ξ) dHd−1,

which has the interpretation of an oriented excess of the weak solution with respect to the
strong one. Here χ = χ(x, t) denotes the characteristic function of Ω = Ω(t) and n = − d∇χ

d|∇χ|
denotes the (measure theoretic) exterior unit normal of ∂∗Ω(t). Furthermore, the vector field
ξ(·, t) is an extension of the exterior unit normal n̄(·, t) of the calibrated, smooth interface
Ī(t) := ∂Ω̄ necessitated by the fact that we evaluate it on the weak solution.

In order to relate the extension ξ to the evolution, we require it to be transported along
an extension B of the velocity field of Ī in the sense that

∂tξ = − (B · ∇) ξ − (∇B)Tξ +O
(

dist(·, Ī )
)
, (4.23)

which will help make the second term of Rdt small (see Proposition 4.15 for the definition).
The extension for B will be done such that it is constant in the “normal” ξ-direction, meaning
we have (ξ · ∇)B = 0, and such that the motion law n̄ · B = V̄ = H = −∇tan · n̄ is still
approximately true away from the interface in the sense that

ξ ·B = −∇ · ξ +O
(

dist(·, Ī )
)
, (4.24)

helping with the first term of Rdissip.
As we also want the functional E[χ|ξ] to ensure that χ cannot be too far away from χ̄,

we allow for ξ to be short, i.e., we have |ξ| ≤ 1, and we ask this effect to be transported by
B up to quadratic error

∂t|ξ|2 + (B · ∇)|ξ|2 = O
(

dist2(·, Ī )
)
, (4.25)

keeping the first term of Rdt small.
In the present case of a single interface, the construction of these vector fields is straight-

forward using the signed distance function s = s(x, t) to the smooth interface Ī: We set

ξ := ζ(s)∇s and B := −(∆s)ξ,
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Figure 4.3: Illustration of the vector field ξ at a smooth interface Ī(t). The vector field ξ
extends the unit normal vector field of Ī(t) by projection onto Ī(t) and multiplication with
a cutoff function.

where ζ is a suitable cut-off function such that ζ(s̃) = 1− s̃2 close to s̃ = 0. Note that since
|∇s| = 1, this implies

s2 = 1− ζ(s) ≤ 1− ζ(s) n · ∇s = 1− n · ξ (4.26)

in the region where s is small, so that the relative entropy controls the (truncated) L2 distance
of the weak solution and the calibrated flow.

In the following heuristic derivation of the relative entropy inequality (from Proposi-
tion 4.15) in the case of a single interface, we will use the abbreviation

´
∂∗Ω · :=

´
∂∗Ω(t) · dH

d−1

for the integral along a time slice ∂∗Ω(t), t ∈ [0, T ], of the weak solution. Recall that V de-
notes the normal velocity of the weak solution characterized by the distributional equation
∂tχ = V |∇χ|, see (4.12b), so that the sign convention is V > 0 for expanding Ω.

The optimal energy dissipation rate (4.12d) and the definition (4.12b) of V imply
d

dt
E[χ|ξ] =

d

dt
|∂∗Ω| − d

dt

ˆ
Ω

(∇ · ξ) dx ≤ −
ˆ
∂∗Ω

V 2 −
ˆ
∂∗Ω

V (∇ · ξ)−
ˆ
∂∗Ω

∂tξ · n.

Testing the distributional mean curvature flow equation (4.12c) with the extended velocity
field B gives

0 =

ˆ
∂∗Ω

V (n ·B) +

ˆ
∂∗Ω

(Id−n⊗ n) : ∇B.

Adding these terms to the right-hand side of the previous inequality yields
d

dt
E[χ|ξ] ≤ −

ˆ
∂∗Ω

(
V 2 + V (∇ · ξ)− V (n ·B)

)
+

ˆ
∂∗Ω

(∇ ·B)−
ˆ
∂∗Ω

n⊗ n: ∇B

−
ˆ
∂∗Ω

∂tξ · n.

We now write B = (ξ ·B) ξ + (Id−ξ ⊗ ξ)B, which we interpret as a decomposition of B
into “normal” and “tangential” parts. Then we complete the squares, and add and subtract
(B · ∇) ξ + (∇B)Tξ to make the transport equation for ξ appear. We obtain

d

dt
E[χ|ξ] ≤− 1

2

ˆ
∂∗Ω

(
(V +∇ · ξ)2 + |V n− (ξ ·B) ξ|2

)
+

1

2

ˆ
∂∗Ω

(
(∇ · ξ)2 + |ξ|2 (ξ ·B)2

)
+

ˆ
∂∗Ω

V n · (Id−ξ ⊗ ξ)B

+

ˆ
∂∗Ω

(∇ ·B)−
ˆ
∂∗Ω

n⊗ n: ∇B

+

ˆ
∂∗Ω

n · (B · ∇) ξ +

ˆ
∂∗Ω

ξ · (n · ∇)B

−
ˆ
∂∗Ω

(
∂tξ + (B · ∇) ξ + (∇B)Tξ

)
· n, (4.27)
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where the second line collects precisely the terms left after completing the squares.
By symmetry considerations, we have

0 =

ˆ
Ω
∇ · [∇ · (B ⊗ ξ − ξ ⊗B)] dx =

ˆ
∂∗Ω

[∇ · (B ⊗ ξ − ξ ⊗B)] · n

=

ˆ
∂∗Ω

[(∇ · ξ) n ·B + n · (ξ · ∇)B − (∇ ·B) n · ξ − n · (B · ∇) ξ] ,

where for the second line we used (ξ ·∇)B = 0. Now we use |ξ| ≤ 1 to drop the prefactor |ξ|2
of (ξ · B)2 in the second right-hand side integral in inequality (4.27), complete the square,
add the above identity to obtain, and collect all terms involving ∇B

d

dt
E[χ|ξ] ≤ −1

2

ˆ
∂∗Ω

(
(V +∇ · ξ)2 + |V n− (ξ ·B) ξ|2

)
+

1

2

ˆ
∂∗Ω

(∇ · ξ + ξ ·B)2 +

ˆ
∂∗Ω

(∇ · ξ) (n− ξ) ·B

+

ˆ
∂∗Ω

V n · (Id−ξ ⊗ ξ)B +

ˆ
∂∗Ω

(1− n · ξ) (∇ ·B)

−
ˆ
∂∗Ω

(n− ξ)⊗ (n− ξ) : ∇B +

ˆ
∂∗Ω

ξ ⊗ ξ : ∇B

−
ˆ
∂∗Ω

(
∂tξ + (B · ∇) ξ + (∇B)Tξ

)
· n.

Once more, we decompose B into “tangential” and “normal” components with respect to ξ
and manipulate the last integral to finally arrive at the entropy dissipation inequality

d

dt
E[χ|ξ] ≤− 1

2

ˆ
∂∗Ω

(
(V +∇ · ξ)2 + |V n− (ξ ·B) ξ|2

)
+

1

2

ˆ
∂∗Ω

(∇ · ξ + ξ ·B)2 +

ˆ
∂∗Ω

(∇ · ξ) (n · ξ − 1) (ξ ·B)

+

ˆ
∂∗Ω

(∇ · ξ + V ) n · (Id−ξ ⊗ ξ)B

+

ˆ
∂∗Ω

(1− n · ξ) (∇ ·B)−
ˆ
∂∗Ω

(n− ξ)⊗ (n− ξ) : ∇B

−
ˆ
∂∗Ω

(
∂tξ + (B · ∇) ξ + (∇B)Tξ

)
· (n− ξ)

−
ˆ
∂∗Ω

(∂tξ + (B · ∇) ξ) · ξ.

Now let us briefly argue term-by-term that the right-hand side can be controlled by
the relative entropy E[χ|ξ], which together with a Gronwall argument and a subsequent
estimate (4.7) of the bulk error would yield Theorem 4.1 for P = 2. Thanks to (4.24), the
first term of the second line is quadratic in dist(·, Ī) and therefore controlled by the relative
entropy due to (4.26). The second integral of the second line is controlled by the relative
entropy since ∇ · ξ and ξ ·B are uniformly bounded; for the second term one can use (4.26).
To handle the third line, we use Cauchy-Schwarz and Young, and absorb

´
(∇· ξ+V )2 in the

first integral. The remaining integral of |(Id−ξ⊗ ξ)n|2 = |n− (ξ ·n)ξ|2 . |n− ξ|2 +(1−n · ξ)2

is controlled by the relative entropy. Clearly, both terms in the fourth line are controlled by
the relative entropy. Finally, the integrals in the fifth and sixth lines are quadratic due to
(4.23) and the factor n− ξ, and (4.25), respectively.
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Ω̄i

Ω̄j Ω̄k

Īk,i

Īi,j

Īj,l

Figure 4.4: Sketch of a triple junction.

4.2.2 Idea of proof for a triple junction

The second model case is given by a triple junction, say, with equal surface tensions. To
illustrate the additional difficulties, we also present the idea of our proof in this case. However,
we restrict ourselves to the case d = 2.

We denote the phases of the weak solution by Ω1, Ω2, and Ω3 with characteristic functions
χ1, χ2, and χ3. To simplify notation, we identify indices if they are equivalent mod 3, i. e.,
we define χ4 := χ1, χ5 := χ2, χ0 := χ3, and so on. Following the notation of Proposition
4.15, we denote the normal vector of the interface Ii,i+1 = ∂∗Ωi ∩ ∂∗Ωi+1 between phases i
and i+ 1 for i = 1, 2, 3 in the weak solution by

ni,i+1 :=
d∇χi+1

d|∇χi+1|
= − d∇χi

d|∇χi|
H1-a. e. on ∂∗Ωi ∩ ∂∗Ωi+1.

The normal velocity of Ii,i+1, denoted by Vi, is characterized by the distributional identity
∂tχi = Vi|∇χi|. Furthermore, we will consider its restriction Vi,i+1 := Vi|Ii,i+1 to the interface
Ii,i+1 together with the symmetry condition Vi+1,i := −Vi,i+1. As before, the corresponding
quantities in the calibrated solution will be indicated by an additional bar on top of the
quantity, i.e., for example χ̄i for the indicator function of the corresponding phases, n̄i,i+1 for
the corresponding normal, and so on.

The first key step is to construct extensions ξi,i+1, i = 1, 2, 3, of the unit normal vector
field n̄i,i+1 of the calibrated interfaces Īi,i+1. As in the case of a single interface, the extensions
ξi,i+1 and the velocity field B are constructed to have the following properties:

• The time evolution of the vector fields ξi,i+1 is approximately described by transport
along the flow of the velocity field B. More precisely, for the vector field B we have for
i = 1, 2, 3 that

∂tξi,i+1 = −(B · ∇)ξi,i+1 − (∇B)Tξi,i+1 +O(dist(·, Īi,i+1)).

• On each interface Īi,i+1, i = 1, 2, 3, of the calibrated solution, the normal part of the
velocity field B must satisfy n̄i,i+1 · B = H̄i,i+1 := −∇tan · n̄i,i+1, where H̄i,i+1 is the
scalar mean curvature of Īi,i+1. We strengthen this identity to approximately hold even
away from the interface, in form of

ξi,i+1 ·B = −∇ · ξi,i+1 +O(dist(·, Īi,i+1)) for i = 1, 2, 3.

• The vector fields ξi,i+1 have at most unit length |ξi,i+1| ≤ 1.

• The length of the vector fields ξi,i+1 is advected with the flow of B to higher order

∂t|ξi,i+1|2 = −(B · ∇)|ξi,i+1|2 +O
(

dist2(·, Īi,i+1)
)

for i = 1, 2, 3.
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

The new aspect of a triple junction as opposed to a single interface is that one also has
to extend the normal of an interface to locations where a different interface may be closer.
To this end, we turn to Herring’s angle condition (4.13), which in our case of equal surface
tensions says that the three interfaces must meet at the triple junction to form equal angles
of 120◦ each, and require it to hold throughout the domain in the sense that

3∑
i=1

ξi,i+1(x, t) = 0 for all x, t. (4.28)

Furthermore, note carefully that we only define a single extension B of the velocity field,
and that B is not necessarily a normal vector field on each interface Īi,i+1: Indeed, we expect
the triple junction p(t) to move according to d

dtp = B(p(t), t), so that not allowing for tangen-
tial components would pin the triple junction in space. It turns out that in addition to Her-
ring’s angle condition, which we take to be of first order, we require higher-order compatibility
conditions of the interfaces at the triple junction. For instance, in part iv) of Definition 4.12 we
have already seen that the second-order conditionH1,2(p(t), t)+H2,3(p(t), t)+H3,1(p(t), t) = 0
is equivalent to the existence of the vector B(p(t), t).

To construct the extensions ξi,i+1 of the normal vector fields n̄i,i+1, i = 1, 2, 3, we first
partition space into six wedge-shaped sets around the triple junction: Three contain one
strong interface each, while the remaining three wedges lie entirely within a single phase,
see Figure 4.5a. On the mixed phase wedges, we first extend the corresponding normal by
an expansion ansatz, see Figure 4.5b, and then define the remaining vector fields to satisfy
the identity (4.28) by 120◦ rotations of the ansatz, see Figure 4.5c. On the single phase
wedges, we will interpolate between the competing definitions of the two adjacent mixed
phase wedges.

All rigorous discussions of compatibility will be deferred to Section 4.5, and we will only
describe the initial extension procedure here. Let us fix i = 1, 2, 3. In fact, it is more
instructive to first extend the velocity field B in the wedge-shaped neighborhood of the
interface Īi,i+1. To this end, we recall τ̄i,i+1 = J−1n̄i,i+1 on Īi,i+1 with J =

(
0 −1
1 0

)
from

Definition 4.12 and use the extension ansatz

B := H̄i,i+1n̄i,i+1 + αi,i+1τ̄i,i+1 + βi,i+1si,i+1τ̄i,i+1,

where n̄i,i+1 and τ̄i,i+1 are extended to be constant in the n̄i,i+1-direction, si,i+1 is the signed
distance function to Īi,i+1 with the sign convention ∇si,i+1 = n̄i,i+1, and αi,i+1 and βi,i+1

are still to be determined. As d
dtp(t) = B(p(t), t), it is reasonable that αi,i+1(p(t), t) :=

τ̄i,i+1(p(t), t) · d
dtp(t) should be the tangential velocity of p at the triple junction. It turns

out to be convenient to extend αi,i+1 along the interface Īi,i+1 by means of the ordinary
differential equation (τ̄i,i+1 · ∇)αi,i+1 = H2

i,i+1. In view of the third-order compatibility
condition 4.15, the choice βi,i+1(x, t) := (τ̄i,i+1 · ∇)Hi,i+1 + αi,i+1Hi,i+1 for x ∈ Īi,i+1(t) is
a good candidate to make B independent of i. To define αi,i+1 and βi,i+1 away from the
interface, we once again require them to be constant in n̄i,i+1-direction.

It turns out that as the extension ξ = ξi,i+1(x, t) of n̄i,i+1 one should take

ξ = n̄ + αsτ̄ − 1
2α

2s2n̄ (4.29)

where the functions α = αi,i+1(x, t) are as above and we dropped the indices i, i+ 1 for ease
of notation. Note that in particular ξi,i+1 = n̄i,i+1 on the interface Īi,i+1 and that we allow
for linear corrections of the tangential component as we move away from the interface, but
only for quadratic corrections of the normal component of ξ.
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4.2. Outline of the strategy

a)

Īk,iĪi,j

Īj,kWj,k

Wk

Wk,i

Wi

Wi,j

Wj

b)

Wk,i

Wi

Wi,j

c)

Wk,i

Wi

Wi,j

Figure 4.5: a) The gray, horizontally hatched domain is Hj,k, the region hatched in red from
the bottom left to the top right is Hi,j , and Hk,i is shown hatched in blue from the top left
to the bottom right. The simply hatched regions indicate the wedges Wi,j , Wj,k and Wk,i

containing the interfaces Īi,j , Īj,k and Īk,i. The interpolation wedges Wi, Wj and Wk are
shown as doubly hatched regions. b) Sketch of the initial extensions of n̄k,i in blue on the
right and n̄i,j in red on the left, defined on Wk,i and Wi,j , as well as the two respective
neighboring interpolation wedges. c) The image shows the vector field n̄k,i (in blue on the
right) and the rotated vector field Rn̄i,j (in red on the left), where R is the clockwise rotation
by 120◦.

We then measure the error between the weak solution χ and the calibrated solution χ̄ by
means of the relative entropy functional

E[χ|ξ](t) :=

3∑
i=1

ˆ
Ii,i+1(t)

(1− ni,i+1 · ξi,i+1) dH1.

Let us use the abbreviation
∑

i =
∑3

i=1 for the summation over the three relevant indices.
As in the two-phase case, we only use two ingredients to evaluate the time evolution of

the relative entropy: the energy dissipation inequality for the weak solution in the sharp form

d

dt

∑
i

ˆ
Ii,i+1

1 dH1 ≤ −
3∑
i=1

ˆ
Ii,i+1

V 2
i,i+1 dH1,
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

and the weak formulation of the evolution equation of the indicator functions χi

d

dt

ˆ
Rd
χiϕdx =

ˆ
∂∗Ωi

Viϕ dH1 +

ˆ
Rd
χi∂tϕdx

for compactly supported, smooth ϕ. In order to make use of the latter equation, we have to
rewrite the contributions

´
Ii,i+1

ni,i+1 · ξi,i+1(x, t) as a volume integral. It turns out that the
annihilation condition

∑
i ξi,i+1(x, t) = 0 enables us to rewrite ξi,i+1 as

ξi,i+1 = ξi − ξi+1 (4.30)

by defining the vector field ξi as ξi := 1
3(ξi,i+1− ξi−1,i). Combining (4.30) with the symmetry

ni,i+1 = − d∇χi
d|∇χi| = d∇χi+1

d|∇χi+1| and the decomposition ∂∗Ωi = Ii−1,i ∪ Ii,i+1, we rewrite the
second term in the relative entropy as

−
∑
i

ˆ
Ii,i+1

ni,i+1 · ξi,i+1 dH1 =
∑
i

(ˆ
Ii,i+1

ξi · d∇χi +

ˆ
Ii,i+1

ξi+1 · d∇χi+1

)
=
∑
i

ˆ
∂∗Ωi

ξi · d∇χi

= −
∑
i

ˆ
Rd
χi(∇ · ξi) dx.

This indeed enables us to evaluate the time evolution of the relative entropy as

d

dt
E[χ|ξ] ≤−

∑
i

ˆ
Ii,i+1

V 2
i,i+1 dH1

−
∑
i

ˆ
∂∗Ωi

Vi(∇ · ξi) dH1 +
∑
i

ˆ
∂∗Ωi

∂tξi · d∇χi dH1.

Arguing analogously to the previous computation in reverse order—that is, splitting the
integrals into contributions ∂∗Ωi ∩ ∂∗Ωi+1 = Ii,i+1, using (4.30) and the definitions of ni,i+1

and Vi,i+1—we obtain

d

dt
E[χ|ξ] ≤ −

∑
i

ˆ
Ii,i+1

V 2
i,i+1 dH1 −

∑
i

ˆ
Ii,i+1

Vi,i+1(∇ · ξi,i+1) dH1

−
∑
i

ˆ
Ii,i+1

∂tξi,i+1 · ni,i+1 dH1.

Now we proceed as in the two-phase case in the previous section: The BV formulation of
mean curvature flow in this three-phase setting reads

∑
i

ˆ
Ii,i+1

Vi,i+1ni,i+1 ·B dH1 = −
∑
i

ˆ
Ii,i+1

(Id−ni,i+1 ⊗ ni,i+1) : ∇B dH1.
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Following precisely the same algebraic manipulations as in the two-phase case we obtain

d

dt
E[χ|ξ]

≤− 1

2

∑
i

ˆ
Ii,i+1

(
(Vi,i+1 +∇ · ξi,i+1)2 + |Vi,i+1ni,i+1 − (ξi,i+1 ·B) ξi,i+1|2

)
dH1

+
1

2

∑
i

ˆ
Ii,i+1

(∇ · ξi,i+1 + ξi,i+1 ·B)2 dH1

+
∑
i

ˆ
Ii,i+1

(∇ · ξi,i+1) (ni,i+1 · ξi,i+1 − 1) (ξi,i+1 ·B) dH1

+
∑
i

ˆ
Ii,i+1

(∇ · ξi,i+1 + Vi,i+1) ni,i+1 · (Id−ξi,i+1 ⊗ ξi,i+1)B dH1

+
∑
i

ˆ
Ii,i+1

(1− ni,i+1 · ξi,i+1) (∇ ·B) dH1

−
∑
i

ˆ
Ii,i+1

(ni,i+1 − ξi,i+1)⊗ (ni,i+1 − ξi,i+1) : ∇B dH1

−
∑
i

ˆ
Ii,i+1

(
∂tξi,i+1 + (B · ∇) ξi,i+1 + (∇B)Tξi,i+1

)
· (ni,i+1 − ξi,i+1) dH1

−
∑
i

ˆ
Ii,i+1

(∂tξi,i+1 + (B · ∇) ξi,i+1) · ξi,i+1 dH1.

With this inequality at our disposal we can conclude as in the two-phase case.

4.3 Stability of calibrated flows

This section is devoted to the proof of the stability properties of calibrated flows. In the
next three subsections, we derive the relative entropy inequality Proposition 4.15 and the
quantitative inclusion principle Proposition 4.3.

4.3.1 Relative entropy inequality: Proof of Proposition 4.15

We start with the proof of the relative entropy inequality for a BV solution χ = (χ1, . . . , χP )
of multiphase mean curvature flow in the sense of Definition 4.11. The definition of the
relative entropy functional E[χ|ξ] can be found in (4.21).

Proof of Proposition 4.15. In order to make use of the evolution equations (4.12b) for the
indicator functions χi of the BV solution, we start by rewriting the interface error control of
our relative entropy. Using σi,jξi,j = ξi− ξj from Definition 4.2 of a gradient flow calibration,
the symmetry relation ni,j = −nj,i, the definition (4.19) of the measure theoretic normal as
well as the representation of the energy (4.11), we obtain by an application of the generalized
divergence theorem

P∑
i,j=1,i 6=j

σi,j

ˆ
Ii,j(T )

1− ξi,j(·, T ) · ni,j(·, T ) dHd−1

= E[χ(·, T )]−
P∑

i,j=1,i 6=j

ˆ
Ii,j(T )

(ξi(·, T )−ξj(·, T )) · ni,j(·, T ) dHd−1
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= E[χ(·, T )] +
P∑
i=1

P∑
j=1,j 6=i

ˆ
Ii,j(T )

ξi(·, T ) · ∇χi(·, T )

|∇χi(·, T )|
dHd−1

+

P∑
j=1

P∑
i=1,i 6=j

ˆ
Ii,j(T )

ξj(·, T ) · ∇χj(·, T )

|∇χj(·, T )|
dHd−1

= E[χ(·, T )] + 2

P∑
i=1

ˆ
Rd
ξi(·, T ) · ∇χi(·, T )

|∇χi(·, T )|
d|∇χi(·, T )|

= E[χ(·, T )]− 2

P∑
i=1

ˆ
Rd
χi(·, T )(∇ · ξi(·, T )) dx. (4.31)

This enables us to compute by the sharp energy dissipation inequality (4.12d), the evolution
equations (4.12b) for the indicator functions χi of the BV solution, and definition (4.20) of
the velocities Vi,j for almost every T ∈ [0, T ′]

E[χ|ξ](T )

≤ E[χ(·, 0)]− 2

P∑
i=1

ˆ
Rd
χ0,i(∇ · ξi(·, 0)) dx−

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

|Vi,j |2 dHd−1 dt

− 2
P∑
i=1

ˆ T

0

ˆ
Rd
χi∂t(∇ · ξi) dx dt− 2

P∑
i=1

ˆ T

0

ˆ
Rd
Vi(∇ · ξi) d|∇χi| dt.

The first two terms combine to Einterface[χ|χ̄](0) using (4.31) in reverse order. We aim to
rewrite the latter two terms back to surface integrals over the interfaces as well. To this end,
we argue analogously to the computation in (4.31) but now in reverse order. Using first the
generalized divergence theorem, then splitting the integrals over the reduced boundaries of the
phases into contributions over the interfaces Ii,j = ∂∗Ωi ∩ ∂∗Ωj by means of σi,jξi,j = ξi − ξj
from Definition 4.2 of a gradient flow calibration we obtain

−2
P∑
i=1

ˆ T

0

ˆ
Rd
χi∂t(∇ · ξi) dx dt = 2

P∑
i=1

ˆ T

0

ˆ
Rd

∇χi
|∇χi|

· ∂tξi d|∇χi| dt

=

P∑
i=1

P∑
j=1,j 6=i

ˆ T

0

ˆ
Ii,j(t)

∇χi
|∇χi|

· ∂tξi dHd−1 dt

+
P∑
j=1

P∑
i=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

∇χj
|∇χj |

· ∂tξj dHd−1 dt

(4.19)
= −

P∑
i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ni,j · ∂t(ξi − ξj) dHd−1 dt

= −
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j · ∂tξi,j dHd−1 dt.

The term incorporating the normal velocities is treated similarly. In addition to the above
ingredients, i.e., σi,jξi,j = ξi−ξj from Definition 4.2 of a gradient flow calibration and splitting
the integrals over the reduced boundaries of the phases into contributions over the interfaces
Ii,j = ∂∗Ωi ∩ ∂∗Ωj , we also use that Vi,j = −Vj,i on Īi,j together with definition (4.20) to
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compute

−2

P∑
i=1

ˆ T

0

ˆ
Rd
Vi(∇ · ξi) d|∇χi|dt = −

P∑
i=1

P∑
j=1,j 6=i

ˆ T

0

ˆ
Ii,j(t)

Vi,j(∇ · ξi) dHd−1 dt

+
P∑
j=1

P∑
i=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

Vi,j(∇ · ξj) dHd−1 dt

= −
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

Vi,j(∇ · ξi,j) dHd−1 dt.

Combining the last two identities, we obtain for almost every T ∈ [0, T ′]

E[χ|ξ](T )

≤ E[χ|ξ](0)−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

|Vi,j |2 dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j · ∂tξi,j dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

Vi,j(∇ · ξi,j) dHd−1 dt.

For the next step, we use the vector field B as a test function in the BV formulation of mean
curvature flow (4.12c). Adding the resulting equation to the previous inequality, observing in
the process that Vi ∇χi|∇χi| = −Vi,jni,j on Ii,j due to (4.19) and (4.20), as well as decomposing
B = (Id−ξi,j ⊗ ξi,j)B + (B · ξi,j)ξi,j , we obtain

E[χ|ξ](T )

≤ E[χ|ξ](0)−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

|Vi,j |2 dHd−1 dt (4.32)

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(B · ξi,j)ξi,j · Vi,jni,j dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

Vi,j(∇ · ξi,j) dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(Id−ξi,j ⊗ ξi,j)B · Vi,jni,j dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ ·B) dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j ⊗ ni,j : ∇B dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j · ∂tξi,j dHd−1 dt,
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which holds for almost every T ∈ [0, T ′]. In order to obtain the dissipation term on the
left hand side of the relative entropy inequality (4.22), we complete the squares yielding for
almost every T ∈ [0, T ′]

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

|Vi,j |2 dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(B · ξi,j)ξi,j · Vi,jni,j dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

Vi,j(∇ · ξi,j) dHd−1 dt (4.33)

= −
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(1

2
|Vi,j+∇ · ξi,j |2 +

1

2
|Vi,jni,j−(B · ξi,j)ξi,j |2

)
dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(1

2
|∇ · ξi,j |2 +

1

2
|(B · ξi,j)ξi,j |2

)
dHd−1 dt.

Furthermore, on the one hand, adding and subtracting (B · ∇)ξi,j + (∇B)Tξi,j yields

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ ·B) dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j ⊗ ni,j : ∇B dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j · ∂tξi,j dHd−1 dt

=
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ ·B) dHd−1 dt (4.34)

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(ni,j − ξi,j) · (ni,j · ∇)B dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(
(B · ∇)ξi,j

)
· ni,j dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(
∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

)
· ni,j dHd−1 dt

for almost every T ∈ [0, T ′]. On the other hand, we may exploit symmetry to obtain (relying
again on the by now routine fact that one can switch back and forth between certain volume
integrals and surface integrals over the individual interfaces by means of σi,jξi,j = ξi − ξj
from Definition 4.2 of a gradient flow calibration, the symmetry relation ni,j = −nj,i and the
definition (4.19))

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j ·
(
∇ · (B ⊗ ξi,j)

)
dHd−1 dt
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=
P∑

i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ni,j ·
(
∇ · (B ⊗ (ξi−ξj))

)
dHd−1 dt

= −2

P∑
i=1

ˆ T

0

ˆ
Rd

∇χi
|∇χi|

·
(
∇ · (B ⊗ ξi)

)
dHd−1 dt

= 2
P∑
i=1

ˆ T

0

ˆ
Rd
χi∇ ·

(
∇ · (B ⊗ ξi)

)
dx dt

= 2
P∑
i=1

ˆ T

0

ˆ
Rd
χi∇ ·

(
∇ · (ξi ⊗B)

)
dx dt

=

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j ·
(
∇ · (ξi,j ⊗B)

)
dHd−1 dt.

Because of this identity, we can now compute

0 =
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j ·
(
∇ · (B ⊗ ξi,j − ξi,j ⊗B)

)
dHd−1 dt

=
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ · ξi,j)B · ni,j dHd−1 dt (4.35)

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j · (ξi,j · ∇)B dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j · (B · ∇)ξi,j dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ ·B)ξi,j · ni,j dHd−1 dt.

Making use of the identities (4.33) and (4.34) in the inequality (4.32) as well as adding (4.35)
to the right hand side of (4.32), we arrive at the following bound for the time evolution of
the interface error control of our relative entropy functional

E[χ|ξ](T )

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(1

2
|Vi,j+∇ · ξi,j |2 +

1

2
|Vi,jni,j−(B · ξi,j)ξi,j |2

)
dHd−1 dt

≤ E[χ|ξ](0) (4.36)

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(1

2
|∇ · ξi,j |2 +

1

2
|(B · ξi,j)ξi,j |2

)
dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ · ξi,j)B · ni,j dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(Id−ξi,j ⊗ ξi,j)B · Vi,jni,j dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ ·B)(1− ξi,j · ni,j) dHd−1 dt
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−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(ni,j − ξi,j)⊗ ni,j : ∇B dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j ⊗ ξi,j : ∇B dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(
∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

)
· ni,j dHd−1 dt,

which is valid for almost every T ∈ [0, T ′]. Completing squares and adding zero yields for
the second, third and fourth term on the right hand side of (4.36)

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(1

2
|∇ · ξi,j |2 +

1

2
|(B · ξi,j)ξi,j |2

)
dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(∇ · ξi,j)B · ni,j dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(Id−ξi,j ⊗ ξi,j)B · Vi,jni,j dHd−1 dt

=
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2
|(∇ · ξi,j) +B · ξi,j |2 dHd−1 dt (4.37)

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2
|B · ξi,j |2(1− |ξi,j |2) dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(Id−ξi,j ⊗ ξi,j)B · (Vi,j +∇ · ξi,j)ni,j dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(1− ni,j · ξi,j)(∇ · ξi,j)(B · ξi,j) dHd−1 dt.

Adding zero in the last term on the right hand side of (4.36) in order to generate the transport
equation for the length of the vector fields ξi,j , we observe that the last three terms on the
right hand side of (4.36) combine to

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(ni,j − ξi,j)⊗ ni,j : ∇B dHd−1 dt

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

ni,j ⊗ ξi,j : ∇B dHd−1 dt

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(
∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

)
· ni,j dHd−1 dt

= −
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(ni,j − ξi,j)⊗ (ni,j − ξi,j) : ∇B dHd−1 dt (4.38)

−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(
∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

)
· (ni,j − ξi,j) dHd−1 dt
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−
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2

(
∂t|ξi,j |2+(B · ∇)|ξi,j |2

)
dHd−1 dt.

Employing the notation of Proposition 4.15 as well as using (4.37) and (4.38) in (4.36), we
deduce that the right hand side of (4.36) indeed reduces to

E[χ|ξ](T )

+
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

(1

2
|Vi,j+∇ · ξi,j |2 +

1

2
|Vi,jni,j−(B · ξi,j)ξi,j |2

)
dHd−1 dt

≤ E[χ|ξ](0) +Rdt +Rdissip,

which is valid for almost every T ∈ [0, T ′]. This concludes the proof of (4.22).

4.3.2 Quantitative inclusion principle: Proof of Proposition 4.3

We now prove the inclusion principle stating that interfaces of any BV solution must be
contained in the corresponding interfaces of a calibrated flow, provided both start with the
same initial data.

Proof of Proposition 4.3. Step 1: The stability estimate (4.3). The starting point is the
estimate on the evolution of the interface error functional (4.2) from Proposition 4.15. In the
following, we estimate the terms appearing on the right hand side one-by-one. Let T ∈ [0, T ′].

Due to (4.1c), (4.1d), as well as the trivial relation

|ni,j−ξi,j |2 ≤ 2(1− ni,j · ξi,j) (4.39)

(which follows by |ξi,j | ≤ 1), we immediately deduce

|Rdt| ≤ C
ˆ T

0
E[χ|ξ](t) dt. (4.40)

Making use of the simple estimate 1−|ξi,j |2 ≤ 2(1 − |ξi,j |) ≤ 2(1 − ni,j · ξi,j) and again the
bound (4.39), we also obtain

|Rdissip| ≤
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2
|(∇ · ξi,j) +B · ξi,j |2 dHd−1 dt

+

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(Id−ξi,j ⊗ ξi,j)B · (Vi,j+∇ · ξi,j)ni,j dHd−1 dt

+ C

ˆ T

0
E[χ|ξ](t) dt

=: I + II + C

ˆ T

0
E[χ|ξ](t) dt.

By means of (4.1e), we may directly estimate

|I| ≤ C
ˆ T

0
E[χ|ξ](t) dt.
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Furthermore, by an application of Hölder’s and Young’s inequality we deduce

|II| =
∣∣∣∣ P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

(Id−ξi,j ⊗ ξi,j)B · (Vi,j+∇ · ξi,j)(ni,j−ξi,j) dHd−1 dt

∣∣∣∣
≤ δ

P∑
i,j=1,i 6=j

σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2
(Vi,j+∇ · ξi,j)2 dHd−1 dt

+ Cδ−1

ˆ T

0
E[χ|ξ](t) dt,

uniformly over all δ ∈ (0, 1). Hence, we get the bound

|Rdissip| ≤ δ
P∑

i,j=1,i 6=j
σi,j

ˆ T

0

ˆ
Ii,j(t)

1

2
(Vi,j+∇ · ξi,j)2 dHd−1 dt (4.41)

+ Cδ−1

ˆ T

0
E[χ|ξ](t) dt.

Plugging in the bounds from (4.40) and (4.41) into the relative entropy inequality from
Proposition 4.15, and then choosing δ ∈ (0, 1) sufficiently small in order to absorb the first
right-hand side term, we therefore get constants C1, C2 > 0 such that the estimate

E[χ|ξ](T ) (4.42)

+ C1

P∑
i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

(1

2
(Vi,j+∇ · ξi,j)2 +

1

2
|Vi,jni,j−(B · ξi,j)ξi,j |2

)
dHd−1 dt

≤ C2

ˆ T

0
E[χ|ξ](t) dt

holds true for almost every T ∈ [0, T ′]. By an application of Gronwall’s lemma, the asserted
stability estimate (4.3) from Proposition 4.3 follows.

Step 3: Weak-strong comparison. For coinciding initial conditions E[χ|ξ](0) = 0, the
stability estimate (4.3) entails E[χ|ξ] = 0 for almost every t ∈ [0, T ′]. From this and (4.1b),
it immediately follows that Ii,j(t) ⊂ Īi,j(t) holds up to an Hd−1-null set for almost every
t ∈ [0, T ′]. This proves the quantitative inclusion principle for BV solutions of multiphase
mean curvature flow.

4.3.3 Conditional weak-strong uniqueness: Proof of Proposition 4.5

We start with an analogue of the relative entropy inequality of Proposition 4.15 in terms of
the bulk error functional Evolume[χ|χ̄] from (4.5).

Lemma 4.16. Let d ≥ 2, P ≥ 2 be integers and σ ∈ RP×P be an admissible matrix of
surface tensions in the sense of Definition 4.8. Let χ = (χ1, . . . , χP ) be a BV solution of
multiphase mean curvature flow in the sense of Definition 4.11 on some time interval [0, T ′].
Recall from (4.19) resp. (4.20) the definitions of the (measure-theoretic) unit normal vectors
ni,j resp. of the normal velocities Vi,j of a BV solution. Let moreover Ω̄ = (Ω̄1, . . . , Ω̄P ) be a
time-dependent partition of Rd with finite interface energy on [0, T ′] as in Definition 4.4, and
assume that there exists an associated family of transported weights (ϑi)i∈{1,...,P} with velocity
field B. Finally, let (ξi,j)i 6=j∈{1,...,P} be a family of compactly supported vector fields such that

ξi,j ∈ C0([0, T ′];C1
cpt(Rd;Rd)).
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Then, the bulk error functional Evolume[χ|χ̄] from (4.5) is subject to the identity

Evolume[χ|χ̄](T ) = Evolume[χ|χ̄](0) +Rvolume (4.43)

for almost every T ∈ [0, T ′]. Here, we made use of the abbreviation

Rvolume := −
P∑

i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ϑi(B · ξi,j − Vi,j) dHd−1 dt

−
P∑

i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ϑiB · (ni,j − ξi,j) dHd−1 dt

+
P∑
i=1

ˆ T

0

ˆ
Rd

(χi − χ̄i)ϑi(∇ ·B) dx dt

+
P∑
i=1

ˆ T

0

ˆ
Rd

(χi − χ̄i)(∂tϑi + (B · ∇)ϑi) dx dt.

Denote for i, j ∈ {1, . . . , P} with i 6= j and t ∈ [0, T ′] by Īi,j(t) := ∂Ω̄i(t) ∩ ∂Ω̄j(t) the
interfaces associated with Ω̄. Then, the identity (4.43) may be upgraded to the estimate

Evolume[χ|χ̄](T )

≤ Evolume[χ|χ̄](0) + δ
P∑

i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

|B · ξi,j − Vi,j |2 dHd−1 dt (4.44)

+
C

δ

P∑
i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

dist2(·, Īi,j) ∧ 1 dHd−1 dt

+
C

δ

P∑
i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

1− ni,j · ξi,j dHd−1 dt

+ C
P∑
i=1

ˆ T

0
Evolume[χ|χ̄](t) dt

valid for almost every T ∈ [0, T ′], all δ ∈ (0, 1] and a constant C > 0 being independent of δ.

Proof. We split the proof into two steps.
Proof of (4.43). To compute the time evolution, note that the sign conditions on ϑi from

Definition 4.4 of a family of transported weights is precisely what is needed to have

Evolume[χ|χ̄](T ) =

P∑
i=1

ˆ
Rd

(χi(·, T )−χ̄i(·, T ))ϑi(·, T ) dx.

Hence, we may make use of the evolution equations (4.12b) for the indicator functions χi of the
BV solution which together with ∂tχ̄i � |∇χ̄i| and ϑi = 0 on supp |∇χ̄i| (see Definition 4.4)
yields for almost every T ∈ [0, T ′]

Evolume[χ|χ̄](T )

= Evolume[χ|χ̄](0) +

P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)∂tϑi dx dt+

P∑
i=1

ˆ T

0

ˆ
Rd
Viϑi d|∇χi|dt.
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We next use the convention (4.20) and rewrite

P∑
i=1

ˆ T

0

ˆ
Rd
Viϑi d|∇χi| dt =

P∑
i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ϑiVi,j dH1 dt.

Furthermore, by adding and subtracting (B · ∇)ϑi, an integration by parts, ϑi = 0 on
supp |∇χ̄i| (see Definition 4.4), and the definition (4.19) of the measure theoretic unit normal,
we obtain

P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)∂tϑi dx dt

= −
P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)(B · ∇)ϑi dx dt+
P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)(∂tϑi+(B · ∇)ϑi) dx dt

= −
P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)∇ · (ϑiB) dx dt+

P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)ϑi(∇ ·B) dx dt

+
P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)(∂tϑi+(B · ∇)ϑi) dx dt

=
P∑
i=1

ˆ T

0

ˆ
Rd

∇χi
|∇χi|

· ϑiB d|∇χi| dt+
P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)ϑi(∇ ·B) dx dt

+

P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)(∂tϑi+(B · ∇)ϑi) dx dt

= −
P∑

i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ϑiB · ξi,j dH1 dt

−
P∑

i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ϑiB · (ni,j−ξi,j) dH1 dt

+
P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)ϑi(∇ ·B) dx dt

+

P∑
i=1

ˆ T

0

ˆ
Rd

(χi−χ̄i)(∂tϑi+(B · ∇)ϑi) dx dt

for almost every T ∈ [0, T ′]. The combination of the previous three displays thus proves (4.43)
as asserted.

Step 2: Proof of (4.44). Starting point is of course (4.43) meaning that we need to
estimate the term Rvolume. First, we may infer based on the bound (4.4) on the advective
derivative of the transported weights ϑi, the bound |B| ≤ C (see Definition 4.4), Hölder’s
and Young’s inequality as well as the bound (4.39) that the estimate

|Rvolume| ≤ δ
P∑

i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

|B · ξi,j − Vi,j |2 dHd−1 dt

+
C

δ

P∑
i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

ϑ2
i dHd−1 dt
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+
C

δ

P∑
i,j=1,i 6=j

ˆ T

0

ˆ
Ii,j(t)

1− ni,j · ξi,j dHd−1 dt

+ C
P∑
i=1

ˆ T

0
Evolume[χ|χ̄](t) dt

holds true, uniformly over all δ ∈ (0, 1). As ϑi = 0 on supp |∇χ̄i|, ϑi ∈ W 1,∞
x,t (Rd ×

[0, T ′]; [−1, 1]) and ∂Ω̄i is Lipschitz (see Definition 4.4), we may further estimate

ϑ2
i ≤ C(dist2(·, ∂Ω̄i) ∧ 1) ≤ C(dist2(·, Īi,j) ∧ 1)

for all phases i, j ∈ {1, . . . , P} with i 6= j. This, however, concludes the proof.

We have everything in place to lift the quantitative inclusion principle from Proposi-
tion 4.3 to the conditional weak-strong uniqueness principle of Proposition 4.5 (with an
associated conditional stability estimate).

Proof of Proposition 4.5. The stability estimate (4.6) concerning the interface error is al-
ready a consequence of Proposition 4.3 (for which one only needs to assume the existence
of a gradient flow calibration ((ξi)i∈{1,...,P}, B) with respect to Ω̄). Recall from (4.1b) that
dist2(·, Īi,j) ∧ 1 ≤ C(1 − |ξi,j |) for all i, j ∈ {1, . . . , P} with i 6= j. Inserting this into the
corresponding right hand side term of (4.44), adding the estimate (4.42) from the proof of
Proposition 4.3 to the estimate (4.44), and choosing δ ∈ (0, 1] in (4.44) sufficiently small then
entails

E[χ|ξ](T ) + Evolume[χ|χ̄](T ) ≤ C
ˆ T

0
E[χ|ξ](t) + Evolume[χ|χ̄](t) dt

for almost every T ∈ [0, T ′]. The stability estimate (4.7) for the bulk error is now a direct
consequence of Gronwall’s lemma.

It remains to prove the conditional weak-strong uniqueness statement. To this end, note
first that χ(·, 0) = χ̄(·, 0) almost everywhere in Rd entails E[χ|ξ](0) = 0 and Evolume[χ|χ̄](0) =
0 as a consequence of the respective definitions (4.2) and (4.5). In view of the stability
estimate (4.7), this directly implies Evolume[χ|χ̄](T ) = 0 for almost every T ∈ [0, T ′]. It then
follows from the coercivity properties of a family of transported weights (see Definition 4.4)
that χ(·, T ) = χ̄(·, T ) almost everywhere in Rd for almost every T ∈ [0, T ′]. This, however,
is the desired weak-strong uniqueness principle.

4.4 Gradient flow calibrations at a smooth manifold

The aim of this section is to construct a gradient flow calibration in the simple situation of
one single connected manifold (with or without boundary) evolving by mean curvature, see
Lemma 4.18 for the main result of this section. For the sake of simplicity, we stick to the case
d = 2, but the construction in this section immediately carries over to arbitrary dimensions.

In terms of a gradient flow calibration for a whole network of interfaces in the sense of
Definition 4.2, the vector fields constructed in Lemma 4.18 provide the local building block
at a smooth two-phase interface of the network. These vector fields therefore only live in a
small tubular neighborhood of the evolving interface, so that in the case of general networks
a suitable localization in terms of a family of cutoff functions will be necessary. We defer
these considerations to Section 4.6.1.

First, we provide the precise setting of this section by giving a suitable notion of neigh-
borhood for a single space-time connected component of the evolving network of interfaces.
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Definition 4.17. Let d = 2 and P ∈ N, P ≥ 2. Let (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow in the sense of Definition 4.14. Fix phases i, j ∈ {1, . . . , P}
with i 6= j such that Īi,j =

⋃
t∈[0,T ] Īi,j(t)×{t} is a non-trivial interface (possibly with bound-

ary). A scale ri,j ∈ (0, 1] is called an admissible localization radius for the interface Īi,j if
for all t ∈ [0, T ] the following two ball conditions are satisfied:

i) For each interior point x ∈ Īi,j(t) it holds Bri,j (x±ri,j n̄i,j(x, t)) ∩ Īi,j(t) = {x}.

ii) In addition, for a boundary point x ∈ ∂Īi,j(t) (i.e., a triple junction) denote by t̄i,j(x, t)
the tangent at x pointing away from the curve Īi,j(t), and by Ht̄i,j (x, t) the half-space {y ∈
R2 : (y − x) · t̄i,j(x, t) > 0}. We then require that Bri,j (y) ∩ Īi,j(t) = {x} for all y ∈
∂Bri,j (x) ∩Ht̄i,j (x, t).

It follows from our regularity requirements in Definition 4.14 that an admissible localiza-
tion radius always exists. Moreover,

Ψi,j : Īi,j × (−ri,j , ri,j)→ R2 × [0, T ], (x, t, s) 7→ (x+ sn̄i,j(x, t), t) (4.45)

defines a bijective map onto its image

im(Ψi,j) := Ψi,j(Īi,j×(−ri,j , ri,j))

=
⋃

t∈[0,T ]

({
dist(·, Īi,j(t)) < ri,j

}
\

⋃
x∈∂Īi,j(t)

(
Ht̄i,j (x, t) ∩Bri,j (x)

))
× {t}, (4.46)

and the inverse map is a diffeomorphism of class (C0
t C

4
x ∩C1

t C
2
x)(im(Ψi,j)). We may further

split the inverse of the diffeomorphism (4.45) as follows:

Ψ−1
i,j : im(Ψi,j)→ Īi,j × (−ri,j , ri,j), (x, t) 7→

(
Pi,j(x, t), t, si,j(x, t)

)
where the map si,j : im(Ψi,j)→ (−ri,j , ri,j) represents a signed distance function

si,j(x, t) :=

{
dist(x, Īi,j(t)), (x, t) ∈ Ψi,j

(
Īi,j×[0, ri,j)

)
,

−dist(x, Īi,j(t)), (x, t) ∈ Ψi,j

(
Īi,j×(−ri,j , 0)

)
,

(4.47)

and the map Pi,j : im(Ψi,j)→
⋃
t∈[0,T ] Īi,j(t) represents in each time slice the projection onto

the nearest point on the interface in the sense that

Pi,j(x, t) := PĪi,j(t)(x) = arg min
y∈Īi,j(t)

|y − x|, (x, t) ∈ im(ΨĪi,j
). (4.48)

Note that we have the identity

Pi,j(x, t) = x− si,j(x, t)n̄i,j
(
Pi,j(x, t), t

)
∈ Īi,j(t), (x, t) ∈ im(Ψi,j). (4.49)

As a consequence of our regularity assumptions on Īi,j , see again Definition 4.14, we also
know that (for the former, one may consult Lemma 4.19 below)

si,j ∈ (C0
t C

5
x ∩ C1

t C
3
x)(im(Ψi,j)), Pi,j ∈ (C0

t C
4
x ∩ C1

t C
2
x)(im(Ψi,j)). (4.50)

We may now introduce extensions of the unit normal n̄i,j and the scalar mean curvature Hi,j

(oriented with respect to n̄i,j) of the interface Īi,j to the space-time domain im(Ψi,j). Slightly
abusing notation, we define

n̄i,j : im(Ψi,j)→ S1, (x, t) 7→ ∇si,j(x, t), (4.51)
Hi,j : im(Ψi,j)→ R, (x, t) 7→ (−∆si,j)(Pi,j(x, t), t). (4.52)
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4.4. Gradient flow calibrations at a smooth manifold

We register as a consequence of the definitions that

n̄i,j ∈ (C0
t C

4
x ∩ C1

t C
2
x)(im(Ψi,j)), Hi,j ∈ (C0

t C
3
x ∩ C1

t C
1
x)(im(Ψi,j)). (4.53)

The following result provides a (two-phase version of a) gradient flow calibration for a
single connected interface. Note that the velocity field B can accomodate arbitrary tangential
components, a fact we will exploit when constructing a velocity field for general networks in
Section 4.6.

Lemma 4.18. Let d = 2 and P ∈ N, P ≥ 2. Let (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow in the sense of Definition 4.14. Fix i, j ∈ {1, . . . , P} with
i 6= j such that Īi,j =

⋃
t∈[0,T ] Īi,j(t)×{t} is a non-trivial interface. Let ri,j ∈ (0, 1] be

an admissible localization radius for Īi,j in the sense of Definition 4.17. Fix a space-time
connected component (of which there are finitely many) T =

⋃
t∈[0,T ] T (t)×{t} ⊂ Īi,j of the

interface Īi,j. Denote by ΨT the restriction of the diffeomorphism (4.45) to T ×(−ri,j , ri,j),
and its image by im(ΨT ) := ΨT (T ×(−ri,j , ri,j)).

Let α ∈ C0
t C

2
x(im(ΨT )) be an arbitrary map, and define the tangent vector field

τ̄i,j := JTn̄i,j : im(Ψi,j)→ S1 ∈ (C0
t C

4
x ∩ C1

t C
2
x)(im(Ψi,j)) (4.54)

where J denotes the counter-clockwise rotation by 90◦. Then the vector fields ξi,j : im(ΨT )→
S1 and B : im(ΨT )→ R2 given by

ξi,j := n̄i,j , (4.55)
B := Hi,j n̄i,j + ατ̄i,j (4.56)

satisfy ξi,j ∈ (C0
t C

4
x ∩ C1

t C
2
x)(im(ΨT )), B ∈ C0

t C
2
x(im(ΨT )), with corresponding quantitative

estimates

rki,j |∇kξi,j | ≤ C, k ∈ {0, 1, . . . , 4}, (4.57)

rk+2
i,j |∂t∇

kξi,j | ≤ C, k ∈ {0, 1, 2}, (4.58)

rki,j |∇kB| ≤ Cr−1
i,j + C

k∑
l=0

rli,j |∇lα|, k ∈ {0, 1, 2}, (4.59)

throughout the space-time domain im(ΨT ). Moreover, it holds

∂tsi,j + (B · ∇)si,j = 0, (4.60)

∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j = 0, (4.61)
ξi,j · ∂tξi,j + ξi,j · (B · ∇)ξi,j = 0, (4.62)

|B · ξi,j +∇ · ξi,j | ≤ Cr−2
i,j dist(·, Īi,j) (4.63)

throughout the space-time domain im(ΨT ). The constant in the estimates (4.57), (4.59)
and (4.63) is independent of ri,j.

Proof. For ease of notation, we omit all indices, superscripts, and arguments for the rest
of the proof unless specifically required otherwise. Since Ψ represents in each time slice a
tubular neighborhood diffeomorphism on scale r ∈ (0, 1], we have maxk=0,...,5 r

k|∇ks| ≤ Cr
throughout im(Ψ). From the definitions (4.51), (4.54), (4.52) and (4.49), we then deduce
maxk=0,...,4 r

k(|∇kn̄|+|∇kτ̄ |+|∇kP |) ≤ C and maxk=0,...,3 r
k|∇kH| ≤ Cr−1. Due to (4.64)

and (4.66), it holds ∂ts = −H. Hence, we obtain the bounds maxk=0,...,3 r
k+2|∂t∇ks| ≤ Cr,

maxk=0,1,2 r
k(|∂t∇kn̄|+|∂t∇kτ̄ |+|∂t∇kP |) ≤ C and finally maxk=0,1 r

k+2|∂t∇kH| ≤ Cr−1.
The estimates (4.57)–(4.59) now directly follow from the definitions (4.55)–(4.56).
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

It follows from (4.64) and (4.66) below, as well as from the orthogonality τ̄ · n̄ = 0 that the
tangential term in the definition of B does not have an effect on the transport equation (4.64)
for the signed distance s, i.e., we have

∂ts = −
(
Hn̄ · ∇

)
s = −

(
B · ∇

)
s.

We may take the gradient of this identity so that by definition of ξ we have

∂tξ = ∇∂ts = −
(
B · ∇

)
ξ −

(
∇B

)T
ξ,

which proves (4.61). The validity of (4.62) is evident from the fact that |ξ|2 ≡ 1. For the
identity (4.63), note first that B · ξ = n̄ · ξ = H as a consequence of the orthogonality
τ̄ · n̄ = 0. By definition (4.51) and definition (4.55), it holds ∇ · ξ = ∆s. Hence, B · ξ = H =
−∇ · ξ +O(r−2 dist(·, Ī)) in view of the definition (4.53) and the regularity estimates for the
signed distance. This concludes the proof.

The preceding result relies on a number of well-known properties of the signed distance
and the nearest point projection. For further reference, we present them here in a separate
statement.

Lemma 4.19. Let d = 2 and P ∈ N, P ≥ 2. Let (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow in the sense of Definition 4.14. Fix i, j ∈ {1, . . . , P} with
i 6= j such that Īi,j =

⋃
t∈[0,T ] Īi,j(t)×{t} is a non-trivial interface. Let ri,j ∈ (0, 1] be an

admissible localization radius for Īi,j in the sense of Definition 4.17.
Then si,j ∈ (C0

t C
5
x ∩ C1

t C
3
x)(im(Ψi,j)). The time evolution of the signed distance si,j is

moreover given by transport along the flow of the mean curvature vector field in the sense
that we have

∂tsi,j = −
(
Hi,j n̄i,j · ∇

)
si,j throughout im(Ψi,j). (4.64)

The gradient of the projection map (4.49) is given by

∇Pi,j = τ̄i,j ⊗ τ̄i,j − si,j∇n̄i,j throughout im(Ψi,j). (4.65)

Finally, for all (x, t) ∈ im(Ψi,j) the derivatives of the signed distance si,j are subject to the
relations

∇si,j(x, t) = ∇si,j(y, t)|y=Pi,j(x,t) = n̄i,j(x, t), (4.66)

∇si,j(x, t) · ∂t∇si,j(x, t) = 0, (4.67)(
∇si,j(x, t) · ∇

)
∇si,j(x, t) = 0, (4.68)
∂tsi,j(x, t) = ∂tsi,j(y, t)|y=Pi,j(x,t). (4.69)

Proof. The representation of si,j as a component of the inverse of Ψi,j initially gives the
regularity si,j ∈ (C0

t C
4
x ∩ C1

t C
2
x)(im(Ψi,j)). A proof of the well-known identities (4.64)–

(4.69) was given for instance in [64, Lemma 10] with the only difference being the precise
form of the normal velocity of the evolving family of interfaces. The higher regularity for
the signed distance si,j and its time derivative ∂tsi,j finally follows from (4.53) and the
identity (4.66).
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4.5. Gradient flow calibrations at a triple junction

4.5 Gradient flow calibrations at a triple junction

The aim of this section is to construct a gradient flow calibration in the model case of three
regular interfaces meeting at a single triple junction. The space-time trajectory of such a
triple junction will be denoted by T =

⋃
t∈[0,T ] T (t)×{t} where T (t) ⊂ R2 is a singleton

for all t ∈ [0, T ]. For simplicity, we assume throughout the section that the triple junction
consists of interfaces between the phases 1, 2 and 3. We will also use cyclical indices i = 1, 2, 3
throughout the section.

Similar to the previous one, the constructions provided in this section are local in the sense
that they are restricted to a sufficiently small space-time neighborhood of the evolving triple
junction T . We first formalize this by introducing the notion of an admissible localization
radius r = rT ∈ (0, 1] for the triple junction T in Definition 4.20. We then state the
main result of this section, Proposition 4.22, which provides all relevant properties of the
constructed calibrations.

The construction of a calibration ξi,j for i, j ∈ {1, 2, 3} with i 6= j along with an associated
velocity field B proceeds in three steps. First, we extend the normal of the interface Īi,j
of the strong solution to auxiliary vector fields ξ̃i,j defined on the natural domain Hi,j :=
im(Ψi,j)∩

⋃
t∈[0,T ]Br(T (t))×{t}, see Figure 4.6a, on which the nearest point-projection onto

Īi,j is well-defined and regular; see Definition 4.17 and the subsequent discussion. One should
think of ξ̃i,j as the main building block for the vector field ξi,j on the domain Hi,j containing
the corresponding interface Īi,j . Similarly, we also construct auxiliary velocity fields Bi,j on
Hi,j by choosing its normal component as an extension of the scalar mean curvature Hi,j of
the interface Īi,j .

In the second step, we aim to identify a candidate vector field for the definition of ξi,j
outside of its natural domain of definition Hi,j . The guiding principle is to make sure that
the Herring angle condition at the triple junction

σ1,2n̄1,2 + σ2,3n̄2,3 + σ3,1n̄3,1 = 0, (4.70)

is satisfied by the calibrations (ξ1,2, ξ2,3, ξ3,1) in the whole neighborhood of the triple junction:

σ1,2ξ1,2 + σ2,3ξ2,3 + σ3,1ξ3,1 = 0. (4.71)

This allows us to define vector fields (ξ1, ξ2, ξ3) such that σi,i+1ξi,i+1 = ξi−ξi+1 holds true for
all cyclical indices i = 1, 2, 3. The latter identity in turn is precisely the property of gradient
flow calibrations necessary to differentiate the relative entropy functional in time.

In order to achieve (4.71) we note that it represents an angle condition. As the union of
the domains Hi,i+1 for i = 1, 2, 3 covers a neighborhood of the triple junction, see Figure 4.5a,
we would like to define ξi+1,i−1 and ξi−1,i on Hi,i+1 by simply rotating ξ̃i,i+1, see Figure 4.5c.

However, as these domains overlap, see Figure 4.6a, we will have to interpolate between
the competing definitions of the calibrations and velocities. To this end, we partition the
neighborhood of the triple junction into six wedges centered at the triple junction as indicated
in Figure 4.6b, three of which are denoted by Wi,j = Wj,i and the remaining three by Wi.
We require that Br(T (t)) ∩ Īi,j ⊂ Wi,j ∪ T (t) ⊂ Hi,j , see Figure 4.6b, the first inclusion
corresponding to a geometric smallness condition for the interfaces away from the triple
junction. For the remaining three wedges it is required that Wi ⊂

⋂
j 6=iHi,j , see again

Figure 4.6b. We will refer to these wedges as interpolation wedges since on them we will
interpolate between the two competing calibrations and velocities.

Definition 4.20. Let d = 2 and P ∈ N, P ≥ 2. Let (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow in the sense of Definition 4.14. Let T =

⋃
t∈[0,T ] T (t)×{t}

be an evolving triple junction present in the network of interfaces of Ω̄, and assume for
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

a)

Ω̄1

Ω̄2

Ω̄3

Ī3,1

Ī1,2

Ī2,3

b)

W1

W2

W3

W1,2

W2,3

W3,1

Figure 4.6: a) Sketch of a triple junction with phases Ω̄1, Ω̄2, and Ω̄3; and the corresponding
interfaces. The bottom left to top right hatched region is the domain H1,2, the horizontally
hatched region is H2,3, and the top left to bottom right hatching represents H3,1. b) The
interpolation wedges, shown as hatched, are given byW1,W2 andW3. The remaining wedges
W1,2, W2,3 and W3,1 contain the corresponding interfaces.

simplicity that it is formed by the phases 1, 2 and 3. For each i ∈ {1, 2, 3}, denote by
Ti,i+1 =

⋃
t∈[0,T ] Ti,i+1(t)×{t} the unique space-time connected component of Īi,i+1 with an

endpoint at the triple junction, and let ri,i+1 ∈ (0, 1] be an admissible localization radius for
the interface Īi,i+1 in the sense of Definition 4.17.

We call a scale r = rT ∈ (0, r1,2 ∧ r2,3 ∧ r3,1] an admissible localization radius for the
triple junction T if there exists a wedge decomposition of the space-time neighborhood Ur :=⋃
t∈[0,T ]Br(T (t))×{t} of the triple junction in the following precise sense:

i) For each i ∈ {1, 2, 3} there exist space-time domains Wi,i+1 :=
⋃
t∈[0,T ]Wi,i+1(t)×{t} and

Wi :=
⋃
t∈[0,T ]Wi(t)×{t} (in order to not rely on cyclical notation in later sections, we

also define Wi+1,i := Wi,i+1 for all i ∈ {1, 2, 3}) subject to the following requirements:

First, for each t ∈ [0, T ] the six sets (Wi,i+1(t))i∈{1,2,3} and (Wi(t))i∈{1,2,3} are pairwise
disjoint, non-empty open subsets of Br(T (t)) such that⋃

i∈{1,2,3}

Wi,i+1(t) ∪Wi(t) = Br(T (t)). (4.72)

Second, there exist six time-dependent unit vectors (Xi
i,i+1, X

i+1
i,i+1)i∈{1,2,3} of class C1([0, T ])

such that for all i ∈ {1, 2, 3} and all t ∈ [0, T ] we have

Wi,i+1(t) =
(
T (t)+

{
γ1X

i
i,i+1(t)+γ2X

i+1
i,i+1(t) : γ1, γ2 ∈ (0,∞)

})
∩Br(T (t)), (4.73)

Wi(t) =
(
T (t)+

{
γ1X

i
i,i+1(t)+γ2X

i
i−1,i(t) : γ1, γ2 ∈ (0,∞)

})
∩Br(T (t)). (4.74)

For all i ∈ {1, 2, 3}, the scalar products Xi
i,i+1 · X

i+1
i,i+1 ∈ (0, 1) and Xi

i,i+1 · Xi
i−1,i are

constant in time, and their values only depend on the surface tensions.

Third, we require that for all i ∈ {1, 2, 3} and all t ∈ [0, T ] it holds

Br(T (t)) ∩ Ti,i+1(t) ⊂Wi,i+1(t) ∪ T (t) ⊂ Hi,i+1(t), (4.75)
Wi(t) ⊂ Hi,i+1(t) ∩Hi,i−1(t), (4.76)

with the space-time domains Hi,i+1 :=
⋃
t∈[0,T ] Hi,i+1(t)×{t} being defined by Hi,i+1(t) :=

{x ∈ R2 : (x, t) ∈ im(Ψi,i+1)} ∩Br(T (t)), t ∈ [0, T ].
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4.5. Gradient flow calibrations at a triple junction

ii) There exists a constant C = C(σ) > 0 depending only on the surface tensions such that
for all i ∈ {1, 2, 3}

max{dist(·, T ),dist(·, Īi,i+1),dist(·, Īi−1,i)} ≤ C min
j=1,2,3

dist(·, Īj,j+1) in Wi, (4.77)

dist(·, Īi,i+1) ≤ C min
j=1,2,3

dist(·, Īj,j+1) in Wi,i+1, (4.78)

dist(x, T ) ≤ C dist(·, Īi,i+1) in Wi−1,i ∪Wi+1,i−1. (4.79)

In view of the properties (4.73)–(4.76), we call each Wi,i+1 an interface wedge, and each Wi

an interpolation wedge.

The following lemma ensures the existence of an admissible localization radius for a triple
junction; in particular, that we can indeed find wedges with the desired properties. Its proof
is deferred to the end of Subsection 4.5.2.

Lemma 4.21. Let the assumptions of Definition 4.20 be in place. Then there exists an
admissible localization radius for the triple junction T . In fact, one may choose r = 1

C (r1,2 ∧
r2,3 ∧ r3,1) for a constant C = C(σ) ≥ 1 depending only on the surface tensions at the triple
junction.

As a final remark concerning the construction of the calibrations and the velocity, one
has to make sure that they have sufficiently high regularity at the triple junction. Naively,
one might choose the auxiliary vector fields ξ̃i,j as in the case of a single connected interface
from the previous section, i.e., ξ̃i,j := n̄i,j on Hi,j . However, this ansatz after the rotation
and interpolation steps only provides continuous vector fields ξi,j which in general already
fail to be Lipschitz at the triple junction, as we will see later. Hence, in the first step we will
employ a more careful expansion ansatz in terms of the signed distance function to Īi,j , see
(4.90).

We are now in a position to state the main result of this section, namely the existence of
a gradient flow calibration in the vicinity of an evolving triple junction.

Proposition 4.22. Let d = 2 and P ∈ N, P ≥ 2. Let (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow in the sense of Definition 4.14. Let T =

⋃
t∈[0,T ] T (t)×{t}

be an evolving triple junction present in the network of interfaces of the strong solution, and
assume for simplicity that it is formed by the phases 1, 2 and 3. Let r = rT ∈ (0, 1] be an
associated admissible localization radius for the triple junction T as given by Lemma 4.21. In
particular, for all distinct i, j ∈ {1, 2, 3}, let ri,j be an admissible localization radius for Īi,j
in the sense of Definition 4.17.

Then there exists a constant Ĉ = Ĉ(Ω̄) ≥ 1, depending only on Ω̄ but independent
of (ri,j)i,j∈{1,2,3},i 6=j, so that the radius r̂ := Ĉ−1r has the following properties: Define
Ur̂ :=

⋃
t∈[0,T ]Br̂(T (t)) × {t}. For all i, j ∈ {1, 2, 3} with i 6= j, there exist continuous

extensions of the unit-normal vector fields and a continuous velocity field

ξi,j : Ur̂ → R2, B : Ur̂ → R2,

which are of regularity ξi,j ∈ (C0
t C

2
x ∩C1

t C
0
x)(Ur̂ \ T ) resp. B ∈ C0

t C
2
x(Ur̂ \ T ), and which are

furthermore subject to the following properties:

i) It holds ξi,j(x, t) = n̄i,j(x, t) for all t ∈ [0, T ] and for all x ∈ Ti,j(t)∩Br̂(T (t)), where Ti,j
is the unique space-time connected component of Īi,j with an endpoint at the triple junc-
tion T . We also have |ξi,j(x, t)| = 1 for all (x, t) ∈ Ur̂. Expressing the triple junction in
form of T (t) = {p(t)}, it holds B(p(t), t) = d

dtp(t) for all t ∈ [0, T ].
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

ii) We have the skew-symmetry relation ξi,j = −ξj,i.

iii) The family of vector fields (ξi,j)i 6=j satisfies the Herring angle condition (4.70) in the
entire neighborhood of the triple junction, i.e., it holds for all (x, t) ∈ Ur̂

σ1,2ξ1,2(x, t) + σ2,3ξ2,3(x, t) + σ3,1ξ3,1(x, t) = 0. (4.80)

iv) There exists a constant C = C(Ω̄) > 0, depending only on the strong solution Ω̄ but
independent of r̂, such that throughout Ur̂ \ T and for all i, j ∈ {1, 2, 3} with i 6= j, we
have the bounds

|∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j | ≤ Cr̂−3 dist(·, Īi,j), (4.81)

|(∇ · ξi,j) +B · ξi,j | ≤ Cr̂−2 dist(·, Īi,j), (4.82)
ξi,j · ∂tξi,j + ξi,j · (B · ∇)ξi,j = 0. (4.83)

v) Finally, there exists a constant C = C(Ω̄) > 0, depending only on the strong solution Ω̄
but independent of r̂, such that

r̂2|∂tξi,j | ≤ C, r̂k|∇kξi,j | ≤ C, k ∈ {0, 1, 2}, (4.84)

r̂k|∇kB| ≤ Cr̂−1, k ∈ {0, 1, 2} (4.85)

throughout the space-time domain Ur̂ \ T .

4.5.1 Construction close to individual interfaces

For all what follows in this subsection, let the assumptions of Proposition 4.22 and the
notation of Section 4.4 and Definition 4.20 be in place. In this subsection, we for i = 1, 2, 3
first introduce the previously discussed auxiliary vector fields ξ̃i,i+1 as extensions of the normal
n̄i,i+1 to the domains Hi,i+1.

We would like to define ξ̃i,i+1, and later also the velocity field B, by an expansion ansatz
in terms of the signed distance function si,i+1 to the interface Īi,i+1, see (4.47). To this
end, two sets of coefficient functions will be of importance. First, for every i ∈ {1, 2, 3} we
introduce a function

αi,i+1 : Hi,i+1 → R, (x, t) 7→ α̂i,i+1(Pi,i+1(x, t), t) (4.86)

being defined by projection onto Īi,i+1 in terms of the solution

α̂i,i+1 :
⋃

t∈[0,T ]

Ti,i+1(t)× {t} → R (4.87)

to the following ODE posed on the space-time connected component Ti,i+1 of the inter-
face Īi,i+1 with initial condition at the triple junction T (t) = {p(t)}:{

α̂i,i+1(p(t), t) = τ̄i,i+1(p(t), t) · d
dtp(t)

(τ̄i,i+1(x, t) · ∇) α̂i,i+1(x, t) = H2
i,i+1(x, t), x ∈ Ti,i+1(t).

(4.88)

Second, we define for each i ∈ {1, 2, 3} a function βi,i+1 : Hi,i+1 → R by means of

βi,i+1 := −αi,i+1Hi,i+1 − (τ̄i,i+1 · ∇)Hi,i+1. (4.89)
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Finally recalling the definitions (4.49), (4.51), (4.52) and (4.54), the ansatz for the extension
ξ̃i,i+1 of the normal vector field n̄i,i+1|Īi,i+1

then is

ξ̃i,i+1(x, t) := n̄i,i+1(x, t)

+ αi,i+1(x, t)si,i+1(x, t)τ̄i,i+1(x, t)

− 1

2
α2
i,i+1(x, t)s2

i,i+1(x, t)n̄i,i+1(x, t)

(4.90)

and ξ̃i+1,i := −ξ̃i,i+1 for t ∈ [0, T ], x ∈ Hi,i+1(t), and i ∈ {1, 2, 3}.
We briefly present the regularity properties of ξ̃i,i+1.

Lemma 4.23. Let the assumptions of Proposition 4.22 be in place, in particular the notation
of Definition 4.20. For all phases i ∈ {1, 2, 3}, the auxiliary vector field ξ̃i,i+1 is of class
(C0

t C
2
x ∩ C1

t C
0
x)(Hi,i+1). More precisely, we have the estimates

|ξ̃i,i+1|+ ri,i+1|∇ξ̃i,i+1|+ r2
i,i+1

(
|∇2ξ̃i,i+1|+|∂tξ̃i,i+1|

)
≤ C (4.91)

for some C = C(Ω̄) > 0 only depending on Ω̄ but independent of (ri,j)i,j∈{1,2,3},i 6=j.

Proof. Step 1 (Qualitative differentiability): In view of the expansion ansatz (4.90), the
regularity (4.50) of the signed distance si,i+1, the regularity (4.53) of the normal n̄i,i+1,
and the regularity (4.54) of the tangent τ̄i,i+1, it suffices to prove that αi,i+1 ∈ (C0

t C
2
x ∩

C1
t C

0
x)(Hi,i+1) to conclude ξ̃i,i+1 ∈ (C0

t C
2
x ∩ C1

t C
0
x)(Hi,i+1).

We start with the time regularity of the initial value of the ODE (4.88). Using the
evolution equation d

dtp(t) · n̄i,i+1(p(t), t) = Hi,i+1(p(t), t) at the triple junction we get

d

dt
p(t) = Hi,i+1(p(t), t)n̄i,i+1(p(t), t) +

(
τ̄i,i+1(p(t), t) · d

dt
p(t)

)
τ̄i,i+1(p(t), t) (4.92)

for i ∈ {1, 2, 3}. Note that this identity is equivalent to the second-order compatibility
condition (4.14). We can now identify the term in the parenthesis as αi,i+1(p(t), t) due to the
intial value of the ODE (4.88) and multiply the above equation with the rotation matrix J
in order to deduce

−H1,2 τ̄1,2 + α1,2 n̄1,2 = −H2,3 τ̄2,3 + α2,3 n̄2,3 = −H3,1 τ̄3,1 + α3,1 n̄3,1 (4.93)

at the triple junction.
For i 6= j, we then define ci,j := n̄i,i+1(p(t), t) · n̄j,j+1(p(t), t) and di,j := n̄i,i+1(p(t), t) ·

τ̄j,j+1(p(t), t) and notice that they are indeed constant in time due to only depending on the
angles between interfaces determined by the surface tensions. Furthermore, note |ci,j | < 1
as the surface tensions satisfy the triangle inequality. Multiplying (4.93) with the normal
n̄i,i+1(p(t), t) thus yields

αi,i+1(p(t), t) = −Hj,j+1(p(t), t)di,j + αj,j+1(p(t), t)ci,j

for all i 6= j and all t ∈ [0, T ]. Switching the roles of i and j in the previous formula entails

αi,i+1(p(t), t) = −(1−c2
i,j)
−1
(
Hj,j+1(p(t), t)di,j +Hi,i+1(p(t), t)di,jci,j

)
(4.94)

for all i 6= j and all t ∈ [0, T ]. Hence, we deduce t 7→ αi,i+1(p(t), t) ∈ C1([0, T ]).
We procedd by explicitly integrating the ODE (4.88), and exploiting the regularity (4.53)

of the extended scalar mean curvature Hi,i+1, as well as the regularity of the space-time
curve Ti,i+1. Let us make this argument explicit. To this end, we first choose a C5 dif-
feomorphic parametrization γ0 : [0, 1] → Ti,i+1(0) of the initial curve Ti,i+1(0) such that
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

γ0(0) = p(0), and then define γt(s) := ψt(γ0(s)) for all (s, t) ∈ [0, 1]×[0, T ] by means
of the flow maps from Definition 4.13. Capturing orientation by means of the constant
c± = τ̄i,i+1(γt(s), t) · ∂sγt(s)|∂sγt(s)| ∈ {±1}, we set

α̃i,i+1(s, t) := τ̄i,i+1(p(t), t) · d

dt
p(t) + c±

ˆ s

0
H2
i,i+1(γt(`), t)|∂sγt(`)| d` (4.95)

for all (s, t) ∈ [0, 1]×[0, T ], and then have

α̂i,i+1(x, t) = α̃i,i+1

(
(γt)

−1(x), t
)

(4.96)

for all t ∈ [0, T ] and all x ∈ Ti,i+1(t). The validity of (4.88) is indeed a simple conse-
quence of the ansatz (4.95), the definition (4.96) and the chain rule. The required regularity
αi,i+1 ∈ (C0

t C
2
x ∩ C1

t C
0
x)(Hi,i+1) in turn follows from the regularity (4.50) of the projection,

the regularity (4.54) of the tangent, the regularity (4.53) of the curvature, and the regularity
condition ii) of Definition 4.13.

Step 2 (Quantitative estimates): Since in each time slice the map Ψi,i+1 from (4.45)
represents a tubular neighborhood diffeomorphism on scale ri,i+1 ∈ (0, 1], we deduce

rki,i+1|∇ksi,i+1| ≤ Cri,i+1, k ∈ {0, 1, 2, 3, 4, 5}, (4.97)

and thus from the definitions (4.51) and (4.54) that

rki,i+1|∇kn̄i,i+1|+ rki,i+1|∇kτ̄i,i+1| ≤ C, k ∈ {0, 1, 2, 3, 4}. (4.98)

The previous estimates in addition entail the following bounds for the nearest-point projec-
tions due to (4.49) (in form of Pi,i+1(x, t) = x−si,i+1(x, t)∇si,i+1(x, t)) and the (extensions
of the) scalar mean curvatures due to (4.52)

rki,i+1|∇kPi,i+1| ≤ Cri,i+1, k ∈ {1, 2, 3, 4}, (4.99)

rki,i+1|∇kHi,i+1| ≤ Cr−1
i,i+1, k ∈ {0, 1, 2, 3}. (4.100)

As a consequence of the evolution equation (4.64) for the signed distance, we also obtain the
following estimate on the time derivatives

ri,i+1|∂tsi,i+1|+ r2
i,i+1|∂tn̄i,i+1|+ r2

i,i+1|∂tτ̄i,i+1|
+ ri,i+1|∂tPi,i+1|+ r3

i,i+1|∂tHi,i+1| ≤ C.
(4.101)

It then follows from the representations (4.94) and (4.92) that

ri,i+1|αi,i+1(p(t), t)|+ ri,i+1

∣∣∣ d

dt
p(t)

∣∣∣+ r3
i,i+1

∣∣∣ d

dt
αi,i+1(p(t), t)

∣∣∣ ≤ C (4.102)

for all t ∈ [0, T ].
We next claim that

max
k=0,1,2

rki,i+1|∇kαi,i+1|+ r2
i,i+1|∂tαi,i+1| ≤ Cr−1

i,i+1. (4.103)

Once this is established, the asserted bound (4.91) for the derivatives of the vector fields ξ̃i,i+1

can then be directly inferred from the ansatz (4.90) and the above regularity estimates. The
estimate (4.103), however, is a consequence of the regularity estimates (4.98)–(4.102) and the
representations (4.86)–(4.88) in form of ∇αi,i+1 = H2

i,i+1(τ̄i,i+1 ⊗ τ̄i,i+1 : ∇Pi,i+1)τ̄i,i+1. For
later reference, we note that

(τ̄i,i+1 · ∇)αi,i+1 = H2
i,i+1 +O(r−3

i,i+1|si,i+1|) (4.104)

due to (4.65), (4.97) and (4.100).
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4.5. Gradient flow calibrations at a triple junction

Ultimately, the point of the ansatz (4.90) is to ensure both (4.80) throughout Br(T (t))
and sufficiently high regularity of ξi,j at the triple junction. Moreover, the relations (4.88)
and (4.89) also holding true away from the triple junction turns out to be crucial to obtain
the estimates (4.81) and (4.82) on the whole space-time domain. The first step towards these
goals are the following relations, which in particular yield that—after rotation R(i,j)—the
vector fields are compatible to second order at the triple junction:

Lemma 4.24. Let the assumptions of Proposition 4.22 be in place. For each pair i, j ∈
{1, 2, 3} there exist uniquely determined rotations R(i,j) ∈ SO(2), only depending on the
restriction (σi,j)i,j=1,2,3 of the admissible matrix of surface tensions for the given strong so-
lution Ω̄, such that

n̄i,i+1(·, t) = R(i,j)n̄j,j+1(·, t) at T (t) (4.105)

for all t ∈ [0, T ], and

R(i,j)R(j,i) = Id, (4.106)

R(i,i−1)R(i−1,i+1)R(i+1,i) = Id . (4.107)

Furthermore, the ansatz (4.90) satisfies the first-order compatibility conditions at the triple
junction:

ξ̃i,i+1(·, t) = R(i,j)ξ̃j,j+1(·, t) at T (t), (4.108)

∇ξ̃i,i+1(·, t) = ∇
(
R(i,j)ξ̃j,j+1

)
(·, t) at T (t), (4.109)

for all t ∈ [0, T ].

Proof. Identity (4.105) uniquely defines R(i,j). It is immediate from the ansatz (4.90) and
(4.105) that the zero-order condition (4.108) is satisfied. The two properties (4.106) and
(4.107) follow from

R(i,j)R(j,i)n̄i,i+1 = n̄i,i+1, (4.110)

R(i,i−1)R(i−1,i+1)R(i+1,i)n̄i,i+1 = n̄i,i+1, (4.111)

which follow straightforwardly from iterating (4.105). Therefore, it is sufficient to prove the
remaining statement (4.109) for j = i + 1, as it then follows automatically for j = i − 1 by
(4.106) and (4.107) that at T (t) it holds

∇
(
R(i,i−1)ξ̃i−1,i

)
(·, t) = R(i,i+1)∇

(
R(i+1,i−1)ξ̃i−1,i

)
(·, t)

= R(i,i+1)∇
(
ξ̃i+1,i−1

)
(·, t)

= ∇
(
R(i,i+1)ξ̃i+1,i−1

)
(·, t) = ∇ξ̃i,i+1(·, t).

For ease of notation, we also fix the index i and omit all indices, superscripts, and argu-
ments for the rest of the proof unless specifically required otherwise. The ansatz (4.90) then
reads

ξ̃ = n̄ + αsτ̄ − 1

2
α2s2n̄. (4.112)

By definition (4.51), ∇2s being symmetric, the identity (4.68), and the orthogonality rela-
tion τ̄ · n̄ = 0 we have ∇n̄ = ∆s τ̄ ⊗ τ̄ . Hence, by the definitions (4.54) and (4.52) as well as
the estimate (4.97), we then get

∇n̄ = −Hτ̄ ⊗ τ̄ +O(r−2|s|), (4.113)

∇τ̄ = Hn̄⊗ τ̄ +O(r−2|s|). (4.114)
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

As a result we infer from this and (4.103)

∇ξ̃ = −H τ̄ ⊗ τ̄ + α τ̄ ⊗ n̄ +O(r−2|s|). (4.115)

This in turn yields

∇ξ̃ = τ̄ ⊗ (−H τ̄ + α n̄) at the triple junction T . (4.116)

Now we are in a position to prove the compatibility condition (4.109). By (4.105) and
Jτ̄ = n̄, see (4.54), we obtain

τ̄i,i+1 = R(i,j)τ̄j,j+1 at the triple junction T . (4.117)

Moreover, expressing the evolving triple junction in form of T (t) = {p(t)} for all t ∈ [0, T ],
it follows from the evolution equation d

dtp · n̄ = H and the choice of the initial value in the
ODE (4.88) that

d

dt
p = H1,2n̄1,2 + α1,2τ̄1,2 = H2,3n̄2,3 + α2,3τ̄2,3 = H3,1n̄3,1 + α3,1τ̄3,1, (4.118)

−H1,2τ̄1,2 + α1,2n̄1,2 = −H2,3τ̄1,2 + α2,3n̄2,3 = −H3,1τ̄1,2 + α3,1n̄3,1 (4.119)

at the triple junction T (the latter follows from the former by multiplication with J). There-
fore, by (4.116), (4.117) and (4.119) we indeed at T get

∇
(
R(i,j)ξ̃j,j+1

)
= R(i,j)τ̄j,j+1 ⊗

(
−Hj,j+1τ̄j,j+1 + αj,j+1n̄j,j+1

)
= τ̄i,i+1 ⊗

(
−Hi,i+1τ̄i,i+1 + αi,i+1n̄i,i+1

)
= ∇ξ̃i,i+1.

This concludes the proof of Lemma 4.24.

Recall that apart from the family of vector fields (ξi,j)i 6=j , the notion of gradient flow
calibrations also requires a suitably defined velocity field B. For its construction in the
vicinity of a triple junction, we introduce in a first step certain auxiliary symmetric velocity
fields B̃(i,j) = B̃(j,i). To this end, we start for every i ∈ {1, 2, 3}, t ∈ [0, T ] and x ∈ Hi,i+1(t)
with an expansion ansatz of the form

B̃(i,i+1)(x, t) := Hi,i+1(x, t)n̄i,i+1(x, t)

+ αi,i+1(x, t)τ̄i,i+1(x, t)

+ βi,i+1(x, t)si,i+1(x, t)τ̄i,i+1(x, t)

(4.120)

and also set B̃(i+1,i) := B̃(i,i+1).

Lemma 4.25. Let the assumptions of Proposition 4.22 be in place, in particular the notation
of Definition 4.20. For all phases i ∈ {1, 2, 3}, the auxiliary velocity field B̃(i,i+1) is of class
C0
t C

2
x(Hi,i+1). More precisely, we have the estimates

|B̃(i,i+1)|+ ri,i+1|∇B̃(i,i+1)|+ r2
i,i+1|∇2B̃(i,i+1)| ≤ Cr−1

i,i+1 (4.121)

for some C = C(Ω̄) > 0, depending only on Ω̄ but independent of (ri,j)i,j∈{1,2,3},i 6=j.

Proof. In view of the expansion ansatz (4.120) and the ingredients of the proof of Lemma 4.23,
it suffices to prove that βi,i+1 ∈ C0

t C
2
x(Hi,i+1) with corresponding estimate

|∇kβi,i+1| ≤ Cr−k−2
i,i+1 , k ∈ {0, 1, 2}. (4.122)

Recalling the definition (4.89) of the coefficients βi,i+1, the bound (4.122) is immediate
from (4.103), (4.98), (4.100), and (4.101).

180



4.5. Gradient flow calibrations at a triple junction

We again have to make sure that our ansatz (4.120) for the auxiliary velocity fields satisfies
a first-order compatibility condition at the triple junction.

Lemma 4.26. Let the assumptions of Proposition 4.22 be in place. Expressing the evolving
triple junction in form of T (t) = {p(t)} for all t ∈ [0, T ], for every i, j ∈ {1, 2, 3} the ansatz
(4.120) then satisfies

B̃(i,i+1)(p(t), t) = B̃(j,j+1)(p(t), t) =
d

dt
p(t), (4.123)

∇B̃(i,i+1)(p(t), t) = ∇B̃(j,j+1)(p(t), t) (4.124)

for all t ∈ [0, T ].

Proof. We again fix the index i and omit all indices, superscripts, and arguments unless
specifically required. At the triple junction, we have

B̃(p(t), t) =
d

dt
p(t) (4.125)

by (4.118) and the ansatz (4.120). This of course proves (4.123).
An explicit computation making use of the ansatz (4.120), the estimates (4.113) and (4.114),

the choices of the coefficients (4.88) and (4.89)—in particular (4.104)—as well as the esti-
mates (4.103) and (4.122) moreover gives

∇B̃ =
(
−H2 + (τ̄ · ∇α)

)
τ̄ ⊗ τ̄

+ ((τ̄ · ∇)H + αH)n̄⊗ τ̄
+ βτ̄ ⊗ n̄ +O(r−3|s|)

= β (τ̄ ⊗ n̄− n̄⊗ τ̄) +O(r−3|s|).

(4.126)

As we have (τ̄ ⊗ n̄− n̄⊗ τ̄) n̄ = τ̄ = −J n̄ and (τ̄ ⊗ n̄− n̄⊗ τ̄) τ̄ = −n̄ = −Jτ̄ it follows that
(τ̄ ⊗ n̄− n̄⊗ τ̄) = −J , where we recall that J denotes the counter-clockwise rotation by 90◦.
Therefore we get

∇B̃ = −βJ +O(r−3|s|). (4.127)

Hence, (4.124) holds true once we established that β1,2 = β2,3 = β3,1 at the triple junction.
This, however, follows from a combination of the definition (4.89), the choice of the initial
value in the ODE (4.88), and the third-order compatibility condition (4.15).

In a preparatory step towards the proof of (4.81) and (4.82), we now present the corre-
sponding estimates for the (rotated) auxiliary vector fields ξ̃i,i+1 and the auxiliary velocity
fields B̃(i,i+1) on their respective domains of definition.

Lemma 4.27. Let the assumptions of Proposition 4.22 be in place, in particular the notation
of Definition 4.20. Then there exists a constant C = C(Ω̄) > 0, depending only on Ω̄ but
independent of (ri,j)i,j∈{1,2,3},i 6=j, such that the following holds: For every i, j ∈ {1, 2, 3} and
throughout the space-time domain Hj,j+1 we have∣∣∂tR(i,j)ξ̃j,j+1 + (B̃(j,j+1) · ∇)R(i,j)ξ̃j,j+1 + (∇B̃(j,j+1))

TR(i,j)ξ̃j,j+1

∣∣
≤ Cr−3

j,j+1 dist(·, Īj,j+1),
(4.128)
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

as well as ∣∣∇ ·R(i,j)ξ̃j,j+1 + B̃(j,j+1) ·R(i,j)ξ̃j,j+1

∣∣ ≤ Cr−2
j,j+1 dist(·, Īj,j+1), (4.129)∣∣1− |R(i,j)ξ̃j,j+1|2

∣∣ ≤ Cr−4
j,j+1 dist4(·, Īj,j+1), (4.130)∣∣∇|R(i,j)ξ̃j,j+1|2

∣∣ ≤ Cr−4
j,j+1 dist3(·, Īj,j+1), (4.131)∣∣∂t|R(i,j)ξ̃j,j+1|2

∣∣ ≤ Cr−5
j,j+1 dist3(·, Īj,j+1), (4.132)∣∣∂t|R(i,j)ξ̃j,j+1|2 + (B̃(j,j+1) · ∇)|R(i,j)ξ̃j,j+1|2

∣∣ ≤ Cr−6
j,j+1 dist4(·, Īj,j+1). (4.133)

We also have for all pairs i, j ∈ {1, 2, 3} with i 6= j throughout the intersection Hi,i+1∩Hj,j+1

that (with rmin := r1,2 ∧ r2,3 ∧ r3,1)

|R(i,j)ξ̃j,j+1 −R(i,j−1)ξ̃j−1,j | ≤ Cr−2
min dist2(·, T ), (4.134)

|∇R(i,j)ξ̃j,j+1 −∇R(i,j−1)ξ̃j−1,j | ≤ Cr−2
min dist(·, T ), (4.135)

|B̃(i,i+1) − B̃(j,j+1)| ≤ Cr−3
min dist2(·, T ), (4.136)

|∇B̃(i,i+1) −∇B̃(j,j+1)| ≤ Cr−3
min dist(·, T ). (4.137)

Proof. By the ansatz (4.90) and R(i,j) ∈ SO(2) we have

|R(i,j)ξ̃j,j+1|2 =
(

1− 1

2
α2
j,j+1s

2
j,j+1

)2
+ α2

j,j+1s
2
j,j+1

= 1 +
1

4
α4
j,j+1s

4
j,j+1

(4.138)

from which together with (4.97), (4.103), (4.101), and (4.121) the estimates (4.130)–(4.133)
immediately follow.

To prove the estimates (4.128)–(4.129), let i, j ∈ {1, 2, 3} be fixed. For what follows, we
omit all indices and arguments unless specifically required. Plugging in the ansatz (4.90)
for ξ̃ and introducing the commutator [C,D] := CD − DC for matrices C,D ∈ Rd×d, we
obtain

∂tRξ̃+(B̃ · ∇)Rξ̃+(∇B̃)TRξ̃ =
(

1−1

2
α2s2

)
R
(
∂tn̄ + (B̃ · ∇)n̄ + (∇B̃)Tn̄

)
+ αsR

(
∂tτ̄ + (B̃ · ∇)τ̄ + (∇B̃)Tτ̄

)
+ α

(
∂ts+ (B̃ · ∇)s

)(
Rτ̄ − αsRn̄

)
+ [(∇B̃)T, R]ξ̃

+
(
∂tα+(B̃ · ∇)α

)
s
(
Rτ̄ − αsRn̄

)
.

By the ansatz (4.120), the auxiliary velocity B̃ only corrects Hn̄ in tangential direction.
Hence, the identities (4.61) and (4.60) are applicable and we obtain

∂tn̄ + (B̃ · ∇)n̄ + (∇B̃)Tn̄ = 0, ∂ts+ (B̃ · ∇)s = 0

throughout Hj,j+1. Recalling the definition τ̄ = J n̄, cf. (4.54), we deduce from the previous
display

∂tτ̄ + (B̃ · ∇)τ̄ + (∇B̃)Tτ̄ = [(∇B̃)T, J ]n̄

throughout Hj,j+1. Hence, recalling (4.127) and using the fact that [JT, R] = 0 on account
of both matrices being rotations in the plane we get

[(∇B̃)T, R] = O(r−3|s|), [(∇B̃)T, J ] = O(r−3|s|)
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4.5. Gradient flow calibrations at a triple junction

throughout Hj,j+1. Together with the estimate (4.103), the previous four displays in combi-
nation imply (4.128).

We turn to the proof of (4.129). Due to the computation (4.115) of ∇ξ̃ we have on the
one side

∇ ·Rξ̃ = −H(Rτ̄ · τ̄) + α(Rτ̄ · n̄) +O(r−2|s|). (4.139)

On the other side, making use of the definitions (4.90) and (4.120) of ξ̃ and B̃ we obtain

B̃ ·Rξ̃ = Hn̄ ·Rn̄ + α(τ̄ ·Rn̄) +O(r−2|s|). (4.140)

Furthermore, recalling Jτ̄ = n̄, JT = J−1 = −J , and [JT, R] = 0 gives

Rτ̄ · τ̄ = RJ−1n̄ · τ̄ = Rn̄ · Jτ̄ = Rn̄ · n̄,
Rτ̄ · n̄ = RJ−1n̄ · n̄ = Rn̄ · J n̄ = −Rn̄ · τ̄ .

Therefore, we can combine (4.139) and (4.140) to yield the estimate (4.129).
We proceed with the verification of the bounds (4.134) and (4.135). As by (4.108)

and (4.109) the Taylor polynomials at the triple junction of the functions R(i,j)ξ̃j,j+1 and
R(i,j−1)ξ̃j−1,j agree up to first order, the estimate (4.134) follows by bounding the remain-
ders using (4.91). One can argue similarly for the estimate (4.135). On the basis of (4.123),
(4.124) and (4.121), the estimates (4.136) and (4.137) follow by the same argument.

4.5.2 Gluing construction by interpolation

Throughout this subsection, let again the assumptions of Proposition 4.22 and the notation
of Section 4.4 and Definition 4.20 be in place. As we discussed in the previous subsection, the
auxiliary vector fields ξ̃i,i+1 and the auxiliary velocity fields B̃(i,i+1) serve as the definition of
the vector fields ξi,i+1 and the velocity field B on the interface wedge Wi,i+1, see Figure 4.6b
for the partition of the neighborhood of the triple junction.

The next step is to extend ξi,i+1 and B to the entirety of the space-time domain. As we
want Herring’s angle condition (4.71) to hold throughout the ball Br(T (t)) we are essentially
forced to set ξi,i+1 = R(i,j)ξj,j+1 for all i, j ∈ {1, 2, 3} wherever the latter is defined, and where
R(i,j) is given in Lemma 4.24. As their domains of definition Hi,i+1 overlap, we resort to an
interpolation procedure on the interpolation wedges Wi, see again Figure 4.6b. We similarly
deal with the issue of combining the velocity fields B̃(i,i+1) into a single field. To this end, we
first define suitable interpolation functions which move and rotate with the evolving triple
junction.

Lemma 4.28. Let the assumptions of Proposition 4.22 be in place, in particular the notation
of Definition 4.20. Then there exists a constant C = C(Ω̄) > 0, depending only on Ω̄ but
independent of (ri,j)i,j∈{1,2,3},i 6=j, and interpolation functions

λi :
⋃

t∈[0,T ]

(
Br(T (t)) ∩W i(t)

)
\ T (t)× {t} → [0, 1]

for every i ∈ {1, 2, 3} which satisfy the following properties:

i) It holds for all t ∈ [0, T ] that

λi(x, t) = 0 for x ∈
(
∂Wi(t) ∩ ∂Wi,i+1(t)

)
\ T (t), (4.141)

λi(x, t) = 1 for x ∈
(
∂Wi(t) ∩ ∂Wi−1,i(t)

)
\ T (t). (4.142)
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

ii) We have the estimates (rmin := r1,2 ∧ r2,3 ∧ r3,1)

|∇λi(x, t)| ≤ C dist(x, T (t))−1, |∂tλi(x, t)| ≤ Cr−1
min dist(x, T (t))−1, (4.143)

|∇2λi(x, t)| ≤ C dist(x, T (t))−2 (4.144)

for all t ∈ [0, T ] and all x ∈
(
Br(T (t)) ∩W i(t)

)
\ T (t). Furthermore, it holds

∇λi(x, t) = 0, ∂tλi(x, t) = 0, (4.145)

∇2λi(x, t) = 0 (4.146)

for all t ∈ [0, T ] and all x ∈
(
Br(T (t)) ∩ ∂Wi(t)

)
\ T (t).

iii) Expressing the evolving triple junction via T (t) = {p(t)} for all t ∈ [0, T ], we have a
bound on the advective derivative∣∣∣∂tλi(x, t) +

( d

dt
p(t) · ∇

)
λi(x, t)

∣∣∣ ≤ Cr−2
min (4.147)

for all t ∈ [0, T ] and all x ∈
(
Br(T (t)) ∩W i(t)

)
\ T (t).

Proof. Due to (4.74), the interpolation wedge Wi(t) is the restriction to Br(T (t)) of the inte-
rior of the conical hull spanned by two unit vectors Xi

i,i+1(t) and Xi
i−1,i(t), whereas Wi,i+1(t)

is the restriction to Br(T (t)) of the interior of the conical hull spanned by unit vectors
Xi
i,i+1(t) and Xi+1

i,i+1(t) due to (4.73). In particular, we can represent ∂Wi(t) ∩ ∂Wi,i+1(t) =

{γXi
i,i+1(t) : γ ≥ 0} and ∂Wi(t) ∩ ∂Wi−1,i(t) = {γXi

i−1,i(t) : γ ≥ 0}. As the vectors Xi
i,i+1(t)

and Xi
i−1,i(t) can be expressed as a (fixed-in-time) linear combination of the unit-normals

n̄i,j(p(t), t) at the triple junction, we have due to (4.102), (4.98) and (4.101) the bounds∣∣∣ d

dt
Xi
i,i+1(t)

∣∣∣+
∣∣∣ d

dt
Xi
i−1,i(t)

∣∣∣ ≤ Cr−2
min ≤ Cr

−1
min dist(x, T (t))−1 (4.148)

for all t ∈ [0, T ], all x ∈ Br(T (t)), and all i ∈ {1, 2, 3}.
By Definition 4.20, the opening angle θi of the interpolation wedge Wi, defined by

cos(θi) = Xi
i,i+1(t) · Xi

i−1,i(t) ∈ (0, 1), is time-independent and satisfies θi ∈ (0, π2 ). (The
angles only depend on Ω̄ through the surface tensions.) Let λ̃ : R → [0, 1] be any smooth
function such that λ̃ ≡ 0 on (−∞, 1

3 ] and λ̃ ≡ 1 on [2
3 ,∞). We define

λi(x, t) := λ̃

(
1−Xi

i,i+1(t) · x−p(t)|x−p(t)|

1− cos θi

)
.

Then the properties (4.141)–(4.146) are immediate consequences of the definitions and the
bounds (4.148) and (4.102); cf. also the subsequent computation.

It remains to check the bound (4.147) on the advective derivative. To this end, we
abbreviate λi(x, t) = λ̂i

(
Xi
i,i+1(t) · x−p(t)|x−p(t)|

)
for the obvious choice of function λ̂i : R → [0, 1]

and simply compute

∂tλi(x, t)

= −λ̂′i
Xi
i,i+1(t)

|x−p(t)|
·
(

Id− x−p(t)
|x−p(t)|

⊗ x−p(t)
|x−p(t)|

) d

dt
p(t) + λ̂′i

x−p(t)
|x−p(t)|

· d

dt
Xi
i,i+1(t)

= −
( d

dt
p(t) · ∇

)
λi(x, t) + λ̂′i

x−p(t)
|x−p(t)|

· d

dt
Xi
i,i+1(t)

where λ̂′i is evaluated at Xi
i,i+1(t) · x−p(t)

|x−p(t)| . From this, the last remaining claim (4.147)
immediately follows due to the estimate (4.148).
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Equipped with these interpolating functions we are finally in the position to prove the
main result of this section.

Proof of Proposition 4.22. Step 1: Interpolation of the vector fields. We define (not yet nor-
malized) extensions of the normal vector fields n̄i,j |Īi,j on the space-time neighborhood of the
triple junction Ur :=

⋃
t∈[0,T ]Br(T (t))× {t} as follows:

ξ̂i,i+1(x, t) :=


R(i,j)ξ̃j,j+1(x, t) if x ∈Wj,j+1(t),

(1−λj(x, t))R(i,j)ξ̃j,j+1(x, t)

+ λj(x, t)R(i,j−1)ξ̃j−1,j(x, t)
if x ∈W j(t),

(4.149)

and ξ̂i+1,i := −ξ̂i,i+1 for i ∈ {1, 2, 3}. The velocity field is given by

B(x, t) :=


B̃(j,j+1)(x, t) if x ∈Wj,j+1(t),

(1−λj(x, t))B̃(j,j+1)(x, t)

+ λj(x, t)B̃(j−1,j)(x, t)
if x ∈W j(t).

(4.150)

In the subsequent steps of the proof, we first establish all required properties in terms of the
vector fields ξ̂i,j and B. Only in the penultimate step we will choose the radius r̂ = r̂(Ω̄) ≤ r
and define unit-length vector fields ξi,j by normalization of the vector fields ξ̂i,j defined
in (4.149) above. The last step is then devoted to verify the required properties for the
normalized vector fields ξi,j .

Step 2: Regularity of ξ̂i,j and B, the estimates (4.84) and (4.85), and properties i)–iii).
We first remark that the above definitions make sense due to the second inclusion in (4.75)
and the inclusion in (4.76). Indeed, these inclusions are precisely what is needed so that the
building blocks ξ̃i,i+1 and B̃(i,i+1) are only evaluated on their domains of definition.

For every i ∈ {1, 2, 3}, we obtain ξ̂i,i+1(x, t) = ξ̃i,i+1(x, t) = n̄i,i+1(x, t) for all t ∈ [0, T ]
and all x ∈ Ti,i+1(t)∩Br(T (t)) from the first inclusion in (4.75) and the ansatz (4.90), taking
care of property i); obviously except for the normalization condition away from the interfaces.
The second property ξ̂i,j = −ξ̂j,i for i, j ∈ {1, 2, 3} with i 6= j holds by definition. For every
j ∈ {1, 2, 3} we moreover have

σ1,2ξ̂1,2 + σ2,3ξ̂2,3 + σ3,1ξ̂3,1 ≡
(
σ1,2R(1,j) + σ2,3R(2,j) + σ3,1R(3,j)

)
ξ̃j,j+1 = 0

on Wj,j+1(t) by the defining property (4.105) of the rotations R(i,j). A similar argument
ensures validity of (4.80) on the interpolation wedges W j(t).

By the compatibility condition (4.108) for the auxiliary vector fields ξ̃j,j+1 at the triple
junction, as well as the conditions (4.141) and (4.142) for the interpolation functions, the
vector fields ξ̂i,j are continuous. Similarly, their first and second derivatives are continuous
across the boundaries of the interpolation wedges

⋃
t∈[0,T ]

((
Br(T (t))∩ ∂Wi(t)

)
\ T (t)

)
×{t}

by the properties (4.145) and (4.146) of the interpolation functions.
Moreover, all spatial derivatives up to second order are bounded in Ur \ T with the

asserted estimate given by (4.84). Indeed, in the interface wedges Wj,j+1 this follows from
the estimates (4.91) and the definition (4.149). On the closure of the interpolation wedgesWj ,
we first compute using the definition (4.149)

∇ξ̂i,i+1 = (1−λj)∇R(i,j)ξ̃j,j+1 + λj∇R(i,j−1)ξ̃j−1,j (4.151)

− (R(i,j)ξ̃j,j+1−R(i,j−1)ξ̃j−1,j)∇λj ,

∇2ξ̂i,i+1 = (1−λj)∇2R(i,j)ξ̃j,j+1 + λj∇2R(i,j−1)ξ̃j−1,j (4.152)

− (∇R(i,j)ξ̃j,j+1−∇R(i,j−1)ξ̃j−1,j)∇λj
− (R(i,j)ξ̃j,j+1−R(i,j−1)ξ̃j−1,j)∇2λj .
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

Now, the bound (4.84) with respect to spatial derivatives follows from the blowup (4.143)
and (4.144) of the interpolation functions, the estimates (4.91), (4.134) and (4.135) for the
auxiliary vector fields ξ̃j,j+1, as well as the estimate (4.77). In total, this proves ξ̂i,j ∈
C0
t C

2
x(Ur\T ). The other property ξ̂i,j ∈ C1

t C
0
x(Ur\T ) together with the asserted bound (4.84)

in terms of the time derivative follows similarly making use of Lemma 4.23, (4.134), (4.143),
(4.77) and the computation on the closure of Wj

∂tξ̂i,i+1 = (1−λj)∂tR(i,j)ξ̃j,j+1 + λj∂tR(i,j−1)ξ̃j−1,j

− (R(i,j)ξ̃j,j+1−R(i,j−1)ξ̃j−1,j)∂tλj .

We proceed with the regularity of the velocity field B. First, by the compatibility condi-
tion (4.123) for the auxiliary velocity fields B̃(j,j+1) at the triple junction, as well as the con-
ditions (4.141) and (4.142) for the interpolation functions, the velocity field B is continuous.
The asserted bound (4.85) is a consequence of the definition (4.150), the estimates (4.121),
(4.136) and (4.137) for the auxiliary velocity fields, the controlled blowup (4.143) of the
interpolation functions, the estimate (4.77) as well as the computation

∇B = (1−λj)∇B̃(j,j+1) + λj∇B̃(j−1,j) + (B̃(j−1,j)−B̃(j,j+1))∇λj , (4.153)

∇2B = (1−λj)∇2B̃(j,j+1) + λj∇2B̃(j−1,j) (4.154)

+ (∇B̃(j−1,j)−∇B̃(j,j+1))∇λj + (B̃(j−1,j)−B̃(j,j+1))∇2λj

on the closure of Wj . This proves B ∈ C0
t C

2
x(Ur \ T ).

Step 3: Proof of the estimate (rmin := r1,2 ∧ r2,3 ∧ r3,1)

|∂tξ̂i,j + (B · ∇)ξ̂i,j + (∇B)Tξ̂i,j | ≤ Cr−3
min dist(·, Īi,j) in Ur. (4.155)

By the skew-symmetry ξ̂i,j = −ξ̂j,i, we only have to prove (4.155) for j = i + 1. Let i ∈
{1, 2, 3}. First, we remark that the validity of (4.81) for the vector field ξ̂i,i+1 on the interface
wedges Wj,j+1 for all j = 1, 2, 3 follows from the estimate (4.128), the definitions (4.149)
and (4.150), and the estimate (4.78). Hence, it remains to prove the bound (4.155) for ξ̂i,i+1

on each interpolation wedge Wj , j ∈ {1, 2, 3}.
To this end, let us fix j ∈ {1, 2, 3}. For the sake of readability, let us introduce the

abbreviations, λ = λj , R = R(i,j), R′ = R(i,j−1), ξ̃ = ξ̃j,j+1, ξ̃′ = ξ̃j−1,j , B̃ = B̃(j,j+1) and
B̃′ = B̃(j−1,j). Using the product rule and the definition (4.149) of ξ̂i,i+1 on the closure of
the interpolation wedge Wj , we have(

∂t + (B · ∇) + (∇B)T
)
ξ̂i,i+1 = (1− λ)

(
∂t + (B · ∇) + (∇B)T

)
Rξ̃

+ λ
(
∂t + (B · ∇) + (∇B)T

)
R′ξ̃′

+
(
∂tλ+ (B · ∇)λ

)
(R′ξ̃′ −Rξ̃).

(4.156)

We want to manipulate the first two right-hand side terms to make the advection equations
(4.128) appear. To this end, we write B = B̃ + λ(B̃′ − B̃) and obtain(

∂t + (B · ∇) + (∇B)T
)
Rξ̃ =

(
∂t + (B̃ · ∇) + (∇B̃)T

)
Rξ̃

+
(
λ(B̃′ − B̃) · ∇

)
Rξ̃ + λ

(
∇B̃′ −∇B̃

)T
Rξ̃

+
(
(B̃′ − B̃) ·Rξ̃

)
∇λ.
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4.5. Gradient flow calibrations at a triple junction

Using the compatibility conditions (4.136)–(4.137) for the auxiliary velocity fields alongside
with the bounds (4.91), (4.143), and the estimate (4.77) one shows that the last three right-
hand side terms are of order O(r−3

min dist(·, Īi,i+1)). By (4.128) and (4.77) the first term on
the right-hand side is also of order O(r−3

min dist(·, Īi,i+1)).
Consequently, the first term on the right-hand side of equation (4.156) is of required order.

A similar argument shows that the second one is, too. Finally, also the third term is of the
desired order by the bounds (4.143) on λ, the second-order compatibility (4.134), and the
estimate (4.77), concluding the proof of (4.155).

Step 4: Proof of the estimate (rmin := r1,2 ∧ r2,3 ∧ r3,1)

|∇ · ξ̂i,j +B · ξ̂i,j | ≤ Cr−2
min dist(·, Īi,j) in Ur. (4.157)

Let i ∈ {1, 2, 3}, and by the skew-symmetry ξ̂i,j = −ξj,i, it again suffices to prove (4.157)
in terms of ξ̂i,i+1. Note that because of (4.149)–(4.150), (4.129), and (4.78) it only remains
to prove (4.157) for the vector field ξ̂i,i+1 in the closure of the interpolation wedges Wj ,
j ∈ {1, 2, 3}. We again fix j ∈ {1, 2, 3} and use the same abbreviations as in the previous
step.

We proceed similarly as in the proof of (4.155). Making use of (4.149) we get

∇ · ξ̂i,i+1 = (1−λ)∇ ·Rξ̃ + λ∇ ·R′ξ̃′ +
(
(R′ξ̃′−Rξ̃) · ∇

)
λ.

By the controlled blowup (4.143) of the interpolation functions, the compatibility estimate
(4.134), the approximate mean curvature flow equation (4.129) and the estimate (4.77) it
then follows

∇ · ξ̂i,i+1 = −(1− λ)B̃ ·Rξ̃ − λB̃′ ·R′ξ̃′ +O(r−2
min dist(·, Īi,i+1)).

Finally, the compatibility estimates (4.135) and (4.136) in conjunction with definitions (4.149)–
(4.150) and the estimate (4.77) imply the desired bound (4.157).

Step 5: Proof of the estimates (rmin := r1,2 ∧ r2,3 ∧ r3,1)∣∣1− |ξ̂i,j |2∣∣ ≤ Cr−2
min dist2(·, Īi,j) in Ur, (4.158)

r2
min

∣∣∂t|ξ̂i,j |2∣∣+ rmin

∣∣∇|ξ̂i,j |2∣∣ ≤ Cr−1
min dist(·, Īi,j) in Ur. (4.159)

Let i ∈ {1, 2, 3}. The validity of (4.158) resp. (4.159) for the vector field ξ̂i,i+1 in interface
wedges Wj,j+1, j ∈ {1, 2, 3}, is directly implied by the definition (4.149), the bound (4.78),
as well as the estimates (4.130) resp. (4.131)–(4.132).

For all j ∈ {1, 2, 3}, we then may compute on the closure of the interpolation wedge Wj

by (4.149) and adding zero several times

|ξ̂i,i+1|2 = λ2|Rξ̃|2 + (1−λ)2|R′ξ̃′|2 + 2λ(1−λ)(Rξ̃ ·R′ξ̃′)

= 1− λ(1−λ)|Rξ̃ −R′ξ̃′|2 + λ(|Rξ̃|2−1) + (1−λ)(|R′ξ̃′|2−1). (4.160)

Hence, the estimates (4.158) and (4.159) are the result of the estimates (4.91), (4.134),
(4.130)–(4.132), (4.143) and (4.77).

Step 6: Choice of r̂ = r̂(Ω̄) ≤ r and definition of normalized vector fields ξi,j. We first
define r̂ := r ∧ 1√

2C
(r1,2 ∧ r2,3 ∧ r3,1) with C > 0 being the constant of (4.158). Note then

that (4.158) implies

1

2
≤ |ξ̂i,j |2 ≤

3

2
in Ur̂ =

⋃
t∈[0,T ]

Br̂(T (t))×{t} (4.161)
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for all i, j ∈ {1, 2, 3} with i 6= j. We may then define

ξi,j(x, t) :=
ξ̂i,j(x, t)

|ξ̂i,j(x, t)|
for all (x, t) ∈ Ur̂ (4.162)

and all i, j ∈ {1, 2, 3} with i 6= j. It remains to verify the asserted properties in terms of the
vector fields ξi,j and B on the restricted space-time domain Ur̂.

Step 7: Conclusion. Since ξi,j(x, t) = ξ̂i,j(x, t) for all t ∈ [0, T ] and all x ∈ Ti,j(t) ∩
Br̂(T (t)), property i) is an immediate consequence of definition (4.162). Note that (4.83)
trivially follows. Obviously, the skew-symmetry relation in property ii) carries over from
ξ̂i,j to ξi,j . Validity of the Herring angle condition (4.80) in terms of the vector fields ξi,j
also follows immediately from their definition (4.162) and the fact that the vector fields ξ̂i,j
already satisfy (4.80). Indeed, recall that the vector fields ξ̂1,2, ξ̂2,3 resp. ξ̂3,1 can be obtained
from each of the other ones by a rotation due to Lemma 4.24.

For a proof of (4.84) (recall that the estimate (4.85) is already part of Step 2 ), we simply
compute

(∂t,∇)ξi,j =
1

|ξ̂i,j |

(
Id− ξ̂i,j

|ξ̂i,j |
⊗ ξ̂i,j

|ξ̂i,j |

)
(∂t,∇)ξ̂i,j . (4.163)

Because of (4.161), the estimate r̂|∇ξi,j |+ r̂2|∂tξi,j | ≤ C throughout Ur̂ \T thus follows from
the corresponding estimate in terms of ξ̂i,j from Step 2 of this proof. One proceeds similarly
for the required estimate on the second-order spatial derivative.

It therefore remains to argue that the estimates (4.81) and (4.82) hold true. Using the
product rule and the choice of r̂ in the previous step, we may on Ur̂ compute(

∂t + (B · ∇) + (∇B)T
) ξ̂i,j

|ξ̂i,j |

=
1

|ξ̂i,j |

(
∂t + (B · ∇) + (∇B)T

)
ξ̂i,j −

1

2|ξ̂i,j |3
ξ̂i,j (∂t + (B · ∇)) |ξ̂i,j |2

By (4.155) and (4.161), the first right-hand side term is of the order O(r̂−3 dist(·, Īi,j)).
To handle the second term, it suffices to apply the estimate (4.159), the estimate on the
magnitude of the velocity |B| ≤ Cr̂−1 from Step 2, and the estimate (4.161). This proves the
estimate (4.81).

We now turn to the proof of (4.82). Here, we compute on Ur̂ by means of the choice of r̂
in the previous step

∇ · ξ̂i,j
|ξ̂i,j |

=
∇ · ξ̂i,j
|ξ̂i,j |

− (ξ̂i,j · ∇)|ξ̂i,j |2

2|ξ̂i,j |3
.

It is immediate from the estimates (4.161) and (4.159) to estimate the second term as being
of order O(r̂−2 dist(·, Īi,j)). Using the approximate mean curvature flow equation (4.157) for
the first term and the definition (4.162) of ξi,j then yields

∇ · ξ̂i,j
|ξ̂i,j |

= −B · ξ̂i,j
|ξ̂i,j |

+O
(
r̂−2 dist(·, Īi,j)

)
= −B · ξi,j +O

(
r̂−2 dist(·, Īi,j)

)
.

In total, this gives (4.82).

Finally, we provide the elementary-geometric proof for the existence of wedges with the
desired properties.
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τ3,1

τ1,2

τ2,3

W3

W1

W2

W1,2

W2,3

W3,1

Figure 4.7: If the angle between two tangent vectors is less than 90◦, we trisect it to obtain
the desired interpolation wedge, see for example W2. Otherwise, we take the corresponding
intersection of the half-spaces, as is done for W1 and W3. The wedges W1,2, W2,3 and W3,1

lie inbetween.

Proof of Lemma 4.21. We recall some notation in conjunction with Definition 4.17. For each
(cyclic) i ∈ {1, 2, 3} and all t ∈ [0, T ], the unit vector t̄i,i+1(p(t), t) denotes the tangent
of Īi,i+1(t) at the triple junction T (t) = {p(t)}, with the orientation chosen such that it
“points away” from the curve Īi,i+1(t). Define then τ̄i,i+1(t) := −t̄i,i+1(p(t), t) and Hτ̄i,i+1(t) =
{x ∈ R2 : (x−p(t)) · τ̄i,i+1(t) > 0}. Note that

σ1,2τ̄1,2(t) + σ2,3τ̄2,3(t) + σ3,1τ̄3,1(t) = 0, t ∈ [0, T ]. (4.164)

Using the balance of forces condition (4.164) together with the strict triangle inequality (4.8)
we see that there exist constant-in-time angles θi ∈ (0, π) such that cos(θi) = τ̄i,i+1(t)·τ̄i−1,i(t)
for i = 1, 2, 3 and t ∈ [0, T ]. For the following argument, see also Figure 4.7.

If θi > π
2 we may define Xi

i,i+1(t), Xi
i−1,i(t) ∈ S1 such that the cone Ci(t) := T (t) +

{γ1X
i
i,i+1(t) + γ2X

i
i−1,i(t) : γ1, γ2 ∈ (0,∞)} satisfies Ci(t) = Hτ̄i,i+1(t) ∩ Hτ̄i−1,i(t). Other-

wise, we choose Xi
i,i+1(t), Xi

i−1,i(t) ∈ S1 such that the cone Ci(t) := T (t) + {γ1X
i
i,i+1(t) +

γ2X
i
i−1,i(t) : γ1, γ2 ∈ (0,∞)} is the middle third of the cone {γ1τ̄i,i+1(t) +γ2τ̄i−1,i(t) : γ1, γ2 ∈

(0,∞)}. In both cases, defining for i ∈ {1, 2, 3} and t ∈ [0, T ] the cone Ci,i+1(t) :=
T (t) + {γ1X

i
i,i+1(t)+γ2X

i+1
i,i+1(t) : γ1, γ2 ∈ (0,∞)} we then have

Ci(t) ⊂ Hτ̄i,i+1(t) ∩Hτ̄i−1,i(t), (4.165)
Ci,i+1(t) ⊂ Hτ̄i,i+1(t), (4.166)⋃

i=1,2,3

Ci(t) ∪ Ci,i+1(t) = R2, (4.167)

p(t) + τi,i+1(t) ∈ Ci,i+1(t) (4.168)

for all i ∈ {1, 2, 3} and all t ∈ [0, T ].
Let r ∈ (0, r1,2 ∧ r2,3 ∧ r3,1], and for i ∈ {1, 2, 3} and t ∈ [0, T ] define Wi(t) := Ci(t) ∩

Br(T (t)) and Wi,i+1(t) := Ci,i+1(t) ∩ Br(T (t)). As (4.72) follows immediately from (4.167)
it suffices to argue that there exists a constant C = C(σ) ≥ 1, depending only on the
surface tensions at the triple junction, such that r := 1

C (r1,2 ∧ r2,3 ∧ r3,1) gives rise to the
inclusions (4.75)–(4.76) and the comparability of distances in form of (4.77)–(4.78).

First, (4.76) follows from (4.165) and the fact that Hτ̄i,i+1(t) ∩ Br(T (t)) is included in
the t-time slice of the image of the diffeomorphism from (4.45), see (4.46). Analogously, one
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

derives the second inclusion of (4.75) from (4.166). For the first inclusion of (4.75), i.e., the
curve trapping condition, one may argue as follows. On one side, it follows from the endpoint
ball condition ii) of Definition 4.17 and r ≤ r1,2 ∧ r2,3 ∧ r3,1 that Ti,i+1(t) ∩ Br(T (t)) ⊂
Hτ̄i,i+1(t) ∩ Br(T (t)). On the other side, based on the ball condition i) of Definition 4.17 at
the triple junction T (t) = {p(t)}, we may sharpen this inclusion to

Ti,i+1(t) ∩Br(T (t))

⊂
(
Hτ̄i,i+1(t) ∩Br(T (t))

)
\
(
Br
(
p(t)+rn̄i,i+1(p(t), t)

)
∪Br

(
p(t)−rn̄i,i+1(p(t), t)

))
.

Hence, the first inclusion of (4.75) follows after choosing r ∈ (0, r1,2 ∧ r2,3 ∧ r3,1] sufficiently
small, with a proportionality constant depending only on the opening angles of the interface
cones Ci,i+1.

We turn to the proof of the estimates (4.77)–(4.79). The estimate (4.78) is a consequence
of the first inclusion of (4.75), the fact that the interface wedgesWi,i+1, i ∈ {1, 2, 3}, are sepa-
rated from each other by the interpolation wedgesWi, i ∈ {1, 2, 3, }, and that within Br(T (t))
the distance to Ti,i+1 equals the distance to Īi,i+1 by Definition 4.17 and r ∈ (0, r1,2∧r2,3∧r3,1].
The estimate (4.79) follows from similar considerations, exploiting again that the interface
wedges are separated from each other by the interpolation wedges. Also the argument for the
proof of (4.77) is analogous; at least once we improved the curve trapping condition (4.75) to
a wedge which is strictly included in Wi,i+1. A possible choice for such a wedge is to simply
bisect the angles formed by τ̄i,i+1, X

i
i,i+1 and τ̄i,i+1, X

i+1
i,i+1, respectively. The improvement

of (4.75) then follows from possibly reducing r ∈ (0, r1,2 ∧ r2,3 ∧ r3,1] even further. This
in turn can be done again at the cost of a proportionality constant depending only on the
surface tensions at the triple junction.

4.5.3 Local compatibility estimates

We conclude this section with a result verifying that the local constructions at a triple junction
from Proposition 4.22 are (in a certain sense) suitable perturbations of the respective local
constructions from Lemma 4.18 with respect to interfaces meeting at the triple junction. It
is precisely at this stage where we rely on the freedom to choose a tangential component for
the local velocity field from Lemma 4.18.

Proposition 4.29. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution
to multiphase mean curvature flow in the sense of Definition 4.14. Let i, j ∈ {1, . . . , P} such
that i 6= j and Īi,j is a non-trivial interface. Denote by Tc a space-time connected component
of Īi,j, and assume that Tc connects two evolving triple junctions Tp+ and Tp−, respectively.
Let r̂p+ , r̂p− ∈ (0, 1] denote the associated localization scales from Proposition 4.22, respec-
tively. Finally, denote by (ξci,j , B

c) the local vector fields from Lemma 4.18.
Then there exists a choice of the tangential component αc of Bc satisfying

max
k=0,1,2

(r̂p+ ∧ r̂p− ∧ `)k+1|∇kαc| ≤ C, 3` := min
t∈[0,T ]

dist(Tp+(t), Tp−(t)), (4.169)

throughout im(ΨTc), so that at each of the two triple junctions Tp, p ∈ {p+, p−}, the local
vector fields (ξpi,j , B

p) from Proposition 4.22 (at scale r̂p) may be chosen so that they are
locally compatible with (ξci,j , B

c) in the sense that∣∣ξci,j−ξpi,j∣∣+ r̂p
∣∣(∇ξci,j−∇ξpi,j)Tξci,j∣∣ ≤ Cr̂−1

p dist(·, Īi,j), (4.170)∣∣(ξci,j−ξpi,j) · ξci,j∣∣ ≤ Cr̂−2
p dist2(·, Īi,j), (4.171)∣∣Bp−Bc

∣∣ ≤ Cr̂−3
p dist2(·, Īi,j), (4.172)∣∣∇Bp−∇Bc

∣∣ ≤ Cr̂−3
p dist(·, Īi,j) (4.173)
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4.6. Gradient flow calibrations for a regular network

in the region B 1
2

(r̂p∧`)(Tp(t)) ∩
(
W p
i,j(t) ∪W

p
i (t) ∪W p

j (t)
)
for all t ∈ [0, T ] (where the wedges

W p
i,j ,W

p
i ,W

p
j are the ones from Definition 4.20 with respect to the triple junction Tp). The

constant C > 0 in the above estimates (4.169)–(4.173) may depend on Ω̄, but is independent
of r̂p+, r̂p− and `.

Proof. The proof is split into three steps.
Step 1: Choice of vector fields. We take (ξ

p±
i,j , B

p±) as constructed in the proof of Propo-
sition 4.22. Moreover, we take (ξci,j , B

c) as defined in Lemma 4.18 with the following choice
of the tangential component αc. Let θ be a smooth cutoff function with θ(r) = 1 for |r| ≤ 1

2
and θ ≡ 0 for |r| ≥ 1. We then define

αc := θ
(dist(·, Tp+)

` ∧ r̂p+

)
Bp+ · τ̄i,j + θ

(dist(·, Tp−)

` ∧ r̂p−

)
Bp− · τ̄i,j , in im(ΨTc). (4.174)

By the choice of the cutoff θ, this is indeed well-defined. The regularity estimate (4.169)
is a direct consequence of the definition (4.174) and the estimates (4.98) and (4.85). Note
that (4.169) in turn updates the estimate (4.59) to

max
k=0,1,2

(r̂p+ ∧ r̂p− ∧ `)k+1|∇kBc| ≤ C in im(ΨTc), (4.175)

with the constant C > 0 being independent of r̂p+ , r̂p− and `.
Step 2: Proof of (4.172) and (4.173). Let p ∈ {p+, p−}. First, we note that for

all t ∈ [0, T ] it holds B 1
2

(r̂p∧`)(Tp(t)) ∩
(
W p
i,j(t) ∪W

p
i (t) ∪W p

j (t)
)
⊂ im(ΨTc) due to (4.75)–

(4.76). By means of the regularity estimates (4.85) and (4.175), the choice of the cutoff
function θ, and the definition (4.174) of the tangential velocity of Bc, it thus suffices to
prove Bc = Bp within the interface wedge W p

i,j(t) ∩ B 1
2

(r̂p∧`)(Tp(t)) for all t ∈ [0, T ]. How-
ever, by (4.174) the two vector fields agree in tangential direction. Their normal component
in turn equals Hi,j n̄i,j , which is evident for Bc from definition (4.56), and for Bp from the
definitions (4.120) and (4.150).

Step 3: Proof of (4.170) and (4.171). Let again p ∈ {p+, p−}. Thanks to the regu-
larity estimates (4.57) resp. (4.84) and the fact (∇ξci,j)Tξci,j = 1

2∇|ξ
c
i,j |2 = 0, the asserted

bounds (4.170) and (4.171) follow once we assured ourselves of the validity of ξci,j − ξ
p
i,j = 0

and (∇ξpi,j)Tξci,j = 0 along the local patch Tc(t)∩B 1
2

(r̂p∧`)(Tp(t)) for all t ∈ [0, T ]. The former
is immediate from both vector fields being extensions of the unit normal n̄i,j |Īi,j , whereas the
latter then follows from adding zero and |ξpi,j |2 ≡ 1 in form of (∇ξpi,j)Tξci,j = (∇ξpi,j)Tξ

p
i,j =

1
2∇|ξ

p
i,j |2 = 0.

4.6 Gradient flow calibrations for a regular network

The aim of this section is to prove Proposition 4.6: Given a strong solution to multiphase
mean curvature flow (in the sense of an evolving network of smooth curves meeting at triple
junctions), we construct a gradient flow calibration by gluing together the local constructions
from the previous two sections.

More precisely, in Section 4.6.1 we define a partition of unity which allows us to localize
around each topological feature Tn, i.e., a two phase interface or a triple junction, for some
suitable index n ∈ N. We then define the global vector fields ξi,j for i, j ∈ {1, . . . , P} with
i 6= j and B in Section 4.6.2 by gluing together suitable locally defined vector fields ξni,j and
Bn. Most of these vector fields were already constructed in Sections 4.4 and 4.5, so that in
Section 4.6.2 we only need to define those vector fields ξni,j for which at least one of the two
phases i or j is not present at the selected topological feature Tn. For their construction we
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

crucially use the coercivity condition of Definition 4.8 on the matrix of surface tensions. In
Section 4.6.3, we prove the compatibility between the local constructions of the vector fields of
adjacent topological features, which then allows us in Section 4.6.4 to prove Proposition 4.6.

We first describe the necessary notation. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution for
multiphase mean curvature flow in the sense of Definition 4.14 on some time interval [0, T ]. In
particular, the family Ω̄ is a smoothly evolving regular partition and the family I =

⋃
i 6=j Īi,j

is a smoothly evolving regular network of interfaces in the sense of Definition 4.13.
We decompose the network of interfaces of the strong solution according to its topological

features, i.e., into smooth two-phase interfaces on the one hand and triple junctions on
the other hand. Suppose that the strong solution has N of such topological features Tn,
n ∈ {1, . . . , N}. We then split {1, . . . , N} =: C ·∪P with the convention that C enumerates the
connected components in space-time of the smooth two-phase interfaces (being time-evolving
curves) and P enumerates the triple junctions (being time-evolving points). If p ∈ P, we
define Tp :=

⋃
t∈[0,T ] Tp(t)×{t} to be the trajectory in space-time described by the triple

junction. If c ∈ C, we define Tc :=
⋃
t∈[0,T ] Tc(t)×{t} ⊂ Īi,j for some i, j ∈ {1, . . . , P} with

i 6= j to be the corresponding space-time connected component of a two-phase interface Īi,j .
We say that the i-th phase of the strong solution is present at the topological feature Tn for
n ∈ {1, . . . , N} if ∂Ω̄i ∩ Tn 6= ∅. Otherwise, we say that the phase is absent at Tn. Finally,
we write c ∼ p for c ∈ C and p ∈ P if and only if Tc has an endpoint at Tp. Otherwise, we
write c 6∼ p.

For each p ∈ P, let r̂p ∈ (0, 1] denote the localization scale provided by Proposition 4.22,
and for each i, j ∈ {1, . . . , P} such that i 6= j let ri,j ∈ (0, 1] be an admissible localization
scale for the interface Īi,j in the sense of Definition 4.17. We also define

3`P := 1 ∧ min
t∈[0,T ]

min
p,p′∈P, p 6=p′

dist(Tp(t), Tp′(t)).

In words, `P keeps track of the separation of the triple junctions. Moreover, for each c ∈ C
we let

3`c := 1 ∧ min
t∈[0,T ]

min
c′∈C\{c} : Tc∩Tc′=∅

dist(Tc(t), Tc′(t)).

If c ∈ C refers to a closed loop, then `c measures the separation to all other topological
features. Otherwise, c ∈ C refers to a two-phase interface with two triple junction endpoints,
and in this case `c represents the minimal distance to all other topological features except
for the two triple junctions at its endpoints and the set of two-phase interfaces also having
an endpoint at these triple junctions. We then define

2rP := min
p∈P

r̂p ∧ `P ∧min
c∈C

`c ∈ (0, 1]. (4.176)

Note that rP allows for the application of all the results from Section 4.5, and that distinct
triple junctions are well separated. In addition, the rP -ball around a triple junction Tp
intersects with the rP -neighborhood of a two-phase interface Tc if and only if c ∼ p.

Next, in case c ∈ C does not refer to a closed loop, i.e., there exists exactly two p+, p− ∈ P
such that c ∼ p+ and c ∼ p−, we consider

3`′c := 1 ∧ min
t∈[0,T ]

min
c′∈C\{c}

c′∼p, p∈{p±}

dist
(
Tc(t) \

⋃
p∈{p±}

BrP (Tp(t)), Tc′(t)
)
.

The purpose of `′c is to separate interfaces which meet at the same triple junction; at least
outside of a neighborhood of the latter. We then define

2rC := min
i,j∈{1,...,P}, i 6=j

ri,j ∧min
c∈C

`c ∧ min
c∈C : ∃p∈P s.t. c∼p

`′c ∈ (0, 1].
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Observe that the scale rC allows for the application of all the results from Section 4.4, and
that distinct interfaces are well separated at this scale in the previously described sense.

Finally, it is convenient to define a minimal localization scale by means of

r̄min := rC ∧ rP > 0. (4.177)

4.6.1 Localization of topological features

We now introduce a partition of unity (ηbulk, η1, . . . , ηN ), where each ηn for n = 1, . . . , N
localizes in a neighborhood of the corresponding topological feature Tn as follows:

Lemma 4.30. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow in the sense of Definition 4.14, whose network of interfaces
decomposes into N topological features Tn, n ∈ {1, . . . , N}. Let rP , r̄min ∈ (0, 1] be the
localization scales defined by (4.176) and (4.177), and let TP :=

⋃
p∈P Tp.

Then, for each n ∈ {1, . . . , N} there exists a continuous function

ηn : R2 × [0, T ]→ [0, 1]

satisfying ηn ∈ (C0
t C

2
x ∩ C1

t C
0
x)(R2×[0, T ] \ TP) with corresponding estimates

max
k=1,2

r̄kmin|∇kηn|+ r̄2
min|∂tηn| ≤ C in R2×[0, T ] \ TP , (4.178)

for some constant C > 0, depending only on Ω̄ but not on r̄min, so that the family (η1, . . . , ηN )
is a partition of unity in the following sense:

i) Let ηbulk := 1 −
∑N

n=1 ηn. Then ηbulk ∈ [0, 1] throughout R2×[0, T ]. On the evolving
network of interfaces I :=

⋃
i 6=j Īi,j we have ηbulk ≡ 0. Moreover, there exists a con-

stant C ≥ 1, depending only on Ω̄ but not on r̄min, such that it holds

C−1
(
r̄−2

min dist2(·, I) ∧ 1
)
≤ ηbulk in R2×[0, T ] \ TP , (4.179)

ηbulk ≤ C
(
r̄−2

min dist2(·, I) ∧ 1
)

in R2×[0, T ] \ TP , (4.180)

|∇ηbulk| ≤ Cr̄−1
min

(
r̄−1

min dist(·, I) ∧ 1
)

in R2×[0, T ] \ TP , (4.181)

|∂tηbulk| ≤ Cr̄−2
min

(
r̄−1

min dist(·, I) ∧ 1
)

in R2×[0, T ] \ TP , (4.182)

and if either phase i or phase j is absent at a given topological feature n ∈ {1, . . . , N}
we have the estimates

ηn ≤ C
(
r̄−2

min dist2(·, Īi,j) ∧ 1
)

in R2×[0, T ] \ TP , (4.183)

|∇ηn| ≤ Cr̄−1
min

(
r̄−1

min dist(·, Īi,j) ∧ 1
)

in R2×[0, T ] \ TP , (4.184)

|∂tηn| ≤ Cr̄−2
min

(
r̄−1

min dist(·, Īi,j) ∧ 1
)

in R2×[0, T ] \ TP . (4.185)

ii) For all c ∈ C and t ∈ [0, T ] it holds

supp ηc(·, t) ⊂ ΨTc(Tc(t)×{t}×[r̄min, r̄min]) =: imr̄min(ΨTc)(t), (4.186)

with ΨTc denoting the restriction to Tc of the diffeomorphism (4.45).

iii) For all p ∈ P and t ∈ [0, T ] it holds

supp ηp(·, t) ⊂ BrP (Tp(t)). (4.187)
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iv) Let p, p′ ∈ P be two distinct triple junctions. Then for all t ∈ [0, T ] we have

supp ηp(·, t) ∩ supp ηp′(·, t) ⊂ BrP (Tp(t)) ∩BrP (Tp′(t)) = ∅. (4.188)

v) Let p ∈ P be a triple junction and let c ∈ C be a two-phase interface. Then supp ηp ∩
supp ηc 6= ∅ if and only if Tc has an endpoint at Tp. In this case and assuming Tc ⊂ Īi,j
for i 6= j ∈ {1, . . . , P}, it holds for all t ∈ [0, T ] that

supp ηp(·, t) ∩ supp ηc(·, t) ⊂ BrP (Tp(t)) ∩ (Wi,j(t) ∪Wi(t) ∪Wj(t)), (4.189)

where Wi,j, Wi and Wj are as in Definition 4.20.

vi) Let c, c′ ∈ C be two distinct two-phase interfaces. Then we have supp ηc ∩ supp ηc′ 6= ∅
if and only if both interfaces have an endpoint at the same triple junction Tp, p ∈ P. In
this case, it holds for all t ∈ [0, T ] that

supp ηc(·, t) ∩ supp ηc′(·, t) ⊂ BrP (Tp(t)) ∩Wi(t), (4.190)

where we assume that Tc ⊂ Īi,j and Tc′ ⊂ Īk,i.

Proof. An illustration of the constructed functions close to a triple junction can be found
in Figure 4.9. For the definition of a partition of unity (ηbulk, η1, . . . , ηN ) with the required
localization and coercivity properties we proceed in several steps.

Step 1: Definition of auxiliary cutoffs. Let θ be a smooth and even cutoff function with
θ(s) = 1 for |s| ≤ 1

2 and θ ≡ 0 for |s| ≥ 1. Let ζ : R → [0,∞) be another smooth cutoff
function defined by

ζ(s) = (1− s2)θ(s2), (4.191)

see Figure 4.8. Let δ ∈ (0, 1] be a constant to be determined later (independent of r̄min).
Based on the profile ζ, we then introduce for each topological feature Tn, n ∈ {1, . . . , N}, a
corresponding cutoff function ζn as follows. First, for a given triple junction p ∈ P we define
the associated triple junction cutoff

ζp(x, t) := ζ
(dist(x, Tp(t))

rP

)
, (x, t) ∈ R2×[0, T ]. (4.192)

Second, for a given connected component c ∈ C of a two-phase interface, say Tc ⊂ Īi,j for
some i, j ∈ {1, . . . , P} with i 6= j, we define the associated interface cutoff function

ζc(x, t) :=

{
ζ
( si,j(x,t)
δr̄min

)
, (x, t) ∈ im(ΨTc),

0 else.
(4.193)

where si,j is the signed distance function defined in (4.47) and im(ΨTc) is the image of the
diffeomorphism ΨTc , i.e., the restriction to Tc of the diffeomorphism (4.45).

It follows directly from the definitions (4.191)–(4.193), the regularity of the signed distance
in form of (4.50), (4.97) and (4.101), as well as (4.102) that

supp ζp(·, t) ⊂ BrP (Tp(t)), t ∈ [0, T ], (4.194)
supp ζc(·, t) ⊂ ΨTc(Tc(t)×{t}×[−δr̄min, δr̄min]), t ∈ [0, T ], (4.195)
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r1/2 1−1/2−1

ζ(r)

1

Figure 4.8: The profile ζ used to construct the cutoff functions for two-phase interfaces and
triple junctions.

and ζp ∈ (C0
t C

2
x ∩ C1

t C
0
x)(R2×[0, T ] \ Tp) as well as ζc ∈ (C0

t C
2
x ∩ C1

t C
0
x)(im(ΨTc)) with

corresponding estimates (assuming Tc ⊂ Īi,j)

|1−ζp| ≤ C
(
r̄−2

min dist2(·, Tp) ∧ 1
)

on R2×[0, T ] \ Tp, (4.196)

|∇kζp| ≤ Cr̄−kmin

(
r̄
−(2−k)
min dist2−k(·, Tp) ∧ 1) on R2×[0, T ] \ Tp, k ∈ {1, 2}, (4.197)

|∂tζp| ≤ Cr̄−2
min

(
r̄−1

min dist(·, Tp) ∧ 1
)

on R2×[0, T ] \ Tp, (4.198)

|1−ζc| ≤ C
(
r̄−2

min dist2(·, Īi,j) ∧ 1
)

on im(ΨTc), (4.199)

|∇kζc| ≤ Cr̄−kmin

(
r̄
−(2−k)
min dist2−k(·, Īi,j) ∧ 1

)
on im(ΨTc), k ∈ {1, 2}, (4.200)

|∂tζc| ≤ Cr̄−2
min

(
r̄−1

min dist(·, Īi,j) ∧ 1
)

on im(ΨTc). (4.201)

Step 2: Define ηp for triple junctions p ∈ P. Let us assume that the phases i, j, k ∈
{1, . . . , P} are present at the triple junction Tp, and the corresponding interfaces are denoted
by Tci,j ⊂ Īi,j , Tcj,k ⊂ Īj,k and Tck,i ⊂ Īk,i.

We want to define ηp such that (4.187) holds true. Recall from Definition 4.20 that
BrP (Tp) decomposes into six wedges. Three of them, namely the interface wedges Wi,j , Wj,k

resp. Wk,i, contain the interfaces Tci,j , Tcj,k resp. Tck,i . The other three are interpolation
wedges denoted by Wi, Wj resp. Wk.

We now have everything in place to move on with the definition of ηp. We note that
BrP (Tp(t)) ∩Wi,j(t) ⊂ im(ΨTci,j ) for all t ∈ [0, T ] due to (4.75) and (4.176). Therefore, we
can begin by setting

ηp(x, t) := ζp(x, t)ζci,j (x, t), t ∈ [0, T ], x ∈ BrP (Tp(t)) ∩Wi,j(t), (4.202)

and analogously on the other interface wedges Wj,k and Wk,i. To define ηp on the interpola-
tion wedges, we use the interpolation parameter built in Lemma 4.28. To clarify the direction
of interpolation, i.e., on which boundary of the interpolation wedge the corresponding inter-
polation function is equal to one or zero, we make use of the following notational convention.
For the interpolation wedge Wi, say, we denote by λj,ki the interpolation function as built
in Lemma 4.28 and which interpolates from j to k in the sense that it is equal to one on
(∂Wi,j ∩ ∂Wi) \ Tp and which vanishes on (∂Wk,i ∩ ∂Wi) \ Tp. We also define λk,ji := 1− λj,ki
which interpolates on Wi in the opposite direction from k to j. Analogously, one introduces
the interpolation functions on the other interpolation wedges. We may then define

ηp(x, t) := λj,ki (x, t)ζp(x, t)ζci,j (x, t) + (1−λj,ki )(x, t)ζp(x, t)ζck,i(x, t),

t ∈ [0, T ], x ∈ BrP (Tp(t)) ∩Wi(t),
(4.203)

due to BrP (Tp(t))∩Wi(t) ⊂ im(ΨTci,j )∩ im(ΨTck,i ) for all t ∈ [0, T ], which follows from (4.76)
and (4.176). We can analogously define ηp on the other two interpolation wedgesWj andWk.
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

Finally, we define

ηp(x, t) := 0, t ∈ [0, T ], x /∈ BrP (Tp(t)). (4.204)

We refer to Figure 4.9 for an illustration of the construction.
The localization property (4.187) is immediate from the definitions (4.202)–(4.204) and

the property (4.194), whereas (4.188) follows from the definition (4.176) of the localization
scale rP . Moreover, as a consequence of the estimates (4.143)–(4.144) for the interpolation
parameter, the estimates (4.196)–(4.201) for the auxiliary cutoffs, the definitions (4.202)–
(4.204) and the trivial estimate dist(·, Īi,j) ∨ dist(·, Īj,k) ∨ dist(·, Īk,i) ≤ dist(·, Tp) through-
out BrP (Tp(t)) for all t ∈ [0, T ] (assuming that the phases i, j, k ∈ {1, . . . , P} are present
at Tp) we obtain

|1−ηp| ≤ C
(
r̄−2

min dist2(·, Tp) ∧ 1
)

on R2×[0, T ] \ Tp, (4.205)

|∇kηp| ≤ Cr̄−kmin

(
r̄
−(2−k)
min dist2−k(·, Tp) ∧ 1

)
on R2×[0, T ] \ Tp, k ∈ {1, 2}, (4.206)

|∂tηp| ≤ Cr̄−2
min

(
r̄−1

min dist(·, Tp) ∧ 1
)

on R2×[0, T ] \ Tp. (4.207)

These estimates of course imply the asserted bound (4.178) for n = p ∈ P. Note also that the
error estimates (4.183)–(4.185) are trivially fulfilled by definition (4.176) of the localization
scale rP , the property (4.187) and the estimate (4.178).

Step 3: Define ηc for c ∈ C. Let i, j ∈ {1, . . . , P} with i 6= j be such that Tc ⊂ Īi,j . If the
interface Tc has no endpoint at a triple junction, i.e., it is a closed loop, we simply set

ηc(x, t) :=

{
ζc(x, t) if (x, t) ∈ im(ΨTc),

0, else,
(4.208)

where the cutoff ζc was already defined in (4.193).
Otherwise, the interface ends in two different triple junctions corresponding to p, p′ ∈ P

with p 6= p′. We will only describe the construction close to Tp, as by (4.176) the triple
junctions are separated on scale rP and can thus also be treated separately. Away from the
triple junctions Tp and Tp′ , we still define

ηc(x, t) :=

{
ζc(x, t) (x, t) ∈ im(ΨTc) \

⋃
t∈[0,T ]

(
BrP (Tp(t)) ∪BrP (Tp′(t))

)
×{t}

0 in
(
R2×[0, T ] \ im(ΨTc)

)
\
⋃
t∈[0,T ]

(
BrP (Tp(t)) ∪BrP (Tp′(t))

)
×{t}.
(4.209)

Near the triple junction, i.e., on BrP (Tp(t)) for all t ∈ [0, T ], we aim to modify the definition
such that ηc is supported within the set Wi ∪Wj ∪Wi,j . To this end, we define

ηc(x, t) :=
(
1−ζp(x, t)

)
ζc(x, t), t ∈ [0, T ], x ∈ BrP (Tp(t)) ∩Wi,j(t), (4.210)

which is indeed possible in analogy to (4.202), and where the auxiliary cutoff ζp was in-
troduced in (4.192). On the interpolation wedges Wi resp. Wj , we again make use of the
arguments enabling (4.203) and set

ηc(x, t) := λj,ki (x, t)
(
1−ζp(x, t)

)
ζc(x, t), t ∈ [0, T ], x ∈ BrP (Tp(t)) ∩Wi(t),

ηc(x, t) := λi,kj (x, t)
(
1−ζp(x, t)

)
ζc(x, t), t ∈ [0, T ], x ∈ BrP (Tp(t)) ∩Wj(t),

ηc(x, t) := 0, t ∈ [0, T ], x ∈ BrP (Tp(t)) \
(
Wi,j(t) ∪Wi(t) ∪Wj(t)

)
,

(4.211)

where k ∈ {1, . . . , P} corresponds to the third phase present at p. We refer again to Figure 4.9
for an illustration of the construction.
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In terms of the required qualitative regularity for ηc, the only obstruction might be the
compatibility of (4.209) with (4.211). This is precisely the point where we rely on a suitable
choice of the scale δ ∈ (0, 1]. As we have seen in the proof of Lemma 4.21, the curve trapping
condition of (4.75) in fact holds on scale rP for a wedge strictly contained in the interface
wedge Wi,j (e.g., a wedge obtained by angle bisection). Hence, due to the ball condition
of Definition 4.17, this improved curve trapping condition, and the definition (4.176) of the
localization scale rP we may choose the constant δ ∈ (0, 1] small enough, depending only on
the surface tensions associated with Ω̄, such that

ΨTc(Tc(t)×{t}×[−δrP , δrP ]) ∩ ∂BrP (Tp(t)) ⊂⊂Wi,j(t)

uniformly over all t ∈ [0, T ]. This choice in turn ensures continuity of ηc, and then based
on the definitions (4.208)–(4.211) that ηc ∈ (C0

t C
2
x ∩ C1

t C
0
x)(R2×[0, T ] \ TP) since all the

constituents of ηc enjoy this regularity (cf. Step 1 for the auxiliary cutoffs and Lemma 4.28
for the interpolation parameter, respectively).

Next, we may infer the localization property (4.186) from the definitions (4.208)–(4.211)
and the property (4.195). Moreover, based on the choice (4.177) of the localization scale r̄min,
the localization property (4.187) and the definitions (4.210)–(4.211), one may deduce (4.189)
and (4.190).

We move on with the proof of the estimates (4.178) and (4.183)–(4.185) in terms of n =
c ∈ C. First, a straightforward application of the definitions (4.208)–(4.211), the esti-
mates (4.143)–(4.144) for the interpolation parameter, and the estimates (4.196)–(4.201)
for the auxiliary cutoffs implies (4.178). Consider then c ∈ C and distinct i, j ∈ {1, . . . , P}
such that Tc 6⊂ Īi,j , i.e., either phase i or phase j is absent at Tc. Without loss of generality,
we may assume that there exists c′ ∈ C \{c} and p ∈ P such that Tc′ ⊂ Īi,j , c ∼ p and c′ ∼ p;
and in this regime, it even suffices to restrict to the domain BrP (Tp(t)) for all t ∈ [0, T ].
Otherwise, the error estimates (4.183)–(4.185) are trivially fulfilled because of (4.186), the
estimate (4.178) and definition (4.177) of the localization scale r̄min.

To prove the error estimates in the remaining regime, we now fully exploit the fact that a
factor of 1− ζp always appears in the definitions (4.210) and (4.211). In particular, by means
of the estimates (4.143)–(4.144) for the interpolation parameter, the estimates (4.196)–(4.201)
for the auxiliary cutoffs, and the trivial estimate dist(·, Tc) ≤ dist(·, Tp) throughoutBrP (Tp(t))
for all t ∈ [0, T ], it follows

ηc ≤ C
(
r̄−2

min dist2(·, Tp) ∧ 1
)

in BrP (Tp(t)), t ∈ [0, T ], (4.212)

|∇ηc| ≤ Cr̄−1
min

(
r̄−1

min dist(·, Tp) ∧ 1
)

in BrP (Tp(t)), t ∈ [0, T ], (4.213)

|∂tηc| ≤ Cr̄−2
min

(
r̄−1

min dist(·, Tp) ∧ 1
)

in BrP (Tp(t)), t ∈ [0, T ]. (4.214)

These estimates upgrade to (4.183)–(4.185) thanks to the bounds (4.79) and (4.77).
Step 4: Partition of unity. Next, we validate the partition of unity property for the family

of localization functions (η1, . . . , ηN ). First of all, it is clear from our definitions (4.202)–
(4.211) that ηn ∈ [0, 1] for each topological feature n ∈ {1, . . . , N}. Together with the already
established localization properties (4.186)–(4.190) and the definitions (4.202)–(4.211), it also
follows that

∑N
n=1 ηn ≤ 1 on R2 × [0, T ] as well as

∑N
n=1 ηn ≡ 1 on the evolving network of

interfaces I =
⋃
i 6=j Īi,j . Hence, we may define the bulk term ηbulk := 1−

∑N
n=1 ηn ∈ [0, 1] and

obtain that the extended family (ηbulk, η1, . . . , ηN ) is indeed a partition of unity on R2×[0, T ].
Step 5: Estimates for the bulk cutoff. By the localization properties (4.186)–(4.190)

as well as the choices (4.176) and (4.177) of the localization scales rP and r̄min, it suf-
fices to prove (4.180)–(4.181) in

⋃
c∈C imr̄min(ΨTc) \

⋃
p∈P

⋃
t∈[0,T ]BrP (Tp(t))×{t} and in⋃

p∈P
⋃
t∈[0,T ]BrP (Tp(t))×{t}, respectively. We in fact may argue separately for each c ∈ C

197



4. Weak-strong uniqueness for planar multiphase mean curvature flow

and each p ∈ P. Moreover, for all c ∈ C and all distinct i, j ∈ {1, . . . , P} such that Tc ⊂ Īi,j
it holds

dist(·, Īi,j) = dist(·, I) in imr̄min(ΨTc) \
⋃
p∈P

⋃
t∈[0,T ]

BrP (Tp(t))×{t}, (4.215)

and similarly for all p ∈ P with present phases i, j, k ∈ {1, . . . , P}, it holds

dist(·, Īi,j) ∧ dist(·, Īj,k) ∧ dist(·, Īk,i) = dist(·, I) in
⋃

t∈[0,T ]

BrP (Tp(t))×{t}. (4.216)

First, let c ∈ C. Due to the localization properties (4.186)–(4.190), the choices (4.176)
and (4.177) of the localization scales rP and r̄min, as well as the definitions (4.208) and (4.209)
it holds

ηbulk = 1−ηc = 1−ζc in imr̄min(ΨTc) \
⋃
p∈P

⋃
t∈[0,T ]

BrP (Tp(t))×{t}. (4.217)

The upper bounds (4.180)–(4.182) are therefore an immediate consequence of the bounds (4.199)–
(4.201), respectively, together with (4.215) and (4.216). The coercivity estimate (4.179) in
turn follows from the choice (4.191) of the quadratic cutoff profile.

Second, consider p ∈ P and assume that the pairwise distinct phases i, j, k ∈ {1, . . . , P}
are present at Tp. Modulo a permutation of the indices, it suffices to consider the two unique
two-phase interfaces Tci,j ⊂ Īi,j and Tck,i ⊂ Īk,i so that ci,j ∼ p and ck,i ∼ p, and then to
prove the desired estimates on the interface wedge Wi,j and the interpolation wedge Wi. In
this regime, due to the localization properties (4.186)–(4.190), the choices (4.176) and (4.177)
of the localization scales rP and r̄min, as well as the definitions (4.202)–(4.203) resp. (4.210)–
(4.211), it holds

ηbulk = 1−ηci,j−ηp = 1−ζci,j in BrP (Tp(t)) ∩Wi,j(t), (4.218)
ηbulk = 1−ηci,j−ηck,i−ηp (4.219)

= λj,ki (1−ζci,j ) + (1−λj,ki )(1−ζck,i) in BrP (Tp(t)) ∩Wi(t)

for all t ∈ [0, T ]. The upper bounds (4.180)–(4.182) therefore follow from the estimates (4.199)–
(4.201), the bound (4.143) for the interpolation parameter, the estimates (4.77) and (4.78),
as well as the estimates (4.215) and (4.216). The coercivity estimate (4.179) in turn is again
implied by (4.191).

4.6.2 Global construction of the calibration

In this section, we glue together the local constructions to define the global extensions ξi,j
and B of the normal vector fields and velocity field, respectively.

The idea for the construction of the vector fields ξi,j for i, j ∈ {1, . . . , P} with i 6= j is
as follows. First, we provide the definition of local vector fields ξni,j for n ∈ {1, . . . , N} in
the support of the associated localization function ηn for each topological feature Tn. If both
phases i and j are present at Tn, we define ξni,j by means of the local constructions provided
in Section 4.4 for the model problem of a smooth manifold and Section 4.5 for the model
problem of a triple junction. This, however, leaves open the question of the definition of
the vector fields ξni,j for phases absent at Tn. It turns out that this issue is related to the
conditions of global stability between the phases. In particular, we would like to ensure that
at a given topological feature Tn, our relative entropy functional provides a length control
for those interfaces which are not present at Tn. For this purpose, we rely on the stability
condition for an admissible matrix of surface tensions in the sense of Definition 4.8 iii).
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4.6. Gradient flow calibrations for a regular network

Figure 4.9: The different functions ηn for n ∈ C ∪ P in the partition of unity at a single
triple junction Tp for p ∈ P: The function ηc for a single two-phase interface c ∈ C ending
at the triple junction (top left), the function ηp for the triple junction itself (top right), the
sum of all two-phase localization functions at a triple junction (bottom left), and the sum
of all localization functions

∑
n ηn (bottom right). Observe that the sum of all localization

functions equals 1 on the interfaces in the strong solution, but decays quadratically away
from them.

Lemma 4.31. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution
to multiphase mean curvature flow in the sense of Definition 4.14. Let (ηbulk, η1, . . . , ηN )
be a partition of unity as constructed in Lemma 4.30. In particular, let r̄min ∈ (0, 1] be the
localization scale defined by (4.177), and TP :=

⋃
p∈P Tp. Let i, j ∈ {1, . . . , P} be distinct

phases and let n ∈ {1, . . . , N} correspond to a topological feature. Given

Un :=
⋃

t∈[0,T ]

{x ∈ R2 : ηn(x, t) > 0} × {t} (4.220)

there exist continuous vector fields

ξni,j : Un → R2,

ξni : Un → R2,

satisfying the following properties:

i) It holds ξni,j , ξ
n
i ∈

(
C0
t C

2
x ∩ C1

t C
0
x

)
(Un \ TP), and there exists C > 0, which may depend

on Ω̄ but not on r̄min, such that throughout Un \ TP

max
k=0,1,2

r̄kmin|∇kξni,j |+ r̄2
min|∂tξni,j | ≤ C. (4.221)

ii) On Un we have ξni,j = −ξnj,i, |ξni,j | ≤ 1 as well as

σi,jξ
n
i,j = ξni − ξnj . (4.222)

iii) If the phases i and j are both present at the topological feature Tn, then ξni,j coincides on Un
with the explicit two-phase construction from Lemma 4.18 in case of n ∈ C, respectively
the triple junction construction from Proposition 4.22 in case of n ∈ P.
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iv) There exists a constant b = b(σ) ∈ (0, 1), depending only on the surface tension matrix
associated with the strong solution Ω̄, with the property that if either phase i or j is absent
at the topological feature Tn, then throughout Un we have

|ξni,j | ≤ b < 1. (4.223)

Proof. The proof consists of two parts distinguishing between the topological features present
in the network of interfaces of the strong solution.

Step 1: Consider the case n = c ∈ C. We first assume that both phases i and j are present
at the two-phase interface Tc, i.e., Tc ⊂ Īi,j . We then define the vector field ξci,j on Uc as in
Lemma 4.18. Note that by the localization property (4.186) and the definition (4.177), we
are indeed in the setting of Section 4.4. In particular, ξci,j = −ξcj,i and ξci,j coincides with n̄i,j
on supp ηc ∩ Īi,j . Furthermore, let us define the vector fields ξci and ξcj as ξci :=

σi,j
2 ξci,j resp.

as ξcj :=
σi,j

2 ξcj,i. This ensures that the desired formula (4.222) is indeed satisfied. Moreover,
the regularity estimate (4.221) follows from (4.57) and (4.58).

Now, let us assume that at least one of the phases i or j is absent at the two-phase
interface Tc. To be specific, we fix m, l ∈ {1, . . . , P} with m 6= l such that Tc ⊂ Īm,l. The
idea now is to first define vector fields ξci and ξcj and then define ξci,j by means of (4.222)
such that (4.223) holds true. To this end, we rely on the strict triangle inequality (4.8)
for the given matrix of surface tensions, a direct consequence of our stability assumption
Definition 4.8 iii). Let us define

ξci :=
1

2
(σl,iξ

c
m,l + σm,iξ

c
l,m),

and analogously for ξcj . Note that this is indeed well-defined since we have already provided
a definition of the vector fields ξcm,l = −ξcl,m on the right-hand side as they are assumed to
be associated to phases present at Tc. This definition is also consistent with the previous one
because of the convention σl,l = σm,m = 0. We may then compute plugging in the definitions

ξci,j :=
ξci − ξcj
σi,j

=
1

2

(σl,i − σl,j
σi,j

ξcm,l +
σm,i − σm,j

σi,j
ξcl,m

)
.

Hence, (4.223) holds true because we have |σl,i−σl,jσi,j
| < 1 and |σm,i−σm,jσi,j

| < 1 due to the strict
triangle inequality (4.8), whereas (4.221) follows because ξcm,l = −ξcl,m is already subject to
the same bound.

Step 2: Consider the case n = p ∈ P. Again, we first assume that both phases i and j
are present at the triple junction Tp, i.e., a connected component of the interface Īi,j has an
endpoint at Tp. Note that by the localization property (4.187) and the definition (4.176), we
may apply Proposition 4.22. Therein, we constructed a vector field in the support of ηp we
now call ξpi,j . In particular, ξpi,j = −ξpj,i and ξ

p
i,j coincides with n̄i,j on supp ηp ∩ Īi,j .

Assume now that k ∈ {1, . . . , P} is the third phase being present at the triple junction
Tp. By construction, we have σi,jξ

p
i,j + σj,kξ

p
j,k + σk,iξ

p
k,i = 0 on the support of ηp. Defining

then the vector field ξpi as ξpi := 1
3(σi,jξ

p
i,j +σi,kξ

p
i,k), and analogously for ξpj and ξpk, we indeed

obtain (4.222). The remaining claimed properties follow from Proposition 4.22.
In order to define ξpi,j if at least one of the phases i or j is absent at the triple junction, we

define the vector fields ξpi and ξpj as time-independent affine combinations of the previously
defined vector fields using the stability condition Definition 4.8 iii).

To be specific, we assume that the distinct phases k, l,m ∈ {1, . . . , P} are present
at Tp. We then employ the stability condition Definition 4.8 iii), that is, there exists a
non-degenerate (P − 1)-simplex (q1, . . . , qP ) in RP−1 such that σi′,j′ = |qi′ − qj′ | for all
i′, j′ ∈ {1, . . . , P}. In particular, the triangle (qk, ql, qm) is non-degenerate and spans a
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σl,m

σm,nσn,l

ql qm

qn

qi

< σi,l

qj

< σj,l

< σi,j

Figure 4.10: Sketch of the l2-embedding of σ in the case that i and j correspond to absent
phases, projected into the plane E containing qk, ql and qm.

plane E in RP−1, which we may isometrically identify with R2 via an affine map φ : E → R2.
We furthermore denote the orthogonal projection onto E by π. See Figure 4.10 for a sketch.

In order to prepare the proof of the coercivity condition (4.223) we claim

|πqi − πqj | < bσi,j (4.224)

for some b ∈ (0, 1), which we prove by considering two cases:
If exactly one of the two indices, say, j corresponds to a phase being present at Tp, then

πqj = qj . Note that due to the simplex (q1, . . . , qP ) being non-degenerate, also the 3-simplex
(qk, ql, qm, qi) is non-degenerate, so that qi cannot lie in the plane E. Therefore, we have
πqi 6= qi, so that

|πqi − πqj |2 < |qi − πqj |2 + |πqj − qj |2 = |qi − qj |2 = σ2
i,j ,

the latter by Definition 4.8 iii). This implies the strict inequality in this subcase.
If both i and j correspond to phases being absent at Tp, we consider the orthogonal

projection on the three dimensional affine space Ẽ spanned by (qj , qk, ql, qm), as well as the
orthogonal projection π̃ onto Ẽ. As the 4-simplex (qi, qj , qk, ql, qm) is non-degenerate, we
have π̃qi 6= qi and πqi = π ◦ π̃qi. Therefore, we have

|πqi − πqj |2 ≤ |qi − π̃qj |2 < |qi − π̃qj |2 + |π̃qj − qi|2 = |qi − qj |2 = σ2
i,j ,

allowing us to conclude as in the previous case.
We now proceed with the definition of ξpi′ for all i′ ∈ {1, . . . , P}. As (qk, ql, qm) is non-

degenerate and φ is isometric, also the triangle (φqk, φql, φqm) is non-degenerate. Therefore,
there exist unique λ̂i′k , λ̂

i′
l , λ̂

i′
m ∈ R such that λ̂i′k + λ̂i

′
l + λ̂i

′
m = 1 and

φ ◦ πqi′ = λ̂i
′
kφqk + λ̂i

′
l φql + λ̂i

′
mφqm.

We may then on Up define

ξpi′ := λ̂i
′
k ξ

p
k + λ̂i

′
l ξ

p
l + λ̂i

′
mξ

p
m, (4.225)

as well as ξpi,j and ξpj,i via (4.222). By uniqueness of the coefficient, these definitions are
consistent with the previous ones.

The claimed properties i) and iii) immediately follow from Proposition 4.22. The iden-
tity ξpi,j = −ξpj,i, (4.222), and (4.221) are straightforward consequences of the definition and
again Proposition 4.22. Therefore, we only have to prove (4.223) in order to get |ξpi,j | ≤ 1.
To this end, we argue as follows:

Again by non-degeneracy of (φqk, φql, φqm) for all (x, t) ∈ Up there exist a unique matrix
A(x, t) ∈ R2×2 and y(x, t) ∈ R2 such that

ξpi′(x, t) = A(x, t)φ ◦ πqi′ + y(x, t). (4.226)
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

Figure 4.11: Plot of the length of the vector field ξi,j . Observe that the length is 1 on
the interface Īi,j of the strong solution, but decays quadratically away from it to a value
strictly smaller than 1, even on the other interfaces Īi,p and Īj,p. As a consequence, the
integral

´
Ii,j

1 − ni,j · ξi,j dH1 provides an upper bound for the interface error functional
c
´
Ii,j

min{dist2(x, Īi,j), 1}dH1.

for all i′ = k, l,m. As (4.225) constitutes an affine combination, this equality even holds for
all i′ ∈ {1, . . . , P}. Furthermore, we have that the matrix A is orthogonal, i.e., A(x, t) ∈ O
for all (x, t) ∈ Up, since by Proposition 4.22 i) we have

|A(φ ◦ πqi′ − φ ◦ πqj′)| = |ξpi′ − ξ
p
j′ | = σi′,j′ |ξpi′,j′ | = σi′,j′ = |φ ◦ πqi′ − φ ◦ πqj′ |

and the triangle (φqk, φql, φqm) is non-degenerate. As A is orthogonal and φ is isometric, we
have by (4.224) that

|ξpi − ξ
p
i | = |A(φ ◦ πqi − φ ◦ πqj)| = |πqi − πqj | < b|qi − qj | = bσij , (4.227)

which together with (4.222) gives iv).

Now we may define the global extensions ξi,j = −ξj,i of the unit normal vector fields
between the phases i and j in the strong solution by gluing the local definitions by means of
the partition of unity (ηbulk, η1, . . . , ηN ) from Lemma 4.30.

Construction 4.32. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution
to multiphase mean curvature flow in the sense of Definition 4.14. Let (ηbulk, η1, . . . , ηN ) be
a partition of unity as constructed in Lemma 4.30. Let i, j ∈ {1, . . . , P} with i 6= j, and let
for all n ∈ {1, . . . , N} the local vector fields ξni,j = −ξnj,i be given as in Lemma 4.31. We then
define

ξi,j(x, t) :=
N∑
n=1

ηn(x, t)ξni,j(x, t) (4.228)

for all x ∈ R2 and all t ∈ [0, T ].

We proceed with the derivation of the coercivity condition provided by the length of the
vector fields ξi,j as defined by Construction 4.32. For an illustration we refer to Figure 4.11.

Lemma 4.33. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution
to multiphase mean curvature flow in the sense of Definition 4.14. Let (ηbulk, η1, . . . , ηN )
be a partition of unity as constructed in Lemma 4.30. In particular, let r̄min ∈ (0, 1] be the
localization scale defined by (4.177). Let ξi,j for i, j ∈ {1, . . . , P} with i 6= j be the family of
vector fields provided by Construction 4.32. Then there exists a constant C ≥ 1, depending
only on Ω̄ but not on r̄min, such that for all i, j ∈ {1, . . . , P} with i 6= j it holds

1

C

(
r̄−2

min dist2(·, Īi,j) ∧ 1
)
≤ 1− |ξi,j |. (4.229)
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Proof. Let (x, t) ∈ R2×[0, T ] and i, j ∈ {1, . . . , P} with i 6= j. The asserted estimate (4.229)
is trivially fulfilled for (x, t) /∈ supp ξi,j . By the definition (4.228) we may therefore assume
that there exists a topological feature n ∈ {1, . . . , N} such that (x, t) ∈ supp ηn and that
ηn(x, t) = max{ηn′(x, t) : 1 ≤ n′ ≤ N}. Because of the localization properties (4.188)–
(4.190), we may additionally assume ηn(x, t) ≥ 1

4 . Otherwise, |ξi,j | ≤ 3
4 on account of the

local vector fields having at most unit length.
If either phase i or phase j is absent at the topological feature Tn, we argue as follows.

Using b ∈ (0, 1) from (4.223) we compute

|ξi,j | =

∣∣∣∣∣∣ηnξni,j +
∑

n′∈{1,...,N}\{n}

ηn′ξ
n′
i,j

∣∣∣∣∣∣ ≤ ηnb+
∑

n′∈{1,...,N}\{n}

ηn′

≤ 1− ηn(1− b).

Due to ηn(x, t) ≥ 1
4 we deduce 1−|ξi,j(x, t)| ≥ 1

4(1−b) ∈ (0, 1). Therefore the estimate (4.229)
holds in this case.

Next, we assume that both phases i and j are present at Tn. In the regime n = c ∈ C,
it follows from (x, t) ∈ supp ηc, the localization properties (4.186) and (4.189), the defini-
tions (4.177) and (4.176) of the localization scales rP and r̄min, as well as the estimates (4.77)
and (4.78) that dist(x, Īi,j(t)) ≤ C dist(x, I(t)). Hence, (4.229) is implied by the coercivity
estimate (4.179) for the bulk cutoff and the definition (4.228).

If n = p ∈ P, denote by k ∈ {1, . . . , P} the third phase present at Tp next to the
phases i and j. If x ∈ BrP (Tp(t)) \

(
Wj,k(t) ∪Wk,i(t) ∪Wk(t)

)
, then by (4.77) and (4.78) it

again holds dist(x, Īi,j(t)) ≤ C dist(x, I(t)) so that (4.229) follows as before. Thus, assume
that x ∈ BrP (Tp(t)) ∩

(
Wj,k(t) ∪ Wk,i(t) ∪ Wk(t)

)
. Figure 4.11 serves as an illustration

for the subsequent argument, for which we in fact assume that x ∈ Wk(t) (the argument
in case of interface wedges is similar). Based on the definition (4.228), the localization
properties (4.188)–(4.190), the coercivity estimate (4.223), and the definitions (4.203), (4.211)
as well as (4.192), we estimate at (x, t)

1− |ξi,j | ≥ 1−
(
ηp + bηck,i + bηcj,k

)
= λi,jk

(
1−

(
bζck,i + (1−b)ζpζck,i

))
+ (1−λi,jk )

(
1−

(
bζcj,k + (1−b)ζpζcj,k

))
≥ (1− b)(1− ζp) ≥ (1− b)

(
r̄−2

min dist2(x, Tp) ∧ 1
)
.

The trivial estimate dist(x, Tp(t)) ≥ dist(x, Īi,j(t)) therefore allows to conclude.

For a global definition of the velocity field B, we proceed analogously, i.e., we first provide
a definition for local velocity fields Bn for each topological feature Tn with n ∈ {1, . . . , N}
and then glue them together by means of the partition of unity (ηbulk, η1, . . . , ηN ) from
Lemma 4.30.

Construction 4.34. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution
to multiphase mean curvature flow in the sense of Definition 4.14. Let (ηbulk, η1, . . . , ηN ) be
a partition of unity as constructed in Lemma 4.30.

Let n ∈ {1, . . . , N}, and recalling the notation (4.220), we define a continuous vector field

Bn : Un 7→ R2

as follows: in case of n ∈ C we take Bn as the restriction to Un of the two-phase velocity
field from Lemma 4.18. More precisely, in case the curve Tc connects two triple junctions,
the tangential component of Bn is chosen as in Proposition 4.29; otherwise, we simply let
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4. Weak-strong uniqueness for planar multiphase mean curvature flow

the tangential component vanish. In case of n ∈ P we take Bn as the restriction to Un of the
triple junction velocity field from Proposition 4.22.

We finally define a global velocity field by means of

B(x, t) :=

N∑
n=1

ηn(x, t)Bn(x, t) (4.230)

for all x ∈ R2 and all t ∈ [0, T ].

We briefly present the regularity properties of the family of local velocity fields from
Construction 4.34.

Lemma 4.35. In the setting of Construction 4.34, for all n ∈ {1, . . . , N} the associated local
velocity field satisfies Bn ∈ C0

t C
2
x(Un \ TP), TP :=

⋃
p∈P Tp. Moreover, there exists C >

0, which may depend on Ω̄ but not on the localization scale r̄min from (4.177), such that
throughout Un \ TP it holds

max
k=0,1,2

r̄kmin|∇kBn| ≤ Cr̄−1
min. (4.231)

Proof. For n = c ∈ C the estimate (4.231) follows from (4.59) and (4.169), which in turn are
indeed applicable thanks to the localization property (4.186) and the definition (4.177). In
case of n = p ∈ P, we may apply Proposition 4.22 due to the localization property (4.187)
and the definition (4.176), so that (4.85) implies (4.231).

Equipped with the definition of the global velocity field B, we may now prove a suitable
estimate on the advective derivative of the bulk cutoff ηbulk from Lemma 4.30.

Lemma 4.36. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution to
multiphase mean curvature flow in the sense of Definition 4.14. Let ηbulk be the bulk cutoff
from Lemma 4.30, r̄min ∈ (0, 1] the localization scale defined by (4.177), and TP :=

⋃
p∈P Tp.

Let B be the global velocity field from Construction 4.34. Denote by I :=
⋃
t∈[0,T ]

⋃
i 6=j Īi,j(t)×

{t} the evolving network of interfaces. Then there exists a constant C > 0, depending only
on the strong solution Ω̄ but not on r̄min, such that

|∂tηbulk + (B · ∇)ηbulk| ≤ Cr̄−2
min

(
r̄−2

min dist2(·, I) ∧ 1
)

(4.232)

in R2×[0, T ] \ TP . Moreover, for all n ∈ {1, . . . , N} and all distinct i, j ∈ {1, . . . , P} such
that either phase i or phase j is absent at Tn it holds

|∂tηn + (B · ∇)ηn| ≤ Cr̄−2
min

(
r̄−2

min dist2(·, Īi,j) ∧ 1
)

(4.233)

in R2×[0, T ] \ TP .

Proof. The estimate (4.233) is trivially fulfilled in case of n = p ∈ P by (4.178), (4.187) and
the definition (4.176) of the localization scale rP . Hence, let us reserve notation for the proof
of (4.233) by fixing c′′ ∈ C and distinct phases i′, j′ ∈ {1, . . . , P} such that at least one of
them is absent at Tc′′ .

We now split the proof into two parts, first establishing the asserted estimates along
two-phase interfaces Tc and away from triple junctions, and second in the vicinity of triple
junctions adjacent to Tc. More precisely, by the localization properties (4.186)–(4.190) and
the choices (4.176)–(4.177) of the localization scales rP and r̄min, it suffices to prove (4.232)
in
⋃
c∈C imr̄min(ΨTc) \

⋃
p∈P

⋃
t∈[0,T ]BrP (Tp(t))×{t} and in

⋃
p∈P

⋃
t∈[0,T ]BrP (Tp(t))×{t}, re-

spectively. We in fact may argue separately for each c ∈ C and each p ∈ P.
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Step 1: Estimates close to Tc and away from triple junctions. In this step, we restrict
ourselves to the region imr̄min(ΨTc) \

⋃
p∈P

⋃
t∈[0,T ]BrP (Tp(t))×{t}. To fix notation, let i, j ∈

{1, . . . , P} be such that c refers to a two-phase interface Tc ⊂ Īi,j . Recalling (4.217), we
register that

ηbulk = 1− ηc, (4.234)

ηc = ζc = ζ
( si,j
δr̄min

)
, (4.235)

B = ηcB
c, (4.236)

in imr̄min(ΨTc) \
⋃
p∈P

⋃
t∈[0,T ]BrP (Tp(t))×{t}.

For (4.232), we first observe that the signed distance function is transported by Bc, cf.
(4.60). By the chain rule, this also holds for ζc, i.e.,

∂tζc + (Bc · ∇)ζc = 0 in im(ΨTc). (4.237)

Hence, using (4.236), (4.234), the quadratic order of ηbulk from (4.180), and the regularity
estimates (4.178) and (4.231) we obtain

|∂tζc + (B · ∇)ζc| = ηbulk|(Bc · ∇)ζc| ≤ Cr̄−2
min

(
r̄−2

min dist2(·, I) ∧ 1
)

(4.238)

in the region imr̄min(ΨTc) \
⋃
p∈P

⋃
t∈[0,T ]BrP (Tp(t))×{t}. By (4.234) and (4.235), this is

equivalent to (4.232).
For a proof of (4.233) throughout imr̄min(ΨTc) \

⋃
p∈P

⋃
t∈[0,T ]BrP (Tp(t))×{t}, we may

assume without loss of generality that c′′ = c; otherwise, the estimate (4.233) is trivially
fulfilled by (4.186) and the definition (4.177) of the localization scale r̄min. However, if c′′ = c
then the above argument already yields the claim thanks to (4.234), (4.235) and (4.238).

Step 2: Estimates close to Tc and in the vicinity of triple junctions. Now, consider p ∈ P
and assume that the pairwise distinct phases i, j, k ∈ {1, . . . , P} are present at Tp. Modulo a
permutation of the indices, it suffices to consider the two unique two-phase interfaces Tci,j ⊂
Īi,j and Tck,i ⊂ Īk,i so that c := ci,j ∼ p and c′ := ck,i ∼ p, and then to prove the desired
estimate (4.232) on the interface wedge Wi,j and the interpolation wedge Wi.

In this step, let us turn to the interface wedge Wi,j . The interpolation wedge Wi will
be discussed in Step 3. With respect to (4.233), it then suffices to work in the regime c′′ ∼
p and c′′ = c; otherwise, the estimate (4.233) is again fulfilled for trivial reasons thanks
to (4.189) and (4.190). Based on (4.210) and (4.218) we then have

ηc = (1− ζp)ζc, (4.239)
ηbulk = 1− ηc − ηp = 1− ζc, (4.240)
B = ηcB

c + ηpB
p, (4.241)

throughout BrP (Tp(t)) ∩Wi,j(t) for all t ∈ [0, T ].
For the estimate on the advective derivative of the bulk cutoff, using (4.240) and the trans-

port equation for the interface cutoff (4.237) (which is applicable throughout BrP (Tp(t)) ∩
Wi,j(t) for all t ∈ [0, T ] due to (4.75)) we obtain

∂tζc = −(Bc · ∇)ζc = −
(
B · ∇

)
ζc − ηbulk(Bc · ∇)ζc − ηp

(
(Bp−Bc) · ∇

)
ζc

in BrP (Tp(t)) ∩Wi,j(t) for all t ∈ [0, T ]. In particular, because of (4.180), (4.231), (4.200),
(4.75), (4.178), (4.172), (4.78), and finally (4.216) this entails∣∣∂tζc +

(
B · ∇

)
ζc
∣∣ ≤ Cr̄−2

min

(
r̄−2

min dist2(·, I) ∧ 1
)

(4.242)
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in BrP (Tp(t)) ∩Wi,j(t) for all t ∈ [0, T ]. By the representation (4.240), this is equivalent
to (4.232).

To obtain the asserted bound on the advective derivative of the interface cut-off ηc,
we use that since ζp is only a smooth function of the distance to the triple point Tp(t) =
{p(t)} (performing an excusable abuse of notation), it satisfies the transport equation ∂tζp +
( d

dtp(t) · ∇)ζp = 0 throughout R2×[0, T ] \ TP . By Proposition 4.22 i), the partition of unity
property of the family (η1, . . . , ηN ), and the regularity estimates (4.231) resp. (4.178), it
follows that |B − B(p(t), t)| ≤ Cr̄−2

min dist(·, Tp) in BrP (Tp(t)) ∩ (Wi,j(t) ∪Wi(t) ∪Wj(t)) for
all t ∈ [0, T ]. This in turn implies by means of (4.192)

|∂tζp +
(
B · ∇)ζp| ≤ Cr̄−2

minr
−2
P dist2(·, Tp(t)) ≤ Cr̄−2

min(1− ζp) (4.243)

in BrP (Tp(t)) ∩ (Wi,j(t) ∪Wi(t) ∪Wj(t)) for all t ∈ [0, T ]. Hence, when restricting to the
interface wedge we obtain from the combination of (4.239), the product rule, (4.242), (4.243)
and finally (4.183) that the desired estimate (4.233) indeed holds true in BrP (Tp(t))∩Wi,j(t)
for all t ∈ [0, T ].

Step 3: Estimates in interpolation wedges at triple junctions. We turn to the proof
of (4.232) and (4.233) on the interpolation wedge Wi. Recall to this end the notation fixed
at the beginning of Step 2. With respect to proving (4.233), it suffices to consider c′′ ∼ p
and c′′ ∈ {c, c′}, and thus up to a relabeling c′′ = c; otherwise, the estimate (4.233) follows
trivially because of (4.189) and (4.190).

Because of (4.211) and (4.219), it then holds (abbreviating λ := λj,ki )

ηc = λ(1− ζp)ζc, (4.244)
ηbulk = 1− ηc − ηc′ − ηp = λ(1−ζc) + (1−λ)(1−ζc′), (4.245)

B = ηcB
c + ηc′B

c′ + ηpB
p, (4.246)

throughout BrP (Tp(t)) ∩Wi(t) for all t ∈ [0, T ].
Based on the second identity of (4.245) and (4.246), we may split the task of estimating

the advective derivative of the bulk cutoff as follows:

∂tηbulk + (B · ∇)ηbulk =: I + II,

where we defined

I := (1−ζc)(∂t+B · ∇)λ+ (1−ζc′)(∂t+B · ∇)(1−λ),

II := λ
(
∂t+B · ∇

)
(1−ζc) + (1−λ)

(
∂t+B · ∇

)
(1−ζc′)

We estimate term by term. For an estimate of II, we argue in a similar fashion to Step 2.
More precisely, applying (4.245) and the transport equation for the interface cutoff (4.237)
(which is applicable throughout BrP (Tp(t)) ∩Wi(t) for all t ∈ [0, T ] due to (4.76)) we have

∂tζc = −
(
B · ∇

)
ζc − ηbulk(Bc · ∇)ζc − ηc′

(
(Bc′−Bc) · ∇

)
ζc − ηp

(
(Bp−Bc) · ∇

)
ζc

in BrP (Tp(t)) ∩Wi(t) for all t ∈ [0, T ]. Replacing the use of (4.75) by (4.76) and the use
of (4.78) by (4.77), we may rely on the otherwise same argument entailing (4.242) to deduce
that (adding also zero in form of Bc′−Bc = (Bc′−Bp) + (Bp−Bc))∣∣∂tζc +

(
B · ∇

)
ζc
∣∣ ≤ Cr̄−2

min

(
r̄−2

min dist2(·, I) ∧ 1
)

(4.247)

in BrP (Tp(t))∩Wi(t) for all t ∈ [0, T ]. Of course, the same estimate holds true in terms of ζc′ .
Hence, |II| ≤ Cr̄−2

min

(
r̄−2

min dist2(·, I) ∧ 1
)
in BrP (Tp(t)) ∩Wi(t) for all t ∈ [0, T ] as desired.
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We turn to the estimate of I. Adding zero and relying on (4.245) as well as (4.246), we
observe that it holds

(∂t+B · ∇)λ = (∂t+B
p · ∇)λ+

(
ηc(B

c−Bp)+ηc′(B
c′−Bp)−ηbulkB

p
)
· ∇λ.

By familiar arguments in combination with the controlled blowup (4.143) of the derivative of
the interpolation parameter, one checks that the second right hand side term of the previous
display is of the order O(r̄−2

min). The first right hand side term is of the same order thanks
to (4.77) and the bound (4.147) on the advective derivative of the interpolation parameter (for
which we may freely pass from Bp to Bp(p(t), t), abusing again notation in form of Tp(t) =
{p(t)}, cf. Proposition 4.22 i) and the estimate (4.85)). Hence,

|∂tλ+ (B · ∇)λ| ≤ Cr̄−2
min. (4.248)

By (4.199) and (4.77), we thus obtain |(1−ζc)(∂t+B · ∇)λ| ≤ Cr̄−2
min(r−2

min dist2(·, I) ∧ 1).
Arguing analogously one also bounds the term (1−ζc′)(∂t+B · ∇)(1−λ) to the same order,
so that in summary (4.232) follows in the region BrP (Tp(t)) ∩Wi(t) for all t ∈ [0, T ].

We finally provide the proof of (4.233) in the given interpolation wedge. When computing
the advective derivative of ηc, it follows from (4.244), the product rule, (4.247), (4.243)
and (4.183) that we only need to additionally control the term when the derivative falls
onto the interpolation parameter. However, since we already have (4.248) at our disposal, it
follows from (4.196) that

|(∂t+B · ∇)λ|(1− ζp)ζc ≤ Cr̄−2
min

(
r̄−2

min dist2(·, Tp) ∧ 1
)
,

which by (4.77) (or a trivial argument if either i′ or j′ is absent at Tp) entails a bound of
required order. This in turn concludes the proof.

4.6.3 Global compatibility estimates

We next lift the local compatibility estimates from Proposition 4.29 to compatibility estimates
between the global and local constructions. These technical estimates will be needed in order
to derive the estimates (4.1c)–(4.1e) for the global constructions from the corresponding ones
for the local constructions in Lemma 4.18 and Proposition 4.22.

Lemma 4.37. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution
to multiphase mean curvature flow in the sense of Definition 4.14. Let (ηbulk, η1, . . . , ηN )
be a partition of unity as constructed in Lemma 4.30. In particular, let r̄min ∈ (0, 1] be the
localization scale defined by (4.177) and TP :=

⋃
p∈P Tp. Let (ξni,j)n∈{1,...,N} be the local vector

fields from Lemma 4.31 as well as (Bn)n∈{1,...,N} be the local velocity fields from Construc-
tion 4.34. Let ξi,j be the global vector fields from Construction 4.32, and let B be the global
velocity field from Construction 4.34.

Then, the local and global constructions are compatible in the sense that for all topological
features n ∈ {1, . . . , N}, and all distinct phases i, j ∈ {1, . . . , P} such that both i and j are
present at Tn, the following estimates are satisfied

1supp ηn

∣∣ξi,j − ξni,j∣∣ ≤ C(r̄−1
min dist(·, Īi,j) ∧ 1

)
, (4.249)

1supp ηn

∣∣(ξi,j − ξni,j) · ξni,j∣∣ ≤ C(r̄−2
min dist2(·, Īi,j) ∧ 1

)
, (4.250)

1supp ηn

∣∣B −Bn
∣∣ ≤ Cr̄−1

min

(
r̄−2

min dist2(·, Īi,j) ∧ 1
)
, (4.251)

1supp ηn

∣∣∇B −∇Bn
∣∣ ≤ Cr̄−2

min

(
r̄−1

min dist(·, Īi,j) ∧ 1
)

(4.252)

throughout R2×[0, T ] \ TP . The constant C > 0 may depend on the strong solution Ω̄, but is
independent of r̄min.
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For the proof of Lemma 4.37, recall that we decomposed {1, . . . , N} =: C ·∪ P with the
convention that C enumerates the connected components in space-time of the smooth two-
phase interfaces and P enumerates the triple junctions. If p ∈ P, we defined Tp to be the
trajectory in space-time described by the triple junction. If c ∈ C, we defined Tc ⊂ Īi,j for
some i, j ∈ {1, . . . , P} with i 6= j to be the corresponding space-time connected component
of a two-phase interface Īi,j . We further write c ∼ p for c ∈ C and p ∈ P if and only if Tc has
an endpoint at Tp. Note finally that two distinct phases i, j ∈ {1, . . . , P} are simultaneously
present at a topological feature Tn, n ∈ {1, . . . , N}, if and only if Tn ⊂ Īi,j .

Proof. We aim to reduce the situation to the local compatibility estimates from Proposi-
tion 4.29. Such a reduction argument turns out to be possible due to the localization prop-
erties (4.188)–(4.190), the estimates (4.180)–(4.184), and our assumption that both phases i
and j are present at the selected topological feature. For all what follows, let n ∈ {1, . . . , N}
and i, j ∈ {1, . . . , P} such that i 6= j as well as Tn ⊂ Īi,j . For notational convenience, we
abbreviate for the purpose of the proof r̄ := r̄min and di,j := dist(·, Īi,j).

Step 1: Proof of (4.249). We insert the definition (4.228) which in combination with the
estimates (4.180), (4.183) and (4.221) yields

1supp ηn(ξi,j−ξni,j) = −1supp ηnηbulkξ
n
i,j +

N∑
n′=1,n′ 6=n

1supp ηnηn′(ξ
n′
i,j−ξni,j)

=
N∑

n′=1,n′ 6=n
Tn′⊂Īi,j

1supp ηnηn′(ξ
n′
i,j−ξni,j) +O(r̄−2d2

i,j ∧ 1). (4.253)

Next, the localization properties (4.188)–(4.190) allow to represent the remaining right hand
side terms in form of

N∑
n′=1,n′ 6=n
Tn′⊂Īi,j

1supp ηnηn′(ξ
n′
i,j−ξni,j) =

∑
p∈P,Tp⊂Īi,j

∑
c∈C,c∼p

1n=c1supp ηcηp(ξ
p
i,j−ξ

c
i,j)

+
∑

c∈C,Tc⊂Īi,j

∑
p∈P,c∼p

1n=p1supp ηpηc(ξ
c
i,j−ξ

p
i,j)

+
∑

c∈C,Tc⊂Īi,j

∑
p∈P,c∼p

∑
c′∈C,c′ 6=c
c′∼p

1n=c′1supp ηc′ηc(ξ
c
i,j−ξc

′
i,j).

The assumption Tn ⊂ Īi,j furthermore enables us to post-process the previous identity as
follows

N∑
n′=1,n′ 6=n
Tn′⊂Īi,j

1supp ηnηn′(ξ
n′
i,j−ξni,j) =

∑
p∈P,Tp⊂Īi,j

∑
c∈C,Tc⊂Īi,j

c∼p

1n=c1supp ηcηp(ξ
p
i,j−ξ

c
i,j)

+
∑

c∈C,Tc⊂Īi,j

∑
p∈P,Tp⊂Īi,j

c∼p

1n=p1supp ηpηc(ξ
c
i,j−ξ

p
i,j).

We are now in a position to apply Proposition 4.29. More precisely, thanks to the localization
property (4.189) and the definition (4.177) we have the estimate (4.170) at our disposal,
implying that

N∑
n′=1,n′ 6=n
Tn′⊂Īi,j

1supp ηnηn′(ξ
n′
i,j−ξni,j) = O(r̄−1di,j ∧ 1),
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at least under our assumption of Tn ⊂ Īi,j . This concludes the argument for (4.249).
Step 2: Proof of (4.250). Multiplying (4.253) by ξni,j and afterwards running through the

same argument as in Step 1 entails

N∑
n′=1,n′ 6=n
Tn′⊂Īi,j

1supp ηnηn′(ξ
n′
i,j−ξni,j) · ξni,j

=
∑

p∈P,Tp⊂Īi,j

∑
c∈C,Tc⊂Īi,j

c∼p

1n=c1supp ηcηp(ξ
p
i,j−ξ

c
i,j) · ξci,j

+
∑

c∈C,Tc⊂Īi,j

∑
p∈P,Tp⊂Īi,j

c∼p

1n=p1supp ηpηc(ξ
c
i,j−ξ

p
i,j) · ξ

p
i,j +O(r̄−2d2

i,j ∧ 1).

Adding zero in the second right hand side term of the previous display in form of (ξci,j−ξ
p
i,j) ·

ξpi,j = −|ξci,j−ξ
p
i,j |2+(ξci,j−ξ

p
i,j)·ξci,j , and then applying the local compatibility estimates (4.171)

and (4.170), we deduce (4.250).
Step 3: Proof of (4.251). Using the definition (4.230), the regularity estimates (4.231) and

the local compatibility estimate (4.172) instead of (4.228), (4.221) and (4.170), respectively,
and substituting (B,Bn) for (ξi,j , ξ

n
i,j) in the argument of Step 1 directly implies (4.251).

Step 4: Proof of (4.252). We give some details here, as in comparison to Step 1 or
Step 3 the argument in favor of (4.252) involves an additional (though simple) reduction
step. Starting with the definition (4.230), the estimates (4.180), (4.183) and (4.231), and in
addition the product rule we obtain

1supp ηn(∇B−∇Bn)

= −1supp ηnηbulk∇Bn +
N∑

n′=1,n′ 6=n
1supp ηnηn′(∇Bn′−∇Bn) +

N∑
n′=1

1supp ηnB
n′ ⊗∇ηn′

=
N∑

n′=1,n′ 6=n
Tn′⊂Īi,j

1supp ηnηn′(∇Bn′−∇Bn) +

N∑
n′=1

1supp ηnB
n′ ⊗∇ηn′

+O
(
r̄−2(r̄−2d2

i,j ∧ 1)
)
.

The first right hand side term is estimated to desired order O
(
r̄−2(r̄−1di,j ∧ 1)

)
based on

the local compatibility estimate (4.173) and the above familiar reduction arguments. Adding
zero in the second right hand side term moreover entails

N∑
n′=1

1supp ηnB
n′ ⊗∇ηn′

=
N∑

n′=1,n′ 6=n
1supp ηn(Bn′−Bn)⊗∇ηn′ − 1supp ηnB

n ⊗∇ηbulk.

The previous reduction arguments in combination with the local compatibility estimate (4.172),
the upper bound (4.181) for the gradient of the bulk cutoff, as well as the regularity esti-
mates (4.178) and (4.231) thus show that

∑N
n′=1 1supp ηnB

n′⊗∇ηn′ is of order O
(
r̄−2(r̄−1di,j∧

1)
)
. This concludes the proof.
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4.6.4 Approximate transport and mean curvature flow equations

We derive the global (or network) version of our previous bounds from Lemma 4.18 and
Proposition 4.22, which are valid for the model problem of a smooth manifold and a triple
junction, respectively.

Lemma 4.38. Let d = 2 and P ∈ N, P ≥ 2. Let Ω̄ = (Ω̄1, . . . , Ω̄P ) be a strong solution
to multiphase mean curvature flow in the sense of Definition 4.14. Let next r̄min ∈ (0, 1]
be the localization scale defined by (4.177) and TP :=

⋃
p∈P Tp. Let (ξni,j)n∈{1,...,N} be the

local vector fields from Lemma 4.31 as well as (Bn)n∈{1,...,N} be the local velocity fields from
Construction 4.34. Let ξi,j be the global vector fields from Construction 4.32, and let B be
the global velocity field from Construction 4.34.

Then there exists a constant C > 0, depending only on the strong solution Ω̄ but not
on r̄min, so that we have the estimates

|∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j | ≤ Cr̄−2
min

(
r̄−1

min dist(·, Īi,j) ∧ 1
)
, (4.254)

|(∇ · ξi,j) +B · ξi,j | ≤ Cr̄−1
min

(
r̄−1

min dist(·, Īi,j) ∧ 1
)
, (4.255)∣∣ξi,j · ∂tξi,j + ξi,j · (B · ∇)ξi,j

∣∣ ≤ Cr̄−2
min

(
r̄−2

min dist2(·, Īi,j) ∧ 1
)

(4.256)

in R2×[0, T ] \ TP , for all i, j ∈ {1, . . . , P} with i 6= j.

Proof. Let i, j ∈ {1, . . . , P} such that i 6= j. For notational convenience, we again abbreviate
for the purpose of the proof r̄ := r̄min and di,j := dist(·, Īi,j). Recall that the distinct
phases i and j are both present at a given topological feature Tn, n ∈ {1, . . . , N}, if and only
if Tn ⊂ Īi,j .

Step 1: Proof of (4.254). By the product rule, the definition (4.228), the regularity
estimates (4.221) and (4.231), as well as the error estimates (4.183)–(4.185) we compute

∂tξi,j+(B · ∇)ξi,j =

N∑
n=1,Tn⊂Īi,j

ηn(∂t+B · ∇)ξni,j +

N∑
n=1,Tn⊂Īi,j

ξni,j(∂t+B · ∇)ηn

+O
(
r̄−2(r̄−1di,j ∧ 1)

)
.

Next, it follows from adding zero, the compatibility estimate (4.249), the regularity bound (4.178),
and again (4.231), (4.184) and (4.185) that

N∑
n=1,Tn⊂Īi,j

ξni,j(∂t+B · ∇)ηn =
N∑

n=1,Tn⊂Īi,j

ξi,j(∂t+B · ∇)ηn +O
(
r̄−2(r̄−1di,j ∧ 1)

)
= −ξi,j(∂t+B · ∇)ηbulk +O

(
r̄−2(r̄−1di,j ∧ 1)

)
.

Thanks to the compatibility estimate (4.251) and the regularity estimate (4.221), we also
have

N∑
n=1,Tn⊂Īi,j

ηn(B · ∇)ξni,j =
N∑

n=1,Tn⊂Īi,j

ηn(Bn · ∇)ξni,j +O
(
r̄−2(r̄−1di,j ∧ 1)

)
.

Together with the upper bounds (4.181) resp. (4.182) for the bulk cutoff and the regularity
estimate (4.231), the previous three displays combine to

∂tξi,j+(B · ∇)ξi,j =
N∑

n=1,Tn⊂Īi,j

ηn(∂t+B
n · ∇)ξni,j +O

(
r̄−2(r̄−1di,j ∧ 1)

)
. (4.257)
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In a next step, we compute based on the product rule, the definitions (4.228) and (4.230),
the error estimate (4.183), the regularity estimates (4.231) and (4.178), as well as the com-
patibility estimate (4.252)

(∇B)Tξi,j =

N∑
n=1,Tn⊂Īi,j

ηn(∇B)Tξni,j +O
(
r̄−2(r̄−1di,j ∧ 1)

)
=

N∑
n=1,Tn⊂Īi,j

ηn(∇Bn)Tξni,j +O
(
r̄−2(r̄−1di,j ∧ 1)

)
. (4.258)

Hence, in view of (4.257) and (4.258) we reduced the task to the local evolution equations at
topological features for which both phases i and j are present:

∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j =

N∑
n=1,Tn⊂Īi,j

ηn
(
∂tξ

n
i,j+(Bn · ∇)ξni,j+(∇Bn)Tξni,j

)
+O

(
r̄−2(r̄−1di,j ∧ 1)

)
.

To conclude that (4.254) holds, it thus only remains to observe that the bounds on the local
evolution equations (4.61) and (4.81), respectively, are applicable due to the localization
properties (4.186)–(4.187) and the definitions (4.176)–(4.177).

Step 2: Proof of (4.255). We proceed in the same style as for the proof of (4.254). On
one side, it is immediate from the definitions (4.228) and (4.230), the error estimate (4.183),
the regularity estimates (4.221) and (4.231), as well as the compatibility estimate (4.251)

B · ξi,j =
N∑

n=1,Tn⊂Īi,j

ηnB · ξni,j +O
(
r̄−1(r̄−1di,j ∧ 1)

)
=

N∑
n=1,Tn⊂Īi,j

ηnB
n · ξni,j +O

(
r̄−1(r̄−1di,j ∧ 1)

)
.

On the other side, we have by the definition (4.228), the product rule, the error esti-
mates (4.183)–(4.184), the regularity estimates (4.221) and (4.178), the compatibility es-
timate (4.249), and finally the upper bound (4.181) for the bulk cutoff

∇ · ξi,j =

N∑
n=1,Tn⊂Īi,j

ηn(∇ · ξni,j) +

N∑
n=1,Tn⊂Īi,j

(ξni,j · ∇)ηn +O
(
r̄−1(r̄−1di,j ∧ 1)

)
=

N∑
n=1,Tn⊂Īi,j

ηn(∇ · ξni,j) +
N∑

n=1,Tn⊂Īi,j

(ξi,j · ∇)ηn +O
(
r̄−1(r̄−1di,j ∧ 1)

)
=

N∑
n=1,Tn⊂Īi,j

ηn(∇ · ξni,j)− (ξi,j · ∇)ηbulk +O
(
r̄−1(r̄−1di,j ∧ 1)

)
=

N∑
n=1,Tn⊂Īi,j

ηn(∇ · ξni,j) +O
(
r̄−1(r̄−1di,j ∧ 1)

)
.

The previous two displays in total imply

∇ · ξi,j +B · ξi,j =

N∑
n=1,Tn⊂Īi,j

ηn
(
∇ · ξni,j+Bn · ξni,j

)
+O

(
r̄−1(r̄−1di,j ∧ 1)

)
,
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so that (4.255) follows due to its local counterparts (4.63) and (4.82), respectively.
Step 3: Proof of (4.256). We first claim that

ξi,j · (∂t+B · ∇)ξi,j

=
N∑

n,n′=1
Tn,Tn′⊂Īi,j

ηnηn′ξ
n
i,j · (∂t+Bn′ · ∇)ξn

′
i,j +O

(
r̄−2(r̄−2d2

i,j ∧ 1)
)
. (4.259)

For a proof of (4.259) one may argue as follows. First, plugging in the definition (4.228), ap-
plying the product rule, and making use of the error estimate (4.183) as well as the regularity
estimates (4.221) and (4.178) entails

ξi,j · ∂tξi,j =

N∑
n=1,Tn⊂Īi,j

ηnξ
n
i,j · ∂tξi,j +O

(
r̄−2(r̄−2d2

i,j ∧ 1)
)

=
N∑

n,n′=1
Tn,Tn′⊂Īi,j

ηnηn′ξ
n
i,j · ∂tξn

′
i,j +

N∑
n=1,Tn⊂Īi,j

N∑
n′=1

ηn(ξni,j · ξn
′

i,j)∂tηn′

+O
(
r̄−2(r̄−2d2

i,j ∧ 1)
)
.

Substituting the differential operator (B · ∇) for ∂t, and recalling in addition to the above
ingredients the regularity estimate (4.231) as well as the compatibility estimate (4.251) (which
allows to switch from B to Bn′) then also yields

ξi,j · (B · ∇)ξi,j =
N∑

n,n′=1
Tn,Tn′⊂Īi,j

ηnηn′ξ
n
i,j · (Bn′ · ∇)ξn

′
i,j

+
N∑

n=1,Tn⊂Īi,j

N∑
n′=1

ηn(ξni,j · ξn
′

i,j)(B · ∇)ηn′ +O
(
r̄−2(r̄−2d2

i,j ∧ 1)
)
.

Observe that the combination of the previous two displays already generates the first right
hand side term of (4.259).

We proceed by first splitting the sum over topological features n′ ∈ {1, . . . , N}, adding
zero several times in the resulting first term, then applying the compatibility estimates (4.249),
(4.250) and (4.170), and finally recalling the regularity estimate (4.178) which results in the
estimate (of course, only terms with supp ηn ∩ supp ηn′ 6= ∅ are relevant in the subsequent
sums)

N∑
n=1,Tn⊂Īi,j

N∑
n′=1

ηn(ξni,j · ξn
′

i,j)∂tηn′

=

N∑
n,n′=1

Tn,Tn′⊂Īi,j

ηn(ξni,j · ξn
′

i,j)∂tηn′ +

N∑
n,n′=1

Tn⊂Īi,j ,Tn′ 6⊂Īi,j

ηn(ξni,j · ξn
′

i,j)∂tηn′

=

N∑
n,n′=1

Tn,Tn′⊂Īi,j

ηn
(
|ξi,j |2−|ξni,j−ξi,j |2 + (ξni,j−ξi,j) · ξni,j + ξn

′
i,j · (ξn

′
i,j−ξi,j)

)
∂tηn′
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+
N∑

n,n′=1
Tn,Tn′⊂Īi,j

ηn(ξni,j−ξn
′

i,j) · (ξn
′

i,j−ξi,j)∂tηn′ +
N∑

n,n′=1
Tn⊂Īi,j ,Tn′ 6⊂Īi,j

ηn(ξni,j · ξn
′

i,j)∂tηn′

=
N∑

n,n′=1
Tn,Tn′⊂Īi,j

ηn|ξi,j |2∂tηn′ +
N∑

n,n′=1
Tn⊂Īi,j ,Tn′ 6⊂Īi,j

ηn(ξni,j · ξn
′

i,j)∂tηn′ +O
(
r̄−2(r̄−2d2

i,j ∧ 1)
)
.

Based on the regularity estimates (4.178) and (4.231), we may again substitute the differential
operator (B ·∇) for ∂t in the previous computation, which in turn by two applications of the
crucial estimate (4.233) and finally an application of the bulk cutoff estimates (4.232) resp.
(4.180) allows to deduce

N∑
n=1,Tn⊂Īi,j

N∑
n′=1

ηn(ξni,j · ξn
′

i,j)(∂t+B · ∇)ηn′

=
N∑

n,Tn⊂Īi,j

N∑
n′=1

ηn|ξi,j |2(∂t+B · ∇)ηn′

+
N∑

n,n′=1
Tn⊂Īi,j ,Tn′ 6⊂Īi,j

ηn(ξni,j · ξn
′

i,j)(∂t+B · ∇)ηn′ +O
(
r̄−2(r̄−2d2

i,j ∧ 1)
)

= −(1−ηbulk)|ξi,j |2(∂t+B · ∇)ηbulk +O
(
r̄−2(r̄−2d2

i,j ∧ 1)
)

= O
(
r̄−2(r̄−2d2

i,j ∧ 1)
)
.

In particular, we obtain the asserted estimate (4.259).
It remains to post-process the right hand side term of (4.259). In view of (4.62) and (4.83),

it suffices to get rid of the “off-diagonal” terms n 6= n′ ∈ {1, . . . , N} with Tn ⊂ Īi,j , Tn′ ⊂ Īi,j
and supp ηn∩supp ηn′ 6= ∅. For each such pair of topological features we may add zero several
times to rewrite (recall again the local identities (4.62) and (4.83))

ξni,j · (∂t+Bn′ · ∇)ξn
′

= ξni,j ·
(
∂tξ

n′
i,j+(Bn′ · ∇)ξn

′
i,j+(∇Bn′)Tξn

′
i,j

)
− ξni,j(∇Bn′)Tξn

′
i,j

= (ξni,j−ξn
′

i,j) ·
(
∂tξ

n′
i,j+(Bn′ · ∇)ξn

′
i,j+(∇Bn′)Tξn

′
i,j

)
+ (ξn

′
i,j−ξni,j)(∇B)Tξn

′
i,j

+ (ξn
′

i,j−ξni,j)(∇Bn′−∇B)Tξn
′

i,j .

Hence, summing the previous identity over the relevant topological features, then matching
terms which correspond to the previous computation but with the roles of n and n′ being
reversed, and finally using the compatibility estimates (4.252) resp. (4.170) as well as the
local evolution equations (4.61) and (4.81) we infer that

N∑
n,n′=1

Tn,Tn′⊂Īi,j

ηnηn′ξ
n
i,j · (∂t+Bn′ · ∇)ξn

′
i,j = O

(
r̄−2(r̄−2d2

i,j ∧ 1)
)
.

This in turn constitutes the required upgrade of (4.259).

4.6.5 Existence of gradient flow calibrations: Proof of Proposition 4.6

Let us summarize our results from the previous sections to conclude with a proof of the main
result.
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Proof of Proposition 4.6. Let (ξi,j)i 6=j be the family of global vector fields from Construc-
tion 4.32. Let i, j ∈ {1, . . . , P} with i 6= j. The coercivity condition (4.1b) immediately
follows from Lemma 4.33. The formula (4.1a) follows from the corresponding local version
(4.222) and the definition (4.228). Moreover, that ξi,j(x, t) = n̄i,j(x, t) holds true for all
t ∈ [0, T ] and x ∈ Īi,j(t) is a consequence of Lemma 4.31 iii) and that (η1, . . . , ηN ) is a
partition of unity on the network of interfaces of the strong solution (see Lemma 4.30 i)).

Finally, let B be the global velocity field from Construction 4.34. The validity of the
equations (4.1c), (4.1d) and (4.1e) is then the content of Lemma 4.38.

4.7 Existence of transported weights

The aim of this section is to establish the existence of a family of transported weights in the
case of d = 2 and an underlying strong solution of multiphase mean curvature flow.

Proof of Lemma 4.7. We again make use of the description of the network of interfaces of the
strong solution in terms of its underlying topological features, namely two-phase interfaces
and triple junctions. Assume that there is a total of N ∈ N such topological features present.
Recall then that we decomposed {1, . . . , N} =: C ·∪P with the convention that C enumerates
the connected components in space-time of the smooth two-phase interfaces and P enumerates
the triple junctions. If p ∈ P, we defined Tp to be the trajectory in space-time described by
the triple junction. If c ∈ C, we defined Tc ⊂ Īi,j for some i, j ∈ {1, . . . , P} with i 6= j to be
the corresponding space-time connected component of a two-phase interface Īi,j . We further
write c ∼ p for c ∈ C and p ∈ P if and only if Tc has an endpoint at Tp.

Let now rP and r̄min be the localization scales from (4.176) and (4.177). We then choose
a large-scale cutoff R > 0 such that for all t ∈ [0, T ] a suitable neighborhood of the network
of interfaces at time t is compactly supported in the ball BR(0):⋃

p∈P
BrP (Tp(t)) ∪

( ⋃
c∈C

imr̄min(ΨTc)(t) \
⋃
p∈P

BrP (Tp(t))
)
⊂⊂ BR(0), (4.260)

where we abbreviated imr̄min(ΨTc)(t) := ΨTc(Tc(t)×{t}×[−r̄min, r̄min]) for t ∈ [0, T ], and
where ΨTc refers to the restriction of the diffeomorphism (4.45) to Tc (assuming Tc ⊂ Īi,j).

The idea for the proof is to construct in the first part a family of weight functions
(ϑ̂i)i∈{1,...,P} which satisfies all the requirements of Definition 4.4 but violates the integrabil-
ity condition ϑ̂i ∈ L1

x,t(R2 × [0, T ]). To overcome the integrability issue at the end of the
proof, we introduce a smooth and concave function κ : [0,∞)→ [0, 1] such that κ(r) = 1 for
r ≥ 1, κ′(r) ∈ (0, 2) for r ∈ (0, 1) and κ(0) = 0. Note that κ represents an upper concave
approximation of r 7→ r ∧ 1 on the interval [0,∞). We next define an integrable weight
ηR ∈W 1,∞

x (R2) ∩W 1,1
x (R2) by means of

ηR(x) := κ(exp(R− |x|)), x ∈ R2, (4.261)

whose spatial gradient is now subject to the following convenient estimate

|∇ηR| ≤ C|ηR| in R2. (4.262)

We will then define ϑi := ηRϑ̂i, and verify in a second part that all the requirements of
Definition 4.4 are indeed satisfied for this choice of weight functions.

Step 1: Construction of (ϑ̂i)i∈{1,...,P}. Let ϑ : R → R be a truncation of the identity with
ϑ(r) = r for |r| ≤ 1

2 , ϑ(r) = −1 for r ≤ −1, ϑ(r) = 1 for r ≥ 1, 0 ≤ ϑ′ ≤ 2 as well as
|ϑ′′| ≤ C. Fix i ∈ {1, . . . , P}. For purely technical reasons (similar to the one described in
Step 3, Proof of Lemma 4.30), we need to introduce another constant δ ∈ (0, 1] which will
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be determined in the course of the proof (depending only on the surface tensions associated
with the strong solution).

We start with the definition of ϑ̂i away from the (relevant part of the) network of inter-
faces. To this end, we define subsets Pi ⊂ P and Ci ⊂ C which collect those triple junctions
and two-phase interfaces for which the phase i is present, respectively. We then define for
all t ∈ [0, T ]

ϑ̂i(·, t) := −1 (4.263)

in Ω̄i(t) \
⋃
p∈Pi

BrP (Tp(t)) ∪
( ⋃
c∈Ci

imr̄min(ΨTc)(t) \
⋃
p∈Pi

BrP (Tp(t))
)
,

ϑ̂i(·, t) := 1 (4.264)

in
(
R2 \ Ω̄i(t)

)
\
⋃
p∈Pi

BrP (Tp(t)) ∪
( ⋃
c∈Ci

imr̄min(ΨTc)(t) \
⋃
p∈Pi

BrP (Tp(t))
)
.

By the definitions (4.176) and (4.177) of the scales rP and r̄min, we may provide the further
construction of ϑ̂i separately within imr̄min(ΨTc)(t) \

⋃
p∈Pi BrP (Tp(t)) for each c ∈ Ci and

within BrP (Tp(t)) for each p ∈ Pi, respectively.
For each c ∈ Ci, and assuming for notational concreteness that Tc ⊂ Īi,j for some j ∈

{1 . . . , P} \ {i}, we simply define for all t ∈ [0, T ]

ϑ̂i(·, t) := ϑ
(si,j(·, t)
δr̄min

)
, in imr̄min(ΨTc)(t) \

⋃
p∈Pi

BrP (Tp(t)), (4.265)

where the signed distance si,j was introduced in (4.47).
Now, consider a triple junction p ∈ Pi. We assume that the pairwise distinct phases

present at Tp are given by i, j, k ∈ {1, . . . , P}. Recall from Definition 4.20 that BrP (Tp)
decomposes into six wedges. Three of them, namely the interface wedges Wi,j , Wj,k resp.
Wk,i, contain the interfaces Tci,j , Tcj,k resp. Tck,i . The other three are interpolation wedges
denoted by Wi, Wj resp. Wk. For the definition of ϑ̂i on the latter wedges, we rely on the
interpolation parameter built in Lemma 4.28. To clarify the direction of interpolation, i.e., on
which boundary of the interpolation wedge the corresponding interpolation function is equal
to one or zero, we make use of the following notational convention. For the interpolation
wedge Wi, say, we denote by λj,ki the interpolation function as built in Lemma 4.28 and
which interpolates from j to k in the sense that it is equal to one on (∂Wi,j ∩ ∂Wi) \ Tp and
which vanishes on (∂Wk,i ∩ ∂Wi) \ Tp. We also define λk,ji := 1 − λj,ki which interpolates
on Wi in the opposite direction from k to j. Analogously, one introduces the interpolation
functions on the other interpolation wedges.

We now define the weight function ϑ̂i for all t ∈ [0, T ] on the ball BrP (Tp(t)) as follows:

ϑ̂i(·, t) := ϑ
(si,j(·, t)
δr̄min

)
, in Wi,j(t) ∩BrP (Tp(t)), (4.266)

and analogously on the interface wedge Wi,k, whereas we interpolate on the interpolation
wedge Wi by means of

ϑ̂i(·, t) := λj,ki (·, t)ϑ
(si,j(·, t)
δr̄min

)
+ λk,ji (·, t)ϑ

(si,k(·, t)
δr̄min

)
, in Wi(t) ∩BrP (Tp(t)). (4.267)

Furthermore, we define

ϑ̂i(·, t) := ϑ
(dist(·, Tp(t))

δr̄min

)
, in Wj,k(t) ∩BrP (Tp(t)), (4.268)
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whereas we again interpolate on the interpolation wedge Wj via

ϑ̂i(·, t) := λk,ij (·, t)ϑ
(dist(·, Tp(t))

δr̄min

)
+ λi,kj (·, t)ϑ

(si,j(·, t)
δr̄min

)
, in Wj(t) ∩BrP (Tp(t)), (4.269)

and analogously for the interpolation wedge Wk.
Step 2: Regularity of (ϑ̂i)i∈{1,...,P}. First of all, it is immediate from the above defini-

tions (4.263)–(4.269) that the coercivity properties of Definition 4.4 hold true as required.
Choosing δ ∈ (0, 1] as in Step 3, Proof of Lemma 4.30, ensures that the definitions (4.266)–
(4.269) close to triple junctions are compatible with the bulk definitions (4.263)–(4.264). In
particular, the asserted regularity ϑ̂i ∈ W 1,∞

x,t (R2 × [0, T ]) for the auxiliary weight functions
is now a consequence of the regularity (4.50) of the signed distance functions as well as the
controlled blowup (4.143) of the first-order derivatives of the interpolation parameter. In
terms of estimates, it holds

max
k=0,1

r̄kmin|∇kϑ̂i|+ r̄2
min|∂tϑ̂i| ≤ C in R2×[0, T ] \

⋃
p∈Pi

Tp, (4.270)

for a constant C > 0 which may depend on the strong solution Ω̄, but which is independent
of r̄min.

Step 3: Estimate for the advective derivatives of (ϑ̂i)i∈{1,...,P}. For a proof of the bound (4.4)
on the advective derivative with respect to the auxiliary weight ϑ̂i, it suffices to work in the
regions

⋃
c∈Ci imr̄min(ΨTc)\

⋃
p∈Pi

⋃
t∈[0,T ]BrP (Tp(t))×{t} and

⋃
p∈Pi

⋃
t∈[0,T ]BrP (Tp(t))×{t},

respectively. We in fact may argue separately for each c ∈ Ci and each p ∈ Pi. The argument
turns out to be almost analogous to the one for the proof of (4.232); a connection which we
will make precise in the subsequent steps to avoid unnecessary repetition.

Substep 1: Estimate near ∂Ω̄i but away from triple junctions. Let c ∈ Ci, and as-
sume for concreteness that Tc ⊂ Īi,j . It follows from the definition (4.265) that ϑ̂i is a
smooth function of the signed distance si,j throughout the space-time domain imr̄min(ΨTc) \⋃
p∈Pi

⋃
t∈[0,T ]BrP (Tp(t))×{t}. Hence, due to (4.270) the otherwise exact same argument

guaranteeing (4.238) entails

|∂tϑ̂i + (B · ∇)ϑ̂i| ≤ Cr̄−2
min(r̄−1

min dist(·, Īi,j) ∧ 1) ≤ Cr̄−2
min|ϑ̂i| (4.271)

in imr̄min(ΨTc) \
⋃
p∈Pi

⋃
t∈[0,T ]BrP (Tp(t))×{t}. The last inequality follows due to ϑ being a

truncation of unity.
Substep 2: Estimate at triple junction in interface wedges containing ∂Ω̄i. Consider p ∈

Pi, and let c ∈ C such that c ∼ p and Tc ⊂ Īi,j . We provide the required estimate in the
interface wedge Wi,j(t) ∩ BrP (Tp(t)) for all t ∈ [0, T ]. In this case, definition (4.266) applies
so that ϑ̂ is again a smooth function of the signed distance si,j . Recalling (4.270), we may
thus apply the argument in favor of (4.242) to deduce again

|∂tϑ̂i + (B · ∇)ϑ̂i| ≤ Cr̄−2
min(r̄−1

min dist(·, Īi,j) ∧ 1) ≤ Cr̄−2
min|ϑ̂i|, (4.272)

this time throughout Wi,j(t) ∩BrP (Tp(t)) for all t ∈ [0, T ].
Substep 3: Estimate at triple junction in interface wedge not containing ∂Ω̄i. Let p ∈ Pi,

and let j, k ∈ {1, . . . , P} denote the other two distinct phases which are present at Tp next to i.
We aim to estimate the advective derivative of ϑ̂i in the interface wedge Wj,k(t)∩BrP (Tp(t))
for all t ∈ [0, T ]. Note that thanks to (4.268), the auxiliary weight ϑ̂i is a smooth function
of the distance to the triple junction. Hence, we may simply follow the argument resulting
in (4.243) and obtain together with (4.270) that

|∂tϑ̂i + (B · ∇)ϑ̂i| ≤ Cr̄−2
min(r̄−1

min dist(·, Tp) ∧ 1) ≤ Cr̄−2
min|ϑ̂i| (4.273)
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in the region Wj,k(t) ∩BrP (Tp(t)) for all t ∈ [0, T ].
Substep 4: Estimate at triple junction in interpolation wedges. Let the notation of Sub-

step 3 in place. On the interpolation wedge Wi, the auxiliary weight is defined by means
of (4.267), i.e., one interpolates between two smooth functions of the signed distances si,j
and sk,i, respectively. Hence, we may estimate based on the product rule, the estimate (4.248),
the bound (4.270), the fact that λj,ki = 1−λk,ji , the argument establishing (4.247), and fi-
nally (4.77)

|∂tϑ̂i + (B · ∇)ϑ̂i| ≤ Cr̄−2
min

∣∣∣ϑ(si,j(·, t)
δr̄min

)
−ϑ
(sk,i(·, t)
δr̄min

)∣∣∣
+ Cr̄−2

minλ
j,k
i (r̄−1

min dist(·, Īi,j) ∧ 1)

+ Cr̄−2
minλ

k,j
i (r̄−1

min dist(·, Īk,i) ∧ 1)

≤ Cr̄−2
min(r̄−1

min dist(·, Tp) ∧ 1) + Cr̄−2
min|ϑ̂i| ≤ Cr̄

−2
min|ϑ̂i| (4.274)

throughout Wi(t) ∩ BrP (Tp(t)) for all t ∈ [0, T ]. In view of the definition (4.269) and the
argument for (4.243) (carefully noting that the latter is established also on interpolation
wedges), the otherwise same ingredients and computations employed for the proof of (4.274)
also imply

|∂tϑ̂i + (B · ∇)ϑ̂i| ≤ Cr̄−2
min|ϑ̂i| (4.275)

in Wj(t) ∩BrP (Tp(t)) for all t ∈ [0, T ].
Substep 5: Conclusion. In summary, the estimates (4.271)–(4.275) imply the asserted

bound (4.4) for the advective derivative in terms of the auxiliary weights ϑ̂i. In particular, the
family of auxiliary weights (ϑ̂i)i∈{1,...,P} satisfies all the required properties of Definition 4.4
with the only exception being ϑ̂i ∈ L1

x,t(R2×[0, T ]).
Step 4: Construction and properties of ϑi. As already mentioned at the beginning of

the proof, we may now define ϑi := ηRϑ̂i for all i ∈ {1, . . . , P}. The regularity and the
required coercivity properties for ϑi are then immediate consequences of its definition and
the previous step. The estimate (4.4) on the advective derivative also carries over since ηR
is time-independent and by (4.262)

|ϑ̂i||(B · ∇)ηR| ≤ C|ϑi| in R2 × [0, T ],

so that the product rule together with the previous step implies (4.4) on the level of the
weight ϑi. This in turn concludes the proof of Lemma 4.7.

Glossary of notation

d ≥ 2 ambient dimension

D open set

∂tv distributional partial derivative w.r.t. time
of v : D × [0, T )→ Rd

∇v distributional partial derivative w.r.t. space, (∇v)i,j = ∂jvi

C∞cpt(D) space of compactly supported and infinitely
differentiable functions on D

C ltC
k
x(U) space of functions on U ⊂ Rd×[0, T ] with continuous

and bounded partial derivatives ∂l′t ∂k
′
x , 0 ≤ l′ ≤ l, 0 ≤ k′ ≤ k.
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u⊗ v tensor product of u, v ∈ Rd, (u⊗ v)i,j = uivj

A : B
∑

i,j AijBij , scalar product of tensors

Ld d-dimensional Lebesgue measure

Hk k-dimensional Hausdorff measure on Rd for k ∈ [0, d]

Lp(Ω, µ) Lebesgue space w.r.t. to a measure µ on Ω ⊂ Rd for p ∈ [1,∞]

Lp(D) Lebesgue space w.r.t. Lebesgue measure

Lp(D;Rd) Lebesgue space for vector valued functions

Lp([0, T ];X) Bochner–Lebesgue space for a Banach space X and T ∈ (0,∞)

W k,p(D) Sobolev spaces with p ∈ [1,∞) and k ∈ N

BV (D) Functions of bounded variation [12] on Lipschitz domain D ⊂ Rd

∂∗Ω reduced boundary of a set of finite perimeter Ω ⊂ D

n = − ∇χΩ

|∇χΩ| outward pointing unit normal vector field along ∂∗Ω

si,j signed distance function to Īi,j with ∇si,j = n̄i,j

dist(·, A) distance function Rd×[0, T ] 3 (x, t) 7→ dist(x,A(t)) for a domain
A =

⋃
t∈[0,T ]A(t)×{t}, A(t) ⊂ Rd, t ∈ [0, T ].

P ≥ 2 number of phases

Ωi region occupied by phase i = 1, . . . , P in weak solutions

χi characteristic function of Ωi

Ii,j interface between phases Ωi and Ωj

ni,j unit normal vectors along Ii,j pointing from phase i to phase j

Vi normal velocity of Ii,j with Vi > 0 for expanding Ωi, see (4.12b)

Ω̄i, χ̄i, . . . corresponding quantities of the strong solution

Hi,j mean curvature vector of Īi,j

Hi,j scalar mean curvature of Īi,j given by
Hi,j · n̄i,j = −∇tan · n̄i,j = −∆si,j

si,j signed distance function to Īi,j with ∇si,j = n̄i,j

J =
(

0 −1
1 0

)
counter-clockwise rotation by 90◦

τ̄i,j tangent vector along Īi,j given by J−1n̄i,j

O(·) Landau symbol, implicit constant only depends on strong solution
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CHAPTER 5
Weak-strong uniqueness for the mean

curvature flow of double bubbles

Abstract. We derive a weak-strong uniqueness principle for BV solutions to
multiphase mean curvature flow of triple line clusters in three dimensions. Our
proof is based on the explicit construction of a gradient-flow calibration in the
sense of our recent work [Fischer et al., arXiv:2003.05478] for any such cluster.
This extends our two-dimensional construction to the three-dimensional case of
surfaces meeting along triple junctions.

5.1 Main results & definitions

We developed in Chapter 4 a general approach to the question of weak-strong uniqueness of
BV solutions to multiphase mean curvature flow in arbitrary ambient dimension d ≥ 2. This
approach splits into a two-step procedure.

In a first step, we introduced a novel concept of calibrated flows with respect to the
gradient flow of the interface energy functional given by the (weighted) sum of the surface
areas of the interfaces, cf. (5.8) below. This concept can be interpreted as the evolutionary
analogue of the well-known notion of paired calibrations due to Lawlor and Morgan [102] from
their study of the minimization problem of interfacial surface area of networks. Indeed, the
main merit of a calibrated flow is that its existence (essentially) implies qualitative uniqueness
and quantitative stability of BV solutions to multiphase mean curvature flow in arbitrary
ambient dimension d ≥ 2.

In a second step, we then put our theory to use by showing that any sufficiently regular
network of interfaces in the plane R2, which in addition is subject to the correct angle
condition at triple junctions, is in fact calibrated in the precise sense of Definition 4.2. The
purpose of the present work is to extend this second step of our approach to the three-
dimensional setting of mean curvature flow of sufficiently regular double bubbles (again with
the correct angle condition along the triple line). The main contributions are summarized in
the following result.

Theorem 5.1. Let T ∈ (0,∞) be a time horizon, and let (Ω̄1, Ω̄2, Ω̄3) be a regular double
bubble smoothly evolving by MCF on [0, T ] in the sense of Definition 5.10. The evolution of
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(Ω̄1, Ω̄2, Ω̄3) on [0, T ] is then calibrated in the sense that there exists an associated gradient-
flow calibration ((ξi)i∈{1,2,3}, B) on [0, T ], cf. Definition 5.2. Moreover, the smoothly evolving
regular double bubble (Ω̄1, Ω̄2, Ω̄3) admits a family of transported weights (ϑi)i∈{1,2,3} on [0, T ]
in the sense of Definition 5.5.

As a corollary, we obtain a weak-strong uniqueness and stability of evolutions principle
for BV solutions (Ω1,Ω2,Ω3) to multiphase MCF on [0, T ] (cf. Definition 4.11) with respect
to the class of regular double bubbles smoothly evolving by MCF on [0, T ] in the sense of
Definition 5.10. We refer to Theorem 5.6 for a more detailed statement of this corollary, and
to the discussion right below it for an account on the general regime of P ≥ 3 phases on the
level of the BV solution.

Proof. The existence of a gradient-flow calibration ((ξi)i∈{1,2,3}, B) on [0, T ] is the content of
Theorem 5.3. Its proof occupies almost the whole paper and is carried out from Section 5.2
to Section 5.4. We emphasize in this context that the local construction at a triple line
performed in Section 5.3 represents the core contribution of the present work. The existence
of transported weights (ϑi)i∈{1,2,3} on [0, T ] is proven in Section 5.5 in form of Proposition 5.5.

These two existence results in turn realize the assumptions of our general conditional
weak-strong uniqueness and stability of evolutions principle Proposition 4.5 for BV solutions
to multiphase mean curvature flow (with respect to the setting of P = 3 phases and d = 3
dimensions), which therefore establishes the claim of the corollary.

The results of Chapter 4 together with Theorem 5.1 admittedly only cover two thirds of
the story concerning weak-strong uniqueness for general clusters in R3 evolving by multiphase
mean curvature flow. Indeed, one also has to allow for quadruple junctions at which four
distinct phases meet (cf. the structure result on minimizer of interfacial surface energy by
Taylor [148]). We expect that a suitable generalization of our ideas for the construction at a
triple point (d = 2) or a triple line (d = 3) should also lead to the correct construction in the
case of a quadruple junction, and thus to a full-fledged weak-strong uniqueness result in R3.

5.1.1 Existence of gradient-flow calibrations

For the sake of completeness, let us first restate the precise definition of the concept of a
gradient-flow calibration.

Definition 5.2 (Gradient-flow calibration). Let T ∈ (0,∞) be a time horizon, and let
σ ∈ RP×P be an admissible matrix of surface tensions, cf. Remark 5.7, for P ≥ 2 phases.
Moreover, let (Ω̄1, . . . , Ω̄P ) be an evolving partition of finite interface energy on Rd×[0, T ] in
the sense of Definition 5.8 in dimension d ≥ 2, and denote by

⋃
i 6=j Īi,j the associated network

of evolving interfaces.
A tuple of vector fields

(ξi)i∈{1,...,P} : Rd×[0, T ]→ (Rd)P ,
B : Rd×[0, T ]→ Rd

is called a calibration for the L2-gradient flow of the interface energy (5.8) on [0, T ] with
respect to the evolving partition (Ω̄1, . . . , Ω̄P )—or in short a gradient-flow calibration—if it
is subject to the following requirements:

i) It holds ξi, B ∈ C0([0, T ];C0
cpt(Rd;Rd)) for all i ∈ {1, . . . , P}. Moreover, for each time

t ∈ [0, T ], there exists an Hd−1 null set Γt ⊂ Rd such that for Γ :=
⋃
t∈[0,T ] Γt×{t} it holds

ξi ∈ (C0
t C

1
x ∩C1

t C
0
x)(Rd×[0, T ] \ Γ) for all i ∈ {1, . . . , P} and B ∈ C0

t C
1
x(Rd×[0, T ] \ Γ).

Finally, there exists C > 0 such that

sup
t∈[0,T ]

sup
x∈Rd\Γt

|∇B(x, t)|+ |∇ξi(x, t)|+ |∂tξi(x, t)| ≤ C.
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ii) For i, j ∈ {1, . . . , P} with i 6= j, define the vector field

ξi,j :=
1

σi,j
(ξi − ξj) in Rd×[0, T ]. (5.1a)

Denoting by n̄i,j the unit normal vector field along the interface Īi,j (pointing from the
ith into the jth phase), it is then required that

ξi,j = n̄i,j along Īi,j . (5.1b)

Moreover, there exists c ∈ (0, 1) such that a coercivity estimate in terms of the length of
the vector field ξi,j holds true:

|ξi,j(x, t)| ≤ 1− cmin{dist2(x, Īi,j(t)), 1}, (x, t) ∈ Rd×[0, T ]. (5.1c)

iii) The vector field B represents a velocity field for the partition (Ω̄1, . . . , Ω̄P ) in the sense
that the following two approximate evolution equations hold true for the vector fields ξi,j,
i, j ∈ {1, . . . , P} with i 6= j,∣∣∂tξi,j+(B · ∇)ξi,j+(∇B)Tξi,j

∣∣(x, t) ≤ C min{dist(x, Īi,j(t)), 1}, (5.1d)∣∣∂t|ξi,j |2 + (B · ∇)|ξi,j |2
∣∣(x, t) ≤ C min{dist2(x, Īi,j(t)), 1}, (5.1e)

for some C > 0 and all (x, t) ∈ Rd×[0, T ].

iv) The velocity B represents motion by multiphase mean curvature (i.e., the L2-gradient
flow with respect to the interface energy (5.8)) in the sense that there exists a constant
C > 0 such that∣∣ξi,j ·B +∇ · ξi,j

∣∣ ≤ C min{dist(x, Īi,j(t)), 1}, (x, t) ∈ Rd×[0, T ]. (5.1f)

If a gradient-flow calibration exists, we say that the evolving partition (Ω̄1, . . . , Ω̄P ) is
calibrated on [0, T ].

Note that the required regularity from the first item of the above definition is on one side
slightly less than what is actually stated in Definition 4.2 from the previous chapter, but on
the other side still sufficient to ensure the validity of Proposition 4.3.

The main result of the present work is now that any sufficiently regular and smoothly
evolving double bubble admits an associated gradient-flow calibration.

Theorem 5.3 (Existence of gradient-flow calibrations). Let T ∈ (0,∞), let σ ∈ R3×3 be an
admissible matrix of surface tensions, and let (Ω̄1, Ω̄2, Ω̄3) be a regular double bubble smoothly
evolving by MCF on [0, T ] in the sense of Definition 5.10. Then (Ω̄1, Ω̄2, Ω̄3) is calibrated
on [0, T ] in the sense of Definition 5.2.

It turns out that the existence of a gradient-flow calibration already implies a quantita-
tive inclusion principle for the surface cluster of general BV solutions to multiphase mean
curvature flow, see Proposition 4.3. More precisely, if at the initial time each interface of
a BV solution is contained in the corresponding interface of a calibrated flow, then this in-
clusion property remains to be satisfied as long as the calibrated flow exists. Furthermore,
this qualitative property is in fact a consequence of a quantitative stability estimate for the
interface error between a general BV solution and a calibrated flow (formulated in terms of
an error functional of the form (5.3) below).

The inclusion principle, however, is of course consistent with the vanishing of a phase in
the BV solution, so that weak-strong uniqueness cannot be derived by means of a gradient-
flow calibration alone. In order to get a control on the bulk deviations of the phases, one
relies on an additional input which can be formalized as follows.
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Definition 5.4 (Family of transported weights). Let T ∈ (0,∞) be a time horizon, and let
σ ∈ RP×P be an admissible matrix of surface tensions satisfying the strict triangle inequality
for P ≥ 2 phases. Let d ≥ 2, and let (Ω̄1, . . . , Ω̄P ) be an evolving partition of finite interface
energy on Rd×[0, T ] in the sense of Definition 5.8, and denote by (χ̄1, . . . , χ̄P ) the associated
family of indicator functions. We then in addition assume that the measure ∂tχ̄i is absolutely
continuous with respect to the measure |∇χ̄i|, and that ∂Ω̄i(·, t) is Lipschitz regular for all t ∈
[0, T ]. Consider finally a velocity vector field B ∈ C0([0, T ];C1

cpt(Rd;Rd)).
A map ϑ = (ϑi)i∈{1,...,P} : Rd× [0, T ]→ [−1, 1]P is called a family of transported weights

for ((Ω̄1, . . . , Ω̄P ), B) if it satisfies the following list of properties:

i) In terms of regularity, we require ϑi ∈ (W 1,1 ∩ W 1,∞)(Rd×[0, T ]; [−1, 1]) for all i ∈
{1, . . . , P}.

ii) We require that ϑi(·, t) = 0 on ∂Ω̄i(t), and ϑi(·, t) > 0 in the essential exterior resp.
ϑi(·, t) < 0 in the essential interior of Ω̄i(·, t) for all i ∈ {1, . . . , P} and all t ∈ [0, T ].

iii) Each weight is approximately advected by the velocity B in form of

|∂tϑi + (B · ∇)ϑi| ≤ C|ϑi| on Rd×[0, T ], i ∈ {1, . . . , P}. (5.2)

The existence of a family of transported weights is precisely what is needed to derive
a quantitative stability estimate for the bulk error between a general BV solution and a
calibrated flow (formulated in terms of an error functional of the form (5.4) below), which to-
gether with the already mentioned quantitative inclusion principle then implies a weak-strong
uniqueness principle for BV solutions of multiphase mean curvature flow, see Proposition 4.5.

It is therefore of interest to extend our 2D existence result from Chapter 4 to the 3D setting
of any sufficiently regular and smoothly evolving double bubble.

Proposition 5.5 (Existence of a family of transported weights). Let T ∈ (0,∞) be a time
horizon, and let (Ω̄1, Ω̄2, Ω̄3) be a regular double bubble smoothly evolving by MCF on [0, T ] in
the sense of Definition 5.10. Let B denote the velocity field from the gradient-flow calibration
on [0, T ] associated with (Ω̄1, Ω̄2, Ω̄3), whose existence in turn is guaranteed by Theorem 5.3.
Then there exists an associated family of transported weights (ϑi)i∈{1,2,3} on [0, T ] with respect
to the data ((Ω̄1, Ω̄2, Ω̄3), B) in the precise sense of Definition 5.4.

5.1.2 Weak-strong uniqueness and stability of evolutions

Combining Theorem 5.3 and Proposition 5.5 with the conditional stability of any calibrated
MCF in arbitrary dimensions Proposition 4.5, we obtain the following weak-strong uniqueness
principle for distributional (i.e., BV) solutions to multiphase MCF in three dimensions.

Theorem 5.6 (Weak-strong uniqueness and quantitative stability). Let T ∈ (0,∞) be a
time horizon, d = 3, P = 3, and σ ∈ R3×3 be a surface tension matrix satisfying the strict
triangle inequality. Let Ω̄ = (Ω̄1, Ω̄2, Ω̄3) be a regular double bubble smoothly evolving by MCF
on [0, T ] in the sense of Definition 5.10 (with respect to σ), and let Ω = (Ω1,Ω2,Ω3) be a
BV solution to multiphase MCF in the sense of Definition 4.11 (again with respect to σ).

If the initial conditions of the regular double bubble and the BV solution coincide, then
the solutions also coincide for later times on [0, T ]. More precisely,

L3
((

Ωi(0) \ Ω̄i(0)
)
∪
(
Ω̄i(0) \ Ωi(0)

))
= 0 for all i ∈ {1, 2, 3}

⇒ L3
((

Ωi(t) \ Ω̄i(t)
)
∪
(
Ω̄i(t) \ Ωi(t)

))
= 0 for a.e. t ∈ [0, T ] and all i ∈ {1, 2, 3}.

Moreover, we have quantitative stability estimates in the following sense. Denote by (ξ :=
(ξi)i∈{1,2,3}, B) the gradient-flow calibration on the time interval [0, T ] from Theorem 5.3 with
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respect to (Ω̄1, Ω̄2, Ω̄3), and denote by (ϑi)i∈{1,2,3} the corresponding family of transported
weights on [0, T ] from Proposition 5.5. Let ni,j(·, t) be the measure theoretic unit normal
along the interface ∂∗Ωi(t) ∩ ∂∗Ωj(t) pointing from Ωi(t) into Ωj(t), t ∈ [0, T ]. Then, the
error functionals defined for all t ∈ [0, T ] by

E[Ω|ξ](t) :=
∑

i,j∈{1,2,3}, i 6=j

σi,j

ˆ
∂∗Ωi(t)∩∂∗Ωj(t)

1−ni,j(·, t) · ξi,j(·, t) dH2, (5.3)

E[Ω|Ω̄](t) :=
3∑
i=1

ˆ
(Ωi(t)\Ω̄i(t))∪(Ω̄i(t)\Ωi(t))

|ϑi(·, t)|dx (5.4)

satisfy the stability estimates

E[Ω|ξ](t) ≤ E[Ω|ξ](0)eCt, (5.5)

E[Ω|Ω̄](t) ≤
(
E[Ω|ξ](0)+E[Ω|Ω̄](0)

)
eCt (5.6)

for almost every t ∈ [0, T ]. The constant C > 0 in these estimates depends only on the
data of the smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ] through the explicit
constructions ((ξi)i∈{1,2,3}, B) and (ϑi)i∈{1,2,3}.

Proof. As mentioned above, this is a straightforward application of Theorem 5.3, Proposi-
tion 5.5 and Proposition 4.5.

Remark 5.7 (Admissible surface tensions). Let us briefly comment on the matrix of sur-
face tensions σ ∈ RP×P . We say σ is admissible if it satisfies precisely the assumption in
Definition 4.8. More concretely, we require that there exists a non-degenerate (P−1)-simplex
(q1, . . . , qP ) in RP−1 which represents the surface tensions in form of σi,j = |qi−qj |.

In the framework of the present paper, i.e., the case P = 3, this is equivalent to the strict
triangle inequality

σi,j < σi,k + σk,j for all choices {i, j, k} = {1, 2, 3}. (5.7)

In the general case P ≥ 3, the `2-embeddability is in fact stronger than (5.7), and it
constitutes the key ingredient to construct the missing calibration vector fields (ξi)i∈{4,...,P},
for which one may in fact argue along the same lines as in the proof of Lemma 4.31 without
requiring any additional ingredients from the constructions.

We emphasize that only for simplicity, we considered in Theorem 5.6 the case of P = 3
phases on the level of the BV solution. Let us briefly outline the additional ingredients which
are needed to establish the stability estimates (5.5) and (5.6) in terms of general BV solutions
(Ω1, . . . ,ΩP ), P > 3, defined on R3×[0, T ] with respect to a given `2-embeddable matrix of
surface tensions σ = (σi,j)i,j∈{1,...,P} ∈ RP×P , and a fixed regular double bubble (Ω̄1, Ω̄2, Ω̄3)
smoothly evolving by MCF with respect to the restriction (σi,j)i,j∈{1,2,3} of the surface tension
matrix σ ∈ RP×P .

Recalling the definitions (5.3) and (5.4) of the error functionals (in which one only needs
to replace 3 by P in the case P > 3), it is clear that we have to augment the gradient-flow
calibration provided by Theorem 5.3 with additional calibrating vector fields (ξi)i∈{4,...,P},
and the family of transported weights by Proposition 5.5 with additional weights (ϑi)i∈{4,...,P},
such that the resulting augmented families adhere to the requirements of Definition 5.2 and
Definition 5.4, respectively, in order to allow for the desired application of Proposition 4.5.
For consistency with our definitions, let us interpret to this end the smoothly evolving regular
double bubble as a partition (Ω̄1, . . . , Ω̄P ) with the convention that Ω̄i := ∅ for all additional
phases i ∈ {4, . . . , P} in the BV solution.
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Extending the family of transported weights is trivial since we may define ϑi := 1 for all
i ∈ {4, . . . , P}, thus representing consistently the fact that the additional phases on the level
of the smoothly evolving regular double bubble are empty.

Furthermore, the missing calibration vector fields can be constructed along the lines of
the proof of Lemma 4.31. It is then straightforward that the associated additional vector
fields

σi,jξi,j := ξi − ξj , i ∈ {4, . . . , P} or j ∈ {4, . . . , P},

satisfy (5.1b)–(5.1f) (together with the desired regularity). Indeed, except for the coercivity
condition (5.1c), all these properties are trivially satisfied in terms of the relevant additional
pairs of indices since the associated interfaces on the level of the smoothly evolving regular
double bubble are empty. With respect to (5.1c), the proof of Lemma 4.33 applies verbatim
without requiring any additional ingredients from the constructions of this work.

We decided to restrict ourselves to the case P = 3 in the formulation of Theorem 5.6
because we view the main contribution of this paper to be the first part of Theorem 5.1 (i.e.,
the combination of Theorem 5.3 and Proposition 5.5), and thus aim to shift the focus on the
required 3D generalization of those results of Chapter 4 which are concerned with the given
strong solution only (i.e., in the present work a regular double bubble smoothly evolving
by MCF).

5.1.3 Definition of a regular double bubble smoothly evolving by MCF

This part is concerned with the formulation of a “strong solution concept” for a (topologically
standard) double bubble moving by mean curvature flow, for which we are then able to show
that its flow is calibrated in the precise sense of Definition 5.2. We start with the associated
energy functional.

Definition 5.8 (Partition with finite interface energy, see Definition 4.10). Consider d ≥ 2,
P ≥ 2, and an admissible matrix of surface tensions σ ∈ RP×P . Let (Ω̄1, . . . , Ω̄P ) be a
family of measurable subsets of Rd such that Ld(Rd \

⋃P
i=1 Ω̄i) = 0 and Ld(Ω̄i ∩ Ω̄j) = 0

for all i, j ∈ {1, . . . , P} with i 6= j. We then call (Ω̄1, . . . , Ω̄P ) a partition of Rd with finite
interface energy if

E[(Ω̄1, . . . , Ω̄P )] :=
∑

i,j∈{1,...,P}, i 6=j

σi,jHd−1(∂∗Ω̄i ∩ ∂∗Ω̄j) <∞. (5.8)

Let next T ∈ (0,∞) be a time horizon, and consider a family (Ω̄1, . . . , Ω̄P ) of open subsets
of Rd×[0, T ] in the form of Ω̄i =

⋃
t∈[0,T ] Ω̄i(t)×{t} for all i ∈ {1, . . . , P}. In this evolutionary

setting, we call (Ω̄1, . . . , Ω̄P ) an evolving partition on Rd×[0, T ] with finite interface energy,
if for all t ∈ [0, T ] the family (Ω̄1(t), . . . , Ω̄P (t)) is a partition of Rd with finite interface
energy in the above sense and it holds

sup
t∈[0,T ]

E[(Ω̄1(t), . . . , Ω̄P (t))] <∞. (5.9)

For such an evolving partition, we denote the associated evolving interfaces by Īi,j :=⋃
t∈[0,T ] Īi,j(t)×(t), where Īi,j(t) := ∂∗Ω̄i(t) ∩ ∂∗Ω̄j(t) for all t ∈ [0, T ] and all pairs i, j ∈
{1, . . . , P}, i 6= j.

In a next step, we formalize the topological setup as well as the main regularity assump-
tions. We also state the main compatibility condition in form of the Herring angle condition.
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Figure 5.1: An illustration of a double bubble in three dimensions. The triple line Γ̄ along
which all three interfaces meet is marked in red.

Definition 5.9 (Regular double bubble). Let σ ∈ R3×3 be an admissible matrix of surface
tensions, and consider a partition (Ω̄1, Ω̄2, Ω̄3) of R3 with finite interface energy in the sense
of Definition 5.8. Assume in addition that Ω̄i is an open, non-empty and simply connected
subset of R3 such that ∂Ω̄i is the closure of ∂∗Ω̄i for all i ∈ {1, 2, 3}. Define then for
each i, j ∈ {1, 2, 3} with i 6= j the associated interface Īi,j := ∂Ω̄i ∩ ∂Ω̄j, which is assumed to
be non-empty.

We call (Ω̄1, Ω̄2, Ω̄3) a regular double bubble if the following additional regularity condi-
tions are satisfied:

i) Each interface Īi,j is a two-dimensional, compact and simply connected manifold with
boundary of class C5. The interior of each interface is embedded.

ii) The three interfaces Ī1,2, Ī2,3, and Ī3,1 intersect precisely along their respective boundary,
which in turn is a non-empty one-dimensional, compact and connected manifold Γ̄ without
boundary of class C5.

iii) Along the triple line Γ̄, the Herring angle condition has to be satisfied:

σ1,2n̄1,2 + σ2,3n̄2,3 + σ3,1n̄3,1 = 0, (5.10)

where we denote by n̄i,j the associated unit normal vector field along Īi,j pointing from Ω̄i

into Ω̄j.

With the notion of a regular double bubble in place, we finally clarify what we mean by
a (sufficiently) smooth evolution of a regular double bubble with respect to mean curvature
flow. It turns out that the construction of an associated gradient-flow calibration in the
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vicinity of the evolving triple line requires two additional higher-order compatibility condi-
tions. For a sufficiently smooth evolution of a regular double bubble, these two compatibility
conditions are consequences of differentiating in time the assumed zeroth order compatibil-
ity condition (i.e., the triple line being the common boundary of the three interfaces) or
first order compatibility condition (i.e., the Herring angle condition), respectively. Since we
will require regularity down to time t = 0, we have to include the resulting compatibility
conditions for the initial double bubble.

Definition 5.10 (Regular double bubble smoothly evolving by MCF). Let σ ∈ R3×3 be an
admissible matrix of surface tensions. Consider an associated initial partition (Ω̄0

1, Ω̄
0
2, Ω̄

0
3)

of R3 representing a regular double bubble in the sense of Definition 5.9. Assume in addition
that (Ω̄0

1, Ω̄
0
2, Ω̄

0
3) satisfies the following two higher-order compatibility conditions:

First, we require for the scalar mean curvatures in form of H0
i,j := −∇tan · n̄0

i,j that along
the initial triple line Γ̄0 it holds

σ1,2H
0
1,2 + σ2,3H

0
2,3 + σ3,1H

0
3,1 = 0, (5.11)

which by (5.10) is equivalent to the existence of a unique vector field VΓ̄0 along Γ̄0, which
takes values in the normal bundle Tan⊥Γ̄0 such that

n̄0
i,j ·VΓ̄0 = H0

i,j along Γ̄0 for all i, j ∈ {1, 2, 3} with i 6= j.

Second, denoting by t̄0 a unit length tangent vector field along the initial triple line Γ̄0 and
defining τ̄0

i,j := n̄0
i,j×t̄0 along Γ̄0 for all i, j ∈ {1, 2, 3} with i 6= j, we require that the quantity

−
(
τ̄0
i,j ⊗ τ̄0

i,j : ∇tann̄0
i,j

)(
τ̄0
i,j ·VΓ̄0

)
+ (τ̄0

i,j · ∇tan)H0
i,j (5.12)

is independent of the choice of distinct i, j ∈ {1, 2, 3} at each point on Γ̄0.
Let now T ∈ (0,∞) be a time horizon, and consider an evolving partition (Ω̄1, Ω̄2, Ω̄3)

on R3×[0, T ] with finite interface energy in the sense of Definition 5.8. We call (Ω̄1, Ω̄2, Ω̄3)
a regular double bubble smoothly evolving by MCF on [0, T ] with initial data (Ω̄0

1, Ω̄
0
2, Ω̄

0
3) if

it satisfies:

i) For each t ∈ [0, T ], the family (Ω̄1(t), Ω̄2(t), Ω̄3(t)) is a regular double bubble in the
sense of Definition 5.9. Furthermore, the initial condition is attained in the sense that
(Ω̄1(0), Ω̄2(0), Ω̄3(0)) = (Ω̄0

1, Ω̄
0
2, Ω̄

0
3).

ii) There exists a family of diffeomorphisms ψt : R3 → R3, t ∈ [0, T ], such that it holds ψ0(x) =
x for all x ∈ R3, and Ω̄i(t) = ψt(Ω̄0

i ) as well as Īi,j(t) = ψt(Ī0
i,j) for all t ∈ [0, T ] and

all i, j ∈ {1, 2, 3}, i 6= j. In addition, the map

ψi,j : Ī0
i,j×[0, T ]→ Īi,j , (x, t) 7→ (ψt(x), t)

is a diffeomorphism of class (C0
t C

5
x ∩ C1

t C
3
x)(Ī0

i,j×[0, T ]).

iii) For each i, j ∈ {1, 2, 3} with i 6= j and each (x, t) ∈ Īi,j denote by VĪi,j
(x, t) the normal

velocity vector of Īi,j(t) at x ∈ Īi,j(t). We then require motion by MCF for each interface,
i.e., (

n̄i,j ·VĪi,j

)
(x, t) = Hi,j(x, t), (x, t) ∈ Īi,j , i, j ∈ {1, 2, 3} with i 6= j. (5.13)
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5.1.4 Notation

We briefly review the standard notation employed throughout the present work. The notation
of geometric quantities will be introduced in the course of the paper.

We write Ld for the d-dimensional Lebesgue measure, Hs for the s-dimensional Hausdorff
measure, as well as ∂∗D for the reduced boundary of a set of finite perimeter. The standard
Lebesgue spaces with respect to the Lebesgue measure are denoted as always by Lp(D) for
any p ∈ [0,∞] and any measurable D ⊂ Rd, whereas in addition for any k ∈ N we denote
by W k,p(D) the standard Sobolev space. We further write Ck(D), k ≥ 0, for the space of
functions with bounded and continuous derivatives up to order k onD ⊂ Rd. The intersection
with the space C0

cpt(D) of continuous and compactly supported functions on D is denoted
by Ckcpt(D). Vector-valued versions of these function spaces are denoted by Lp(D;Rd) and so
on. For a differentiable function f : D → Rm we write ∇f ∈ Rm×d for its Jacobian matrix,
i.e., it holds (∇f)i,j = ∂jfi. If f : M → Rm is a differentiable function along a given C1

manifold M , we denote by ∇tan its tangential gradient.
For a space-time domain D ⊂ Rd×[0, T ] of the form D =

⋃
t∈[0,T ]D(t)×{t} we write

C ltC
k
x(D), l, k ≥ 0, for the space of continuous functions f on D with continuous and bounded

partial derivatives ∂l′t ∂k
′
x f on D for any 0 ≤ l′ ≤ l and any multi-index k′ such that 0 ≤

|k′| ≤ k. With a slight abuse of notation, the distance function dist(·, D) with respect to
such a space-time domain D is understood as the distance to the corresponding time slice,
i.e., (x, t) 7→ dist(x,D(t)) for all (x, t) ∈ Rd×[0, T ].

In terms of vector and tensor notation, we denote by v×w the cross product between
two vectors v, w ∈ R3, by v ∧ w := v ⊗ w − w ⊗ v the exterior product of v, w ∈ R3, and
by A : B :=

∑
i,j Ai,jBi,j the complete contraction of two matrices A,B ∈ Rm×n. Abusing

notation we will also write a ∧ b := min{a, b} for the minimum of two numbers a, b ∈ R;
however, it will always be perfectly clear from the context what the symbol ∧ represents. We
also occasionally use a ∨ b := max{a, b} for the maximum of two numbers a, b ∈ R.

5.2 Local gradient flow calibration at a smooth interface

The aim of this section is to provide the local building block of a gradient-flow calibration
in the vicinity of an interface present in a smoothly evolving double bubble. To this end, we
introduce the following geometric setup.

Definition 5.11 (Localization radius for interface). Let (Ω̄1, Ω̄2, Ω̄3) be a regular double
bubble smoothly evolving by MCF in the sense of Definition 5.10 on a time interval [0, T ].
Fix i, j ∈ {1, 2, 3} with i 6= j. We call a scale ri,j ∈ (0, 1] an admissible localization radius
for the interface Īi,j if

Ψi,j : Īi,j × (−ri,j , ri,j)→ R3 × [0, T ], (x, t, s) 7→ (x+sn̄i,j(x, t), t) (5.14)

is bijective onto its image im(Ψi,j) := Ψi,j(Īi,j×(−ri,j , ri,j)). Moreover, it is required that the
inverse Ψ−1 is a diffeomorphism of class (C0

t C
4
x ∩C1

t C
2
x)(im(Ψi,j)), and that it splits in form

of

Ψ−1
i,j : im(Ψi,j)→ Īi,j × (−ri,j , ri,j), (x, t) 7→ (Pi,j(x, t), t, si,j(x, t)),

where the map si,j represents a signed distance function (oriented by means of n̄i,j, i.e.,
∇si,j = n̄i,j along the interface Īi,j)

si,j(x, t) =

{
dist(x, Īi,j(t)) if (x, t) ∈ Ψi,j(Īi,j×[0, ri,j)),

−dist(x, Īi,j(t)) if (x, t) ∈ Ψi,j(Īi,j×(−ri,j , 0)),
(5.15)
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and the map Pi,j being (in each time slice) the nearest-point projection onto Īi,j

Pi,j(x, t) = arg min
y∈Īi,j(t)

|y−x|, (x, t) ∈ im(Ψi,j). (5.16)

In view of Definition 5.10 of a regular double bubble smoothly evolving by MCF, it follows
from the tubular neighborhood theorem that all interfaces admit an admissible localization
radius in the sense of Definition 5.11.

We introduce some further notation and consequences with respect to Definition 5.11.
First, the nearest-point projection onto the interface admits the representation

Pi,j(x, t) = x− si,j(x, t)∇si,j(x, t), (x, t) ∈ im(Ψi,j). (5.17)

Second, it holds in terms of regularity

si,j ∈ (C0
t C

5
x ∩ C1

t C
3
x)(im(Ψi,j)), Pi,j ∈ (C0

t C
4
x ∩ C1

t C
2
x)(im(Ψi,j)). (5.18)

The scalar mean curvature of the interface Īi,j with respect to the orientation induced by n̄i,j
is denoted by Hi,j . We extend these geometric quantities away from the interface, performing
a slight abuse of notation, by means of

n̄i,j : im(Ψi,j)→ S2, (x, t) 7→ ∇si,j(x, t), (5.19)
Hi,j : im(Ψi,j)→ R, (x, t) 7→ −∆si,j(Pi,j(x, t), t). (5.20)

Observe that these definitions immediately imply that

n̄i,j ∈ (C0
t C

4
x ∩ C1

t C
2
x)(im(Ψi,j)), Hi,j ∈ (C0

t C
3
x ∩ C1

t C
1
x)(im(Ψi,j)). (5.21)

Construction 5.12 (Gradient-flow calibration along smooth interfaces). Let the assump-
tions and notation of Definition 5.11 be in place, and let Yi,j : im(Ψi,j)→ R3 be an arbitrary
vector field of class C0

t C
1
x(im(Ψi,j)). We then define a pair of vector fields (ξi,j , B) : im(Ψi,j)→

S2 × R3 as follows:

ξi,j := n̄i,j , B := Hi,j n̄i,j + (Id−n̄i,j ⊗ n̄i,j)Yi,j . (5.22)

We call (ξi,j , B) a local gradient-flow calibration for the interface Īi,j . ♦

We now register the properties of the pair of vector fields (ξi,j , B), i.e., that it satisfies
locally the requirements of Definition 5.2 with the exception of (5.1c). The latter will only be
satisfied once we glued together the local constructions in Section 5.4 by means of a suitable
family of cutoff functions.

Lemma 5.13. Let the assumptions and notation of Construction 5.12 be in place. Then it
holds

ξi,j ∈ (C0
t C

4
x ∩ C1

t C
2
x)(im(Ψi,j)), B ∈ C0

t C
1
x(im(Ψi,j)). (5.23)

Moreover, there exists a constant C > 0 which depends only on the data of the smoothly
evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], such that we have throughout the space-
time domain im(Ψi,j)

|∇ξi,j |+ |∂tξi,j | ≤ C, (5.24)
|B|+ |∇B| ≤ C, (5.25)

∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j = 0, (5.26)
|∇ · ξi,j +B · ξi,j | ≤ C dist(·Īi,j), (5.27)

∂t|ξi,j |2 + (B · ∇)|ξi,j |2 = 0. (5.28)
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Proof. The asserted regularity follows immediately from the definitions (5.22) and the regu-
larity (5.21) of the constituents. The equation (5.26) for the time evolution of ξi,j follows from
differentiating in the spatial variable the PDE satisfied by the signed distance function si,j ,
i.e.,

∂tsi,j = −Hi,j = −(B · ∇)si,j , (5.29)

relying in the process on the product rule and n̄i,j = ∇si,j . The divergence constraint (5.27)
is a direct consequence of the definitions (5.19), (5.20) and (5.22) in combination with the
regularity (5.18) of the signed distance. Finally, equation (5.28) is satisfied for trivial reasons
since ξi,j ∈ S2.

5.3 Local gradient flow calibration at a triple line

This section constitutes the core of the present work. We establish the existence of a gradient-
flow calibration in the vicinity of the triple line for a double bubble smoothly evolving by MCF
in the sense of Definition 5.10. The main result of this section reads as follows.

Proposition 5.14 (Existence of gradient-flow calibration at triple line). Consider a regular
double bubble (Ω̄1, Ω̄2, Ω̄3) smoothly evolving by MCF on a time interval [0, T ] in the sense
of Definition 5.10. Let r ∈ (0, 1] be an associated admissible localization radius for the triple
line in the sense of Definition 5.15 below. There then exists a potentially smaller radius r̂ ∈
(0, r], only depending on the data of the smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3)
on [0, T ], which gives rise to the following assertions:

Denote by Nr̂(Γ̄) :=
⋃
t∈[0,T ]Br̂(Γ̄(t))×{t} the neighborhood if the evolving triple line. For

all i, j ∈ {1, 2, 3} with i 6= j there exists a continuous local extension

ξi,j : Nr̂(Γ̄)→ B1(0)

of the unit normal vector field n̄i,j |Īi,j of Īi,j, and a continuous local extension

B : Nr̂(Γ̄)→ R3

of the velocity vector field of the network I =
⋃
i,j∈{1,2,3},i 6=j Īi,j, such that the pair of vector

fields ((ξi,j)i,j∈{1,2,3},i 6=j , B) satisfies the following list of requirements:

i) For all i, j ∈ {1, 2, 3} with i 6= j it holds ξi,j ∈ (C0
t C

1
x ∩ C1

t C
0
x)(Nr̂(Γ̄) \ Γ̄) and B ∈

C0
t C

1
x(Nr̂(Γ̄) \ Γ̄), with corresponding estimates throughout Nr̂(Γ̄) \ Γ̄

|∇ξi,j |+ |∂tξi,j | ≤ C, (5.30)
|B|+ |∇B| ≤ C (5.31)

for some constant C > 0 which depends only on the data of the smoothly evolving regular
double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].

ii) We have for all i, j ∈ {1, 2, 3} with i 6= j

ξi,j(·, t) = n̄i,j(·, t) along Īi,j(t) ∩Br̂(Γ̄(t)), (5.32)
B(·, t) = VΓ̄(·, t) along Γ̄(t) (5.33)

for all t ∈ [0, T ], where VΓ̄ denotes the normal velocity of the triple line Γ̄. Moreover,
the skew-symmetry relation ξi,j = −ξj,i holds true.
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Ī1,2

Ī2,3

Γ̄ t̄1,2

n̄1,2

τ̄1,2

Rn̄1,2

Figure 5.2: The smooth solution close to the triple line Γ̄. Three sheets come together at fixed
angles along Γ̄ (here 120◦). In this general situation, one needs to introduce an additional
gauge rotation field Rn̄1,2 . At each point, this matrix is a rotation in the tangent plane
spanned by τ̄1,2 and t̄1,2, illustrated here by a shaded (blue) rectangle.

iii) The Herring angle condition is satisfied in the whole space-time tubular neighborhood Nr̂(Γ̄)
of the triple line, i.e.,

σ1,2ξ1,2 + σ2,3ξ2,3 + σ3,1ξ3,1 = 0 in Nr̂(Γ̄). (5.34)

iv) There exists a constant C > 0, depending only on the data of the smoothly evolving
regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], such that for all i, j ∈ {1, 2, 3} with i 6= j the
estimates

|∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j | ≤ C dist(·, Īi,j), (5.35)
|B · ξi,j +∇ · ξi,j | ≤ C dist(·, Īi,j), (5.36)

∂t|ξi,j |2 + (B · ∇)|ξi,j |2 ≤ C dist2(·, Īi,j) (5.37)

hold true within Nr̂(Γ̄) \ Γ̄.

A pair ((ξi,j)i,j∈{1,2,3},i 6=j , B) subject to these conditions is called a local gradient-flow cali-
bration at the triple line Γ̄.

The remainder of this section is organized as follows. In Subsection 5.3.1 we introduce the
necessary notation employed in the construction of the desired vector fields. Subsection 5.3.2
implements the construction of the main building blocks for the vector fields ((ξi,j)i 6=j , B),
which will then be glued together in Subsection 5.3.3. Subsection 5.3.4 contains the proof of
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W2,3

W3

W3,1

W1

W1,2

W2

I1,2

I2,3

I3,1

Figure 5.3: A cross-section orthorgonal to the triple line illustrating the wedge decomposition
in Definition 5.15. The “interpolation wedges” are marked with a dotted pattern, the “interface
wedges” with striped patterns.

Proposition 5.14. In the final Subsection 5.3.5, we formalize the fact that the local gradient-
flow calibration at the triple line due to Proposition 5.14 represents an admissible perturbation
of the local gradient-flow calibrations at the interfaces in a suitable sense.

5.3.1 Local geometry at a triple line

We first provide a suitable decomposition of the space-time tubular neighborhood of the triple
line of a smoothly evolving regular double bubble in the sense of Definition 5.10. The main
ingredient is given by the following notion of an admissible localization radius for the triple
line, cf. Figure 5.3.

Definition 5.15 (Localization radius for triple line). Let (Ω̄1, Ω̄2, Ω̄3) be a regular double
bubble smoothly evolving by MCF in the sense of Definition 5.10 on a time interval [0, T ].
For each i, j ∈ {1, 2, 3} with i 6= j, let ri,j ∈ (0, 1] be an admissible localization radius for the
interface Īi,j in the sense of Definition 5.11. We call r = rΓ̄ ∈

(
0,min{ri,j : i, j ∈ {1, 2, 3}, i 6=

j}
)
an admissible localization radius for the triple line Γ̄ if the following properties are

satisfied:

i) (Regularity of triple line) Define Nr(Γ̄) :=
⋃
t∈[0,T ]Br(Γ̄(t))×{t}. The squared distance

to Γ̄ satisfies dist2(·, Γ̄) ∈ C0
t C

4
x(Nr(Γ̄)) ∩ C1

t C
2
x(Nr(Γ̄)), and for the nearest-point pro-

jection onto Γ̄ it holds PΓ̄ ∈ C0
t C

4
x(Nr(Γ̄)) ∩ C1

t C
2
x(Nr(Γ̄)).

ii) (Wedge decomposition) For each i, j ∈ {1, 2, 3} with i 6= j, there exist sets WĪi,j
:=⋃

t∈[0,T ]WĪi,j(t)
×{t}, WĪj,i

:= WĪi,j
, and WΩ̄i

:=
⋃
t∈[0,T ]WΩ̄i

(t)×{t} subject to the fol-
lowing conditions:

First, for each t ∈ [0, T ] the sets (WĪi,j
(t))i,j∈{1,2,3},i 6=j and (WΩ̄i

(t))i∈{1,2,3} are non-
empty, pairwise disjoint open subsets of Br(Γ̄(t)). For each x ∈ Γ̄(t), the slice of each of
these sets in the normal plane x+Tan⊥x Γ̄(t) is the intersection of Br(Γ̄(t)) and a cone with
apex x, cf. Figure 5.3. More precisely, there exist unit length vector fields (X±

Īi,j
)i,j∈{1,2,3},i 6=j
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and (X±
Ω̄i

)i∈{1,2,3} along Γ̄, taking values for each t ∈ [0, T ] in the normal bundle Tan⊥Γ̄(t)

and being of class C0
t C

4
x(Γ̄) ∩ C1

t C
2
x(Γ̄), so that for all i, j ∈ {1, 2, 3} with i 6= j and

all (x, t) ∈ Γ̄ it holds

WĪi,j
(t) ∩

(
x+Tan⊥x Γ̄(t)

)
=
(
x+{αX+

Īi,j
(x, t) + βX−

Īi,j
(x, t) : α, β ∈ (0,∞)}

)
∩Br(Γ̄(t)),

(5.38)

as well as

WΩ̄i
(t) ∩

(
x+Tan⊥x Γ̄(t)

)
=
(
x+{αX+

Ω̄i
(x, t) + βX−

Ω̄i
(x, t) : α, β ∈ (0,∞)}

)
∩Br(Γ̄(t)).

(5.39)

Moreover, X±
Īi,j

= X±
Īj,i

and (X+
Ω̄i
, X−

Ω̄i
) ∈

{
(X+

Īi,j
, X−

Īk,i
), (X+

Īk,i
, X−

Īi,j
)
}

for all i, j, k ∈
{1, 2, 3} such that {i, j, k} = {1, 2, 3}. The opening angles of these cones are constant
along Γ̄ and take values in (0, π).

Second, for each t ∈ [0, T ] these sets provide a decomposition of the tubular neighborhood
of the triple line in the sense that

Br(Γ̄(t)) = WĪ1,2(t) ∪WĪ2,3(t) ∪WĪ3,1(t) ∪
⋃

i∈{1,2,3}

WΩ̄i
(t). (5.40)

Third, for all t ∈ [0, T ] and all distinct i, j ∈ {1, 2, 3} it holds

Īi,j(t) ∩Br(Γ̄(t)) ⊂WĪi,j
(t) ∪ Γ̄(t) ⊂ {x ∈ R3 : (x, t) ∈ im(Ψi,j)}, (5.41)

WΩ̄i
(t) ⊂

⋂
j∈{1,2,3}\{i}

{x ∈ R3 : (x, t) ∈ im(Ψi,j)}, (5.42)

where we refer to Definition 5.11 for the diffeomorphisms Ψi,j.

iii) (Comparability of distances) There exists C > 0 such that for all pairwise distinct i, j, k ∈
{1, 2, 3} it holds (recall that I =

⋃
i,j∈{1,2,3},i 6=j Īi,j)

dist(·, Γ̄) + dist(·, Īi,j) + dist(·, Īk,i) ≤ C dist(·, I) in WΩ̄i
, (5.43)

dist(·, Γ̄) ≤ C dist(·, Īi,j) in WĪj,k
∪WĪk,i

, (5.44)

dist(·, Īi,j) ≤ C dist(·, I) in WĪi,j
. (5.45)

We refer from here onwards to the sets (WĪi,j
)i,j∈{1,2,3},i 6=j as interface wedges, and to the

sets (WΩ̄i
)i∈{1,2,3} as interpolation wedges.

Equations (5.38) and (5.39) simply mean that the domains WΩ̄i
(t) and WĪi,j

(t) are
“wedges” in the sense that their respective slices across the normal space x+ Tan⊥Γ̄(t) of the
triple line have a cone structure close to Γ̄(t). The comparability (5.43)–(5.45) of distance
functions in the various slices can be already guessed from Figure 5.3.

Let us first briefly discuss the existence of an admissible localization radius.

Lemma 5.16. Let the assumptions and notation of Definition 5.15 be in place. Then there
exists an admissible localization radius r = rΓ̄ ∈ (0, 1] for the triple line. The radius r
and the associated data only depends on the data of the smoothly evolving regular double
bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].
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Proof. We argue how to arrange the vector fields (X±
Īi,j

)i,j∈{1,2,3},i 6=j and (X±
Ω̄i

)i∈{1,2,3} in
order to ensure the properties (5.38)–(5.40). The remaining conditions are a consequence
of exploiting the uniform space-time regularity of the interfaces present in the smoothly
evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], cf. Definition 5.10, and choosing the
scale r ∈ (0, r1,2 ∧ r2,3 ∧ r3,1] sufficiently small.

Fix (x, t) ∈ Γ̄, and up to a translation and rotation we may assume without loss of
generality that x = 0 and Tan⊥x Γ̄(t) = {0}×R2 = 〈e2, e3〉, where {e1, e2, e3} denotes the
standard basis of R3 and 〈e2, e3〉 the R-linear span of {e2, e3}. Denote then by τ̄1,2, τ̄2,3, τ̄3,1 ∈
〈e2, e3〉 the tangent vectors at x = 0 to the interfaces Ī1,2, Ī2,3 and Ī3,1, respectively, with
the orientation chosen so that along Γ̄ all of them point in the direction of the associated
interface (which is also described in more detail in Construction 5.17 below). These tangent
vectors define associated half-spaces

H1,2 :=
{
y ∈ 〈e2, e3〉 : y · τ̄1,2 > 0

}
, (5.46)

where H2,3 and H3,1 are defined analogously.
We now construct a set of pairwise disjoint open cones CΩ̄1

, CΩ̄2
, CΩ̄3

⊂ 〈e2, e3〉, which will
provide the cone structure of the interpolation wedges, by means of the following procedure:
If the cone given by H1,2 ∩ H3,1 has an opening angle strictly greater than 90◦, we define
CΩ̄1

:= H1,2 ∩H3,1. In the other case, we define CΩ̄1
to be the middle third of the cone with

opening vectors τ̄1,2 and τ̄3,1. The remaining two cones CΩ̄2
and CΩ̄3

are defined in the same
way.

Note that the opening angles of the cones (CΩ̄i
)i∈{1,2,3} are always strictly smaller than 180◦

since the surface tensions satisfy the strict triangle inequality. We proceed by selecting
cones CĪ1,2 =: CĪ2,1 , CĪ2,3 =: CĪ3,2 , CĪ3,1 =: CĪ1,3 ⊂ 〈e2, e3〉, which are uniquely determined
by the requirement that together with (CΩ̄i

)i∈{1,2,3} they form a family of pairwise disjoint
open cones in 〈e2, e3〉 such that

〈e2, e3〉 = CĪ1,2 ∪ CĪ2,3 ∪ CĪ3,1 ∪
⋃

i∈{1,2,3}

CΩ̄i
, (5.47)

τ̄1,2 ∈ CĪ1,2 , τ̄2,3 ∈ CĪ2,3 , τ̄3,1 ∈ CĪ3,1 . (5.48)

We finally define (X±
Īi,j

)i,j∈{1,2,3},i 6=j and (X±
Ω̄i

)i∈{1,2,3} by means of the unit length open-
ing vectors of the cones (CĪi,j )i,j∈{1,2,3},i 6=j and (CΩ̄i

)i∈{1,2,3}, respectively. The right hand
sides of properties (5.38) and (5.39) now serve as the defining objects for the interface and
interpolation wedges, respectively.

In a second preparatory step, we proceed with the definition of a preliminary orthonor-
mal frame along each of the three respective interfaces in the vicinity of the triple line, cf.
Figure 5.2.

Construction 5.17 (Preliminary choice of tangent frame). Let the assumptions and notation
of Definition 5.15 be in place. In particular, let r ∈ (0, r1,2 ∧ r2,3 ∧ r3,1] be an associated
admissible localization radius for the triple line Γ̄. We then provide for all t ∈ [0, T ] and all
distinct phases i, j ∈ {1, 2, 3} two tangent vector fields τ̄ i,j(·, t), t̄i,j(·, t) ∈ S2 along the local
interface patch Īi,j(t) ∩Br(Γ̄(t)) by means of the following procedure:

First, slicing the interface Īi,j(t) along the planes y+Tan⊥y Γ̄(t) produces a family of curves
Īyi,j(t) := Īi,j(t) ∩

(
y+Tan⊥y Γ̄(t)

)
∩ Br(Γ̄(t)) for all y ∈ Γ̄(t). Second, for each t ∈ [0, T ] and

each y ∈ Γ̄(t) denote by τ̄yi,j(·, t) ∈ S2 the tangent vector field along the curve Īyi,j(t) which
is oriented by y+ r

2 τ̄
y
i,j(y, t) ∈ WĪi,j

(t) ∩
(
y+Tan⊥y Γ̄(t)

)
. We then define two tangent vector
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fields on the local interface patch Īi,j ∩Nr(Γ̄) by means of

τ̄ i,j(x, t) := τ̄yi,j(x, t)
∣∣
y=PΓ̄(x,t)

∈ S2, (x, t) ∈ Īi,j ∩Nr(Γ̄),

t̄i,j(x, t) := (n̄i,j × τ̄ i,j)(x, t) ∈ S2, (x, t) ∈ Īi,j ∩Nr(Γ̄).

This yields an orthonormal frame (n̄i,j , τ̄ i,j , t̄i,j) on Īi,j ∩Nr(Γ̄). Observe also that it holds

t̄1,2|Γ̄ = t̄2,3|Γ̄ = t̄3,1|Γ̄. (5.49)

By a minor abuse of notation, we finally introduce extensions of these tangential vector
fields away from the interfaces. Namely, we define

(τ̄ i,j , t̄i,j)(x, t) := (τ̄ i,j , t̄i,j)(y, t)
∣∣
y=Pi,j(x,t)

, (x, t) ∈ im(Ψi,j) ∩Nr(Γ̄). (5.50)

We refer to Definition 5.11 for the diffeomorphism Ψi,j and the projection Pi,j onto the
interface Īi,j . We register in terms of regularity that

τ̄ i,j , t̄i,j ∈ (C0
t C

4
x ∩ C1

t C
2
x)(im(Ψi,j) ∩Nr(Γ̄)). (5.51)

This concludes our construction of orthonormal frames (n̄i,j , τ̄ i,j , t̄i,j). ♦

In the sequel we will repeatedly rely on an explicit representation of the gradients for the
normal and tangential vector fields. These formulas are the content of the following result.

Lemma 5.18. Let the assumptions and notation of Definition 5.15 and Construction 5.17
be in place. To ease notation, let Ī := Ī1,2, Ī ′ := Ī2,3 and Ī ′′ := Ī3,1 for the three interfaces
present in the smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3). We proceed accordingly
for the associated orthonormal frames (n̄, τ̄ , t̄), (n̄′, τ̄ ′, t̄′) and (n̄′′, τ̄ ′′, t̄′′), respectively.

Using also the abbreviations κτ̄ τ̄ := −τ̄ ⊗ τ̄ : ∇n̄, κt̄t̄ := −t̄ ⊗ t̄ : ∇n̄ as well as κτ̄ t̄ :=
−τ̄ ⊗ t̄ : ∇n̄, it holds κτ̄ t̄ = −t̄⊗ τ̄ : ∇n̄ and

∇n̄ = −κτ̄ τ̄ τ̄ ⊗ τ̄ − κt̄t̄ t̄⊗ t̄− κτ̄ t̄ (t̄⊗ τ̄ + τ̄ ⊗ t̄), (5.52)
∇τ̄ = κτ̄ τ̄ n̄⊗ τ̄ − (∇ · t̄) t̄⊗ τ̄ + κτ̄ t̄ n̄⊗ t̄ + (∇ · τ̄) t̄⊗ t̄, (5.53)
∇t̄ = κt̄t̄ n̄⊗ t̄ + κτ̄ t̄ n̄⊗ τ̄ + (∇ · t̄) τ̄ ⊗ τ̄ − (∇ · τ̄) τ̄ ⊗ t̄ (5.54)

along the local interface patch Ī∩Nr(Γ̄). Analogous formulas of course hold true for (n̄′, τ̄ ′, t̄′)
along Ī ′ ∩Nr(Γ̄) in terms of (κ′τ̄ ′τ̄ ′ , κ

′
t̄′ t̄′
, κ′

τ̄ ′ t̄′
), and for (n̄′′, τ̄ ′′, t̄′′) along Ī ′′ ∩Nr(Γ̄) in terms

of (κ′′τ̄ ′′τ̄ ′′ , κ
′′
t̄′′ t̄′′

, κ′′
τ̄ ′′ t̄′′

).

Proof. The representation (5.52) is essentially just a rephrasing of the definition of the coef-
ficients κτ̄ τ̄ , κt̄t̄ and κτ̄ t̄. The only additional ingredients needed for the validity of (5.52) are
(∇n̄)Tn̄ = 1

2∇|n̄|
2 = 0 and the symmetry of ∇n̄ = ∇2s1,2, cf. (5.19).

For a proof of (5.53), we write τ̄ = J n̄ where J = τ̄ ∧ n̄ + t̄ ⊗ t̄ denotes the associated
rotation matrix around the t̄-axis. Based on (n̄ · ∇)τ̄ = 0, (∇τ̄)Tτ̄ = 1

2∇|τ̄ |
2 = 0 and (5.52)

we then obtain

∇τ̄ = κτ̄ τ̄ n̄⊗ τ̄ − κt̄t̄ t̄⊗ t̄− κτ̄ t̄ (t̄⊗ τ̄ − n̄⊗ t̄)

+
(
(τ̄ · ∇)J

)
n̄⊗ τ̄ +

(
(t̄ · ∇)J

)
n̄⊗ t̄

= κτ̄ τ̄ n̄⊗ τ̄ − κt̄t̄ t̄⊗ t̄− κτ̄ t̄ (t̄⊗ τ̄ − n̄⊗ t̄)

+
(
n̄⊗ n̄ : (τ̄ · ∇)J

)
n̄⊗ τ̄ +

(
t̄⊗ n̄ : (τ̄ · ∇)J

)
t̄⊗ τ̄

+
(
n̄⊗ n̄ : (t̄ · ∇)J

)
n̄⊗ t̄ +

(
t̄⊗ n̄ : (t̄ · ∇)J

)
t̄⊗ t̄.
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For the two appearing (n̄⊗ n̄)-components of ∇J , it suffices to take the symmetric part of J
into account, which is t̄⊗ t̄. It then follows from t̄ · n̄ = 0 that

n̄⊗ n̄ : (τ̄ · ∇)J = n̄⊗ n̄ : (t̄ · ∇)J = 0.

Based on (5.52), t̄ · (t̄ · ∇)t̄ = 1
2(t̄ · ∇)|̄t|2 = 0, and t̄ = n̄× τ̄ we may further compute

t̄⊗ n̄ : (t̄ · ∇)J = (t̄⊗ n̄) : (t̄ · ∇)(τ̄ ∧ n̄) + n̄ · (t̄ · ∇)t̄

= (t̄⊗ n̄) : (t̄ · ∇)(τ̄ ∧ n̄)− t̄⊗ t̄ : ∇n̄

= (t̄⊗ n̄) : (t̄ · ∇)(τ̄ ∧ n̄) + κt̄t̄.

Based on (5.52), t̄ · n̄ = 0, (t̄⊗ n̄) : (τ̄ · ∇)(τ̄ ∧ n̄) = (t̄⊗ τ̄) : ∇τ̄ , and t̄ = n̄× τ̄ we in addition
have

t̄⊗ n̄ : (τ̄ · ∇)J = (t̄⊗ τ̄) : ∇τ̄ + n̄ · (τ̄ · ∇)t̄

= (t̄⊗ τ̄) : ∇τ̄ − t̄⊗ τ̄ : ∇n̄

= (t̄⊗ τ̄) : ∇τ̄ + κτ̄ t̄.

The combination of the previous four displays yields

∇τ̄ = κτ̄ τ̄ n̄⊗ τ̄ +
(
(t̄⊗ τ̄) : ∇τ̄

)
t̄⊗ τ̄ + κτ̄ t̄ n̄⊗ t̄ + (∇ · τ̄) t̄⊗ t̄, (5.55)

∇ · τ̄ = (t̄⊗ n̄) : (t̄ · ∇)(τ̄ ∧ n̄). (5.56)

Moreover, exploiting that t̄ = n̄× τ̄ yields by the product rule, (5.52) and the previous display

∇t̄ = κt̄t̄ n̄⊗ t̄ + (∇ · t̄) τ̄ ⊗ τ̄ + κτ̄ t̄ n̄⊗ τ̄ − (∇ · τ̄) τ̄ ⊗ t̄, (5.57)
∇ · t̄ = −(t̄⊗ τ̄) : ∇τ̄ . (5.58)

The previous two displays in turn directly imply (5.53) and (5.54).

The orthonormal frames provided by Construction 5.17 together with the signed distance
functions (5.15) constitute all ingredients for the construction of a suitable building block ξ̃i,j
for the vector field ξi,j ; at least in Nr(Γ̄) ∩ im(Ψi,j), see Construction 5.21 below. However,
we also have to provide a construction of the vector field ξi,j outside of the domain Nr(Γ̄) ∩
im(Ψi,j), i.e., where this vector field a priori does not have a “natural” definition. The guiding
principle is to mimic the Herring angle condition valid on the triple line:

σ1,2n̄1,2 + σ2,3n̄2,3 + σ3,1n̄3,1 = 0.

This condition motivates to appropriately rotate the already defined candidate vector fields ξ̃j,k
and ξ̃k,i to provide the building blocks for the vector field ξi,j throughout Nr(Γ̄) ∩ im(Ψj,k)
and Nr(Γ̄) ∩ im(Ψk,i), respectively.

The rotations used in this procedure have to be chosen carefully so that our construc-
tions will satisfy the requirements of a local gradient-flow calibration at the triple line, e.g.,
sufficiently high regularity (in particular, adequate compatibility along the triple line) and
the validity of the required evolution equations (up to a desired error in the distance to the
interface).

Construction 5.19 (Gauged Herring rotation fields). Let the assumptions and notation
of Definition 5.15, Construction 5.17 and Lemma 5.18 be in place. Consistent with the
notational conventions of the latter, denote by Ψ, Ψ′ and Ψ′′ the diffeomorphisms from Def-
inition 5.11 with respect to the interfaces Ī, Ī ′ and Ī ′′, respectively. We proceed accordingly
for the surface tensions (σ, σ′, σ′′) and the projections (P, P ′, P ′′).
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t̄1,2

n̄1,2

τ̄1,2

R′t̄1,2

t̄2,3

n̄2,3

τ̄2,3

Ī3,1(t)

Ī1,2(t)

Ī2,3(t)

Γ̄(t)

Figure 5.4: Local geometry at the triple line and preliminary construction of tangent frame.
For simplicity, we illustrate here the case of three flat sheets coming together at equal angles
of 120◦ along a straight triple line Γ̄(t). In this case, the “Herring” rotation R′(y, t) is a
rotation by 120◦ about the axis given by the tangent vector t̄ = t̄1,2(y, t) of Γ̄(t). The dotted
lines represent the three slices Īyi,j(t) of the interfaces Īi,j .

We now define a pair of Herring rotation fields

R′t̄, R
′′
t̄ : Nr(Γ̄) ∩ im(Ψ)→ SO(3) ⊂ R3×3 (5.59)

around the t̄-axis by means of

R′t̄(x, t) := cos θ′ Id + sin θ′ (τ̄ ∧ n̄)(x, t) + (1− cos θ′) (t̄⊗ t̄)(x, t), (5.60)
R′′t̄ (x, t) := cos θ′′ Id + sin θ′′ (τ̄ ∧ n̄)(x, t) + (1− cos θ′′) (t̄⊗ t̄)(x, t) (5.61)

for all (x, t) ∈ Nr(Γ̄) ∩ im(Ψ), cf. Figure 5.4. The associated angles θ′, θ′′ ∈ (0, π) are
independent of (x, t) ∈ Nr(Γ̄) ∩ im(Ψ) and chosen based on the triple of surface tensions
(σ, σ′, σ′′) such that the relations

R′t̄n̄ = n̄′, (5.62)
R′′t̄ n̄ = n̄′′ (5.63)

hold true along the triple line Γ̄. Hence, the Herring condition (5.10) implies that for
all (x, t) ∈ Nr(Γ̄) ∩ im(Ψ) and all v ∈ R3 such that v · t̄(x, t) = 0 it holds

σv + σ′R′t̄(x, t)v + σ′′R′′t̄ (x, t)v = 0. (5.64)
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5.3. Local gradient flow calibration at a triple line

Analogously, one defines a pair of rotations (Rt̄′ , R
′′
t̄′

), resp. (Rt̄′′ , R
′
t̄′′

), throughout the re-
gion Nr(Γ̄) ∩ im(Ψ′), resp. Nr(Γ̄) ∩ im(Ψ′′).

Apart from the Herring rotation fields, we also introduce the gauge rotation field

Rn̄ := R
(2)
n̄ R

(1)
n̄ : Nr(Γ̄) ∩ im(Ψ)→ SO(3) ⊂ R3×3 (5.65)

around the n̄-axis, cf. Figure 5.2. The auxiliary rotation fields R(1)
n̄ and R

(2)
n̄ around the

n̄-axis are defined via

R
(1)
n̄ (x, t) := cos δ(x, t) Id + sin δ(x, t) (t̄ ∧ τ̄)(x, t) (5.66)

+ (1− cos δ(x, t)) (n̄⊗ n̄)(x, t),

R
(2)
n̄ (x, t) := cosω(x, t) Id + sinω(x, t) (t̄ ∧ τ̄)(x, t) (5.67)

+ (1− cosω(x, t)) (n̄⊗ n̄)(x, t).

Here the rotation angle δ(x, t) is given explicitly by

δ(x, t) := s(x, t)κτ̄ t̄(x, t), (x, t) ∈ Nr(Γ̄) ∩ im(Ψ), (5.68)

and the angle ω(x, t) is given by the extension

ω(x, t) := ω̂(P (x, t), t), (x, t) ∈ Nr(Γ̄) ∩ im(Ψ) (5.69)

of ω̂(x, t), which in turn is defined by the one-parameter family of ODEs{
ω̂(x, t) = 0, (x, t) ∈ Γ̄,

(τ̄(x, t) · ∇) ω̂(x, t) = (∇ · t̄)(x, t), (x, t) ∈ Ī ∩Nr(Γ̄).
(5.70)

Analogously, one defines a gauge rotationRn̄′ := R
(2)
n̄′ R

(1)
n̄′ , resp.Rn̄′′ := R

(2)
n̄′′R

(1)
n̄′′ , through-

out the region Nr(Γ̄) ∩ im(Ψ′), resp. Nr(Γ̄) ∩ im(Ψ′′).
We finally define via conjugation a pair of gauged Herring rotation fields

R̃′Ī := Rn̄R
′
t̄R

T
n̄ : Nr(Γ̄) ∩ im(Ψ)→ SO(3) ⊂ R3×3, (5.71)

R̃′′Ī := Rn̄R
′′
t̄R

T
n̄ : Nr(Γ̄) ∩ im(Ψ)→ SO(3) ⊂ R3×3, (5.72)

and analogously a pair (R̃Ī′ , R̃
′′
Ī′

), resp. (R̃Ī′′ , R̃
′
Ī′′

), of gauged Herring rotation fields through-
out the region Nr(Γ̄) ∩ im(Ψ′), resp. Nr(Γ̄) ∩ im(Ψ′′). ♦

In a symmetric setting with either rotational or translational symmetry, cf. Figure 5.4,
the gauge rotations Rn̄, Rn̄′ , and Rn̄′′ are not needed and, in fact, reduce to the identity
matrix. In the general case, cf. Figure 5.2, they account for the fact that, for instance, the
normal vector field n̄(·, t) evaluated along a slice Ī(t) ∩ (x+Tan⊥x Γ̄(t)) for some x ∈ Γ̄(t) will
in general rotate out of the plane x+Tan⊥x Γ̄(t) as one moves away from the triple line point x.

We conclude this section with the derivation of compatibility conditions along the triple
line. These represent the last missing ingredients to ensure compatibility of the main building
blocks ξ̃i,j (cf. Construction 5.21 below) for the vector field ξi,j and its rotated counterparts
along the triple line (see Lemma 5.22 below).

Lemma 5.20. Let the assumptions and notation of Definition 5.15, Construction 5.17,
Lemma 5.18, and Construction 5.19 be in place. Consistently with the notational conven-
tions of the latter two, denote by H, H ′ and H ′′ the extended scalar mean curvatures defined
by (5.20) with respect to the interfaces Ī, Ī ′ and Ī ′′, respectively. Denote by VΓ̄ the normal
velocity vector field of the triple line.
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

Then, the following compatibility conditions are satisfied along the triple line Γ̄:

τ̄ ′ = R′t̄τ̄ , τ̄ ′′ = R′′t̄ τ̄ , (5.73)
κ′
τ̄ ′ t̄′

= κτ̄ t̄, κ′′
τ̄ ′′ t̄′′

= κτ̄ t̄, (5.74)

κ′
t̄′ t̄′

= (R′t̄n̄ · n̄)κt̄t̄ − (R′t̄n̄ · τ̄)∇ · τ̄ , (5.75)

κ′′
t̄′′ t̄′′

= (R′′t̄ n̄ · n̄)κt̄t̄ − (R′′t̄ n̄ · τ̄)∇ · τ̄ , (5.76)

∇ · τ̄ ′ = (R′t̄n̄ · τ̄)κt̄t̄ + (R′t̄n̄ · n̄)∇ · τ̄ , (5.77)
∇ · τ̄ ′′ = (R′′t̄ n̄ · τ̄)κt̄t̄ + (R′′t̄ n̄ · n̄)∇ · τ̄ , (5.78)

σH+σ′H ′+σ′′H ′′ = 0, (5.79)
κ′′τ̄ ′′τ̄ ′′(τ̄

′′ ·VΓ̄)+(τ̄ ′′ · ∇)H ′′ = κ′τ̄ ′τ̄ ′(τ̄
′ ·VΓ̄)+(τ̄ ′ · ∇)H ′ (5.80)

= κτ̄ τ̄ (τ̄ ·VΓ̄)+(τ̄ · ∇)H.

Of course, the analogues of (5.73) as well as (5.75)–(5.78) hold true for the appropriate
relabellings of the associated data.

Introduce next a gauged orthonormal frame on Nr(Γ̄) ∩ im(Ψ) by means of

(n̄, τ̄∗, t̄∗) := (n̄, Rn̄τ̄ , Rn̄t̄). (5.81)

Then, the following compatibility condition holds true:

(n̄, τ̄∗, t̄∗) = (n̄, τ̄ , t̄) along the triple line Γ̄. (5.82)

The analogue of (5.82) with respect to the gauged frame (n̄′, τ̄ ′∗, t̄
′
∗) := (n̄′, Rn̄′ τ̄

′, Rn̄′ t̄
′)

on Nr(Γ̄)∩im(Ψ′), resp. (n̄′′, τ̄ ′′∗, t̄
′′
∗) := (n̄′′, Rn̄′′ τ̄

′′, Rn̄′′ t̄
′′) on Nr(Γ̄)∩im(Ψ′′), is also satisfied.

Proof. Except for the conditions (5.73) and (5.82), the asserted compatibility conditions are
consequences of differentiating the existing zeroth and first order compatibility conditions
along the triple line.

Step 1: Proof of (5.73). By (5.49) and the choice of the orientation for the tangent
fields (τ̄ , τ̄ ′, τ̄ ′′) along the triple line, cf. Construction 5.17, it holds

τ̄ = J n̄, τ̄ ′ = J n̄′, τ̄ ′′ = J n̄′′ on Γ̄ (5.83)

in terms of a single 90◦ rotation field around the t̄-axis

J = (τ̄ ∧ n̄) + t̄⊗ t̄ = (τ̄ ′ ∧ n̄′) + t̄′ ⊗ t̄′ = (τ̄ ′′ ∧ n̄′′) + t̄′′ ⊗ t̄′′ on Γ̄. (5.84)

Hence, it follows from (5.62) and the fact that the Herring rotation R′t̄ is a rotation around
the same axis

R′t̄τ̄ = R′t̄J n̄ = JR′t̄n̄ = J n̄′ = τ̄ ′ on Γ̄.

This proves the first asserted identity of (5.73); the second of course follows analogously
based on (5.63).

Step 2: Proof of (5.74)–(5.76). Since the Herring rotation R′t̄ defined by (5.60) is a
rotation around the t̄-axis with constant angle, the coefficients in the representation R′t̄n̄ =
(R′t̄n̄ · n̄)n̄ + (R′t̄n̄ · τ̄)τ̄ are constant. Hence we may compute along Γ̄ together with the
formulas (5.52) and (5.53)

(t̄ · ∇)R′t̄n̄ = (R′t̄n̄ · n̄)(t̄ · ∇)n̄ + (R′t̄n̄ · τ̄)(t̄ · ∇)τ̄

=
(
(R′t̄n̄ · τ̄)(∇ · τ̄)− (R′t̄n̄ · n̄)κt̄t̄

)
t̄− (R′t̄n̄ · n̄)κτ̄ t̄τ̄ + (R′t̄n̄ · τ̄)κτ̄ t̄n̄.
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5.3. Local gradient flow calibration at a triple line

Furthermore, by the analogue of (5.53) for the tangent field τ̄ ′ as well as the identities (5.49)
and (5.73), and again the fact that R′t̄ and J commute, we obtain along the triple line Γ̄

(t̄′ · ∇)n̄′ = −κ′
t̄′ t̄′

t̄′ − κ′
τ̄ ′ t̄′
τ̄ ′

= −κ′
t̄′ t̄′

t̄− (R′t̄τ̄ · τ̄)κ′
τ̄ ′ t̄′
τ̄ − (R′t̄τ̄ · n̄)κ′

τ̄ ′ t̄′
n̄

= −κ′
t̄′ t̄′

t̄− (R′t̄n̄ · n̄)κ′
τ̄ ′ t̄′
τ̄ + (R′t̄n̄ · τ̄)κ′

τ̄ ′ t̄′
n̄.

Hence, the defining condition (5.62) of the Herring rotation R′t̄ and matching coefficients in
the previous two displays implies the first identity of (5.74) as well as (5.75) (note that of
course, either (R′t̄n̄ · n̄) or (R′t̄n̄ · τ̄) is non-zero). The second identity of (5.74) as well as (5.76)
in turn follow from an analogous computation based on (5.63).

Step 3: Proof of (5.77)–(5.78). These two compatibility conditions are derived as in the
previous step, this time computing the tangential derivative along the triple line for both
sides of the identities from (5.73), respectively.

Step 4: Proof of (5.79)–(5.80). By (5.13), the normal velocity VΓ̄ of the triple line satisfies
along Γ̄

VΓ̄ · σn̄ = σH, VΓ̄ · σ′n̄′ = σ′H ′, VΓ̄ · σ′′n̄′′ = σ′′H ′′. (5.85)

Summing these identities results in (5.79) thanks to the Herring angle condition (5.10) being
satisfied at each time.

To derive the compatibility condition (5.80), we differentiate the Herring angle condition
and obtain

(∂t + VΓ̄ · ∇)
(
σn̄ + σ′n̄′ + σ′′n̄′′

)
= 0.

Now we compute using (5.19) and and (5.29) for the first term and (5.52) for the second one

∂tn̄ + (VΓ̄ · ∇)n̄ = −(t̄ · ∇H)t̄− (τ̄ · ∇H)τ̄ − (VΓ̄ · τ̄)(κτ̄ τ̄ τ̄+κτ̄ t̄t̄) (5.86)

on Γ̄. The analogous equations hold for n̄′ and n̄′′. Plugging those into (5.86), using (5.49)
and (5.74), we obtain

0 =
(
t̄ · ∇(σH + σ′H ′ + σ′′H ′′)

)
t̄ + (τ̄ · ∇H)στ̄ + (τ̄ ′ · ∇H ′)σ′τ̄ ′ + (τ̄ ′′ · ∇H ′′)σ′′τ̄ ′′

+ κτ̄ τ̄ (VΓ̄ · τ̄)στ̄ + κ′τ̄ ′τ̄ ′(VΓ̄ · τ̄ ′)σ′τ̄ ′ + κ′′τ̄ ′′τ̄ ′′(VΓ̄ · τ̄ ′′)σ′′τ̄ ′′

+ VΓ̄ · (στ̄+σ′τ̄ ′+σ′′τ̄ ′′)(κτ̄ t̄t̄)

on Γ̄. Differentiating (5.79) along Γ̄, we see that the first term vanishes. The last term
vanishes by applying the fixed rotation J to the Herring condition (5.10). Thus, since the
three vectors τ̄ , τ̄ ′, and τ̄ ′′ lie in one plane, we deduce (5.80) from the previous display.

Step 5: Proof of (5.82). The requirement (5.82) is immediate from the definitions (5.65)–
(5.70) in form of

Rn̄ = Id (5.87)

along the triple line Γ̄.

With all of these ingredients in place, we may eventually move on with the construction
of a local gradient-flow calibration at a triple line.
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

5.3.2 Extension of vector fields close to each interface

The aim of this section is to provide auxiliary extensions of the unit normal vector fields and
an auxiliary extension of the normal velocity vector field which are defined in the neighbor-
hood Nr(Γ̄) ∩ im(Ψi,j) for each interface Īi,j , respectively. These extensions constitute the
main building blocks for the desired extensions from Proposition 5.14.

Throughout this whole subsection, let the assumptions of Proposition 5.14 and the nota-
tion of Section 5.2 and Subsection 5.3.1 be in place. In particular, let us again make use of
the following notational conventions which basically aim to drop the indices i, j ∈ {1, 2, 3}.
We denote by Ī := Ī1,2, Ī

′ := Ī2,3, Ī
′′ := Ī3,1 the three interfaces present in the given smoothly

evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ]. We proceed accordingly for the associ-
ated orthonormal frames (n̄, τ̄ , t̄), (n̄′, τ̄ ′, t̄′) (n̄′′, τ̄ ′′, t̄′′) due to Construction 5.17, the surface
tensions (σ, σ′, σ′′), the signed distances (s, s′, s′′), the projections (P, P ′, P ′′), the scalar mean
curvatures (H,H ′, H ′′) and the diffeomorphisms (Ψ,Ψ′,Ψ′′) from Definition 5.11.

Construction 5.21 (Extension of normal vector fields close to their associated interfaces).
Define a coefficient function α : Nr(Γ̄) ∩ im(Ψ)→ R by

α(x, t) := αvel(x, t) + (∇ · τ̄)(x, t), (x, t) ∈ Nr(Γ̄) ∩ im(Ψ), (5.88)

where αvel : Nr(Γ̄)∩ im(Ψ)→ R denotes, for the time being, an arbitrary coefficient function
of class C0

t C
2
x(Nr(Γ̄) ∩ im(Ψ)) such that along the triple line it holds

αvel(x, t) = τ̄(x, t) ·VΓ̄(x, t), (x, t) ∈ Γ̄. (5.89)

Here, VΓ̄ denotes again the normal velocity vector field of the triple line Γ̄. Recall finally the
definition (5.81) of the gauged orthonormal frame (n̄, τ̄∗, t̄∗).

We then define an initial extension ξ̃ : Nr(Γ̄)∩ im(Ψ)→ R3 for the normal vector field n̄|Ī
of the interface Ī by means of the gauged expansion ansatz

ξ̃(x, t) := n̄(x, t) (5.90)
+ α(PΓ̄(x, t), t)s(x, t)τ̄∗(x, t)

− 1

2
α2(PΓ̄(x, t), t)s2(x, t)n̄(x, t)

for all (x, t) ∈ Nr(Γ̄) ∩ im(Ψ).
Analogously, one defines initial extensions ξ̃′ : Nr(Γ̄)∩ im(Ψ′)→ R3 as well as ξ̃′′ : Nr(Γ̄)∩

im(Ψ′′)→ R3 of the normal vector fields n̄′|Ī′ and n̄′′|Ī′′ . ♦

The following result shows that, after applying the correct gauged Herring rotation as
provided by Construction 5.19, the initial extensions of our normal vector fields are regular
and compatible to first order along the triple line Γ̄.

Lemma 5.22. Let (ξ̃, ξ̃′, ξ̃′′) be the initial extensions from Construction 5.21 of the normal
vector fields (n̄|Ī , n̄′|Ī′ , n̄′′|Ī′′). Moreover, let (R̃′

Ī
, R̃′′

Ī
), (R̃Ī′ , R̃

′′
Ī′

) and (R̃Ī′′ , R̃
′
Ī′′

) be the gauged
Herring rotations as provided by Construction 5.19.

Then it holds (ξ̃, R̃′
Ī
ξ̃, R̃′′

Ī
ξ̃ ) ∈ (C0

t C
2
x ∩ C1

t C
0
x)(Nr(Γ̄) ∩ im(Ψ)) with corresponding esti-

mates

|(∇,∇2, ∂t)(ξ̃, R̃
′
Ī ξ̃, R̃

′′
Ī ξ̃ )| ≤ C in Nr(Γ̄) ∩ im(Ψ), (5.91)

where the constant C > 0 only depends on the data of the smoothly evolving regular double
bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ]. Moreover, the constructions are compatible to first order in the
sense that along the triple line Γ̄

R̃′Ī ξ̃ = ξ̃′, R̃′′Ī ξ̃ = ξ̃′′, (5.92)

∇
(
R̃′Ī ξ̃

)
= ∇ξ̃′, ∇

(
R̃′′Ī ξ̃

)
= ∇ξ̃′′. (5.93)
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5.3. Local gradient flow calibration at a triple line

Analogous claims are satisfied in terms of the vector fields (R̃Ī′ ξ̃
′, ξ̃′, R̃′′

Ī′
ξ̃′), resp. the vector

fields (R̃Ī′′ ξ̃
′′, R̃′

Ī′′
ξ̃′′, ξ̃′′), throughout the region Nr(Γ̄) ∩ im(Ψ′), resp. the region Nr(Γ̄) ∩

im(Ψ′′).

Proof. We split the proof into two steps.
Step 1: Regularity estimates. We first claim that for each R ∈ {R′t̄, R

′′
t̄ , Rn̄}

|(∇,∇2, ∂t)R| ≤ C in Nr(Γ̄) ∩ im(Ψ) (5.94)

for some constant C > 0 which depends only on the data of the smoothly evolving regu-
lar double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], and that analogous estimates hold true for R ∈
{Rt̄′ , R

′′
t̄′
, Rn̄′} in Nr(Γ̄) ∩ im(Ψ′), or for R ∈ {Rt̄′′ , R

′
t̄′′
, Rn̄′′} in Nr(Γ̄) ∩ im(Ψ′′).

For a Herring rotation R ∈ {R′t̄, R
′′
t̄ }, the claim (5.94) follows directly from the regularity

of the frame (n̄, τ̄ , t̄), see (5.21) and (5.51), since the associated angles θ′, θ′′ are independent
of (x, t) ∈ Nr(Γ̄) ∩ im(Ψ), see Construction 5.19. In terms of the gauge rotation R = Rn̄, it
suffices to show that

|(∇,∇2, ∂t)(δ, ω)| ≤ C in Nr(Γ̄) ∩ im(Ψ) (5.95)

for the associated angles (δ, ω) defined in (5.68) and (5.69), respectively. For the angle δ, the
regularity estimate from the previous display can be deduced from the regularity (5.21) of the
normal n̄. The regularity estimate for the angle ω in turn follows from the regularity (5.18)
of the projection onto the interface Ī, the regularity (5.51) of the tangent vector fields (τ̄ , t̄),
and from explicitly integrating (in each time slice) the ODE (5.70) along the integral lines of
the tangent vector field τ̄ .

We next claim that there exist constants c1, c2 ∈ (−1, 1) only depending on the surface
tensions such that

αvel(x, t) = (1−c2
1)−1c2

(
H ′(x, t)− c1H(x, t)

)
(5.96)

for all (x, t) ∈ Γ̄. For a proof of (5.96), we define c1 := τ̄(x, t) · τ̄ ′(x, t) and c2 := n̄′(x, t) ·
τ̄(x, t) = −n̄(x, t) · τ̄ ′(x, t), and then simply observe from (5.85) and (5.89) that

αvel(x, t) = c2H
′(x, t) + c1α

′
vel(x, t),

α′vel(PΓ̄(x, t), t) = −c2H(x, t) + c1αvel(x, t) on Γ̄.

Inserting the second identity of the previous display into the first one then directly yields the
claim (5.96).

The upshot of (5.94) and (5.96) is now the following. First, it follows from (5.88), the
regularity of the projection onto the triple line Γ̄ (cf. Definition 5.15 i)), the regularity (5.51)
of the tangent τ̄ , the representation (5.96) and finally the regularity (5.21) of the extended
scalar mean curvatures that αΓ̄(x, t) := α(PΓ̄(x, t), t) satisfies

|αΓ̄|+ |(∇,∇2, ∂t)αΓ̄| ≤ C in Nr(Γ̄) ∩ im(Ψ).

The previous display in combination with (5.94) and the expansion ansatz (5.90) finally
implies the asserted regularity estimate (5.91).

Step 2: First order compatibility along triple line. The zeroth order conditions (5.92) are
immediate from the definitions (5.90) as well as the identities (5.62) and (5.63), respectively.
For a proof of the first order condition, we focus on deriving the first identity of (5.93). The
second follows along the same lines.
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

Recalling the definition (5.71) of the gauged Herring rotation and the gauged expansion
ansatz (5.90) we compute on the interface Ī (abbreviating αΓ̄(·, t) := α(PΓ̄(·, t), t) for t ∈
[0, T ])

∇
(
R̃′Ī ξ̃

)
= (∇Rn̄)R′t̄n̄ +Rn̄∇

(
R′t̄n̄

)
+ αΓ̄

(
Rn̄R

′
t̄τ̄
)
⊗ n̄. (5.97)

Let us now first compute ∇
(
R′t̄n̄

)
and neglect the gauge rotations for a while. Recalling the

fact that R′t̄ is a rotation around the t̄-axis with constant angle, see (5.60), we obtain on the
interface Ī

∇
(
R′t̄n̄

)
= ∇

(
(R′t̄n̄ · n̄)n̄ + (R′t̄n̄ · τ̄)τ̄

)
= (R′t̄n̄ · n̄)∇n̄ + (R′t̄n̄ · τ̄)∇τ̄ .

Plugging in the identities (5.52) and (5.53), and using in a second step that R′t̄n̄ · n̄ = R′t̄τ̄ · τ̄
as well as R′t̄n̄ · τ̄ = −R′t̄τ̄ · n̄, we further compute

∇
(
R′t̄n̄

)
= −κτ̄ τ̄

(
(R′t̄n̄ · n̄) τ̄ ⊗ τ̄ − (R′t̄n̄ · τ̄) n̄⊗ τ̄

)
−
(
(R′t̄n̄ · n̄)κτ̄ t̄ + (R′t̄n̄ · τ̄)(∇ · t̄)

)
t̄⊗ τ̄

− κτ̄ t̄

(
(R′t̄n̄ · n̄) τ̄ ⊗ t̄− (R′t̄n̄ · τ̄) n̄⊗ t̄

)
−
(
(R′t̄n̄ · n̄)κt̄t̄ − (R′t̄n̄ · τ̄)(∇ · τ̄)

)
t̄⊗ t̄

= −κτ̄ τ̄R′t̄τ̄ ⊗ τ̄ (5.98)
−
(
(R′t̄n̄ · n̄)κτ̄ t̄ + (R′t̄n̄ · τ̄)(∇ · t̄)

)
t̄⊗ τ̄

− κτ̄ t̄R
′
t̄τ̄ ⊗ t̄

−
(
(R′t̄n̄ · n̄)κt̄t̄ − (R′t̄n̄ · τ̄)(∇ · τ̄)

)
t̄⊗ t̄,

which holds true on the interface Ī.
Recalling the choice (5.88) for α, we may infer from the formula (5.98) for ∇

(
R′t̄n̄

)
,

substituting κτ̄ τ̄ = H − κt̄t̄ along Ī, the identity (5.87), and the formula (5.97) the following
representation for the gradient of R̃′

Ī
ξ̃ along the triple line Γ̄

∇
(
R̃′Ī ξ̃

)
= R′t̄τ̄ ⊗ (−Hτ̄ + αveln̄) +R′t̄τ̄ ⊗ (κt̄t̄τ̄ + (∇ · τ̄)n̄) (5.99)

+
(
(t̄ · ∇)R̃′Ī ξ̃

)
⊗ t̄

−
(
(R′t̄n̄ · n̄)κτ̄ t̄ + (R′t̄n̄ · τ̄)(∇ · t̄)

)
t̄⊗ τ̄

+ (∇Rn̄)R′t̄n̄.

A direct computation based on the ansatz (5.90), the identities (5.52), (5.53), and (5.87),
and substituting κ′τ̄ ′τ̄ ′ = H ′ − κ′

t̄′ t̄′
also yields along the triple line Γ̄

∇ξ̃′ = τ̄ ′ ⊗ (−H ′τ̄ ′ + α′veln̄
′) + τ̄ ′ ⊗ (κ′

t̄′ t̄′
τ̄ ′ + (∇ · τ̄ ′)n̄′) (5.100)

+ (t̄′ · ∇)ξ̃′ ⊗ t̄′

− κ′
τ̄ ′ t̄′

t̄′ ⊗ τ̄ ′

+ (∇Rn̄′)n̄
′.

We proceed by comparing the respective formulas (5.99) and (5.100). Recalling that we
denoted by VΓ̄ the normal velocity vector field of the triple line, we obtain from (5.85), the
choice of αvel (5.89), the identities (5.83) and (5.84), as well as the zeroth order compatibil-
ity (5.73) along the triple line that the first terms in (5.99) and (5.100) are identical:

R′t̄τ̄ ⊗ (−Hτ̄ + αveln̄) = −τ̄ ′ ⊗ JVΓ̄ = τ̄ ′ ⊗ (−H ′τ̄ ′ + α′veln̄
′) along Γ̄.
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5.3. Local gradient flow calibration at a triple line

Moreover, by the compatibility conditions (5.73), (5.75) and (5.77) along the triple line, as
well as R′t̄τ̄ · τ̄ = R′t̄n̄ · n̄ and R′t̄τ̄ · n̄ = −R′t̄n̄ · τ̄ , we may infer that the second terms agree,
too:

R′t̄τ̄ ⊗ (κt̄t̄τ̄ + (∇ · τ̄)n̄) = τ̄ ′ ⊗ (κ′
t̄′ t̄′
τ̄ ′ + (∇ · τ̄ ′)n̄′) along Γ̄.

From the last two identities together with (5.99), (5.100), (5.92), and (5.49) we therefore
obtain along the triple line Γ̄

∇
(
R̃Ī ξ̃

)
−∇ξ̃′ = −

(
(R′t̄n̄ · n̄)κτ̄ t̄ + (R′t̄n̄ · τ̄)(∇ · t̄)

)
t̄⊗ τ̄ + κ′

τ̄ ′ t̄′
t̄⊗ τ̄ ′ (5.101)

+ (∇Rn̄)R′t̄n̄− (∇Rn̄′)n̄
′.

In the rotationally symmetric case, the right hand side terms in the first line of (5.101)
actually vanish. However, there is no reason in general why these terms should vanish without
assuming additional symmetry. This is the motivation for the introduction of the additional
gauge rotation matrices around the normal axis. Their definition is arranged in such a way
so that their contribution in (5.101) exactly cancels the right hand side terms of the first line.

First, we obtain from the definitions (5.65)–(5.70) along the triple line

(∇Rn̄)R′t̄n̄ =
(
(τ̄ · ∇)R

(2)
n̄

)
R′t̄n̄⊗ τ̄ +

(
(n̄ · ∇)R

(1)
n̄

)
R′t̄n̄⊗ n̄. (5.102)

Let us next compute the two relevant directional derivatives of the gauge rotation matrices.
We first observe that due to (5.66) and (5.68)

(n̄ · ∇)R
(1)
n̄ = κτ̄ t̄ t̄ ∧ τ̄ (5.103)

along the interface Ī. This in turn entails by R′t̄τ̄ · n̄ = −R′t̄n̄ · τ̄(
(n̄ · ∇)R

(1)
n̄

)
R′t̄n̄⊗ n̄ = −κτ̄ t̄(R

′
t̄τ̄ · n̄) t̄⊗ n̄ along Γ̄. (5.104)

Moreover, we may compute based on (5.67), (5.69), and (5.70) on the triple line Γ̄

(τ̄ · ∇)R
(2)
n̄ = (∇ · t̄) t̄ ∧ τ̄ , (5.105)

from which we deduce(
(τ̄ · ∇)R

(2)
n̄

)
R′t̄n̄⊗ τ̄ =

(
(R′t̄n̄ · τ̄)(∇ · t̄)

)
t̄⊗ τ̄ along Γ̄. (5.106)

A straightforward computation shows that along the triple line Γ̄ it holds

(∇Rn̄′)n̄
′ = ∇

(
Rn̄′ n̄

′)−Rn̄′∇n̄′ = ∇n̄′ −∇n̄′ = 0. (5.107)

Combining (5.102), (5.104), (5.106), and (5.107) with the compatibility conditions (5.73)
and (5.74) finally yields the desired cancellation

−
(
(R′t̄n̄ · n̄)κτ̄ t̄ + (R′t̄n̄ · τ̄)(∇ · t̄)

)
t̄⊗ τ̄ + κ′

τ̄ ′ t̄′
t̄⊗ τ̄ ′ + (∇Rn̄)R′t̄n̄− (∇Rn̄′)n̄

′ = 0

along the triple line Γ̄. By (5.101), this in turn concludes the proof of Lemma 5.22.

We proceed with the construction of suitable candidate velocity fields.

Construction 5.23 (Extension of velocity fields close to their associated interfaces). Recall
that VΓ̄ denotes the normal velocity of the triple line Γ̄, and recall the definition (5.81) of
the gauged orthonormal frame (n̄, τ̄∗, t̄∗). We then define a coefficient function

αvel : Nr(Γ̄) ∩ im(Ψ)→ R, (x, t) 7→ α̂vel(P (x, t), t), (5.108)
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

where the coefficient αvel is defined by projection onto the interface Ī in terms of the solution
of the following family of ODEs, solved along the integral lines of the tangent vector field τ̄∗
with initial condition posed on the triple line Γ̄{

α̂vel(x, t) = (τ̄∗ ·VΓ̄)(x, t), (x, t) ∈ Γ̄,

(τ̄∗ · ∇) α̂vel(x, t) = (Hκτ̄∗τ̄∗)(x, t), (x, t) ∈ Ī ∩Nr(Γ̄).
(5.109)

Note that the choice of the initial value in (5.109) is consistent with (5.89). Next, we define
another coefficient function

β : Nr(Γ̄) ∩ im(Ψ)→ R, (x, t) 7→ −
(
(τ̄∗ · ∇)H

)
(x, t)− (αvelκτ̄∗τ̄∗)(x, t). (5.110)

We now define a preliminary extension B̃ : Nr(Γ̄) ∩ im(Ψ) → R3 of the normal velocity
vector field (Hn̄)|Ī for the interface Ī in terms of the gauged expansion ansatz

B̃(x, t) := H(x, t) n̄(x, t) (5.111)
+ αvel(x, t) τ̄∗(x, t)

+ β(x, t)s(x, t) τ̄∗(x, t)

for all (x, t) ∈ Nr(Γ̄) ∩ im(Ψ).
Analogously, one defines preliminary extensions B̃′ : Nr(Γ̄) ∩ im(Ψ′) → R3 as well as

B̃′′ : Nr(Γ̄) ∩ im(Ψ′′) → R3 of the normal velocity vector fields (H ′n̄′)|Ī′ and (H ′′n̄′′)|Ī′′ ,
respectively. ♦

Note carefully that even away from the triple line we do not introduce a tangential
velocity in t̄∗-direction. As the proof of the following result shows, this will entail that the
gradients of the auxiliary velocities B̃, B̃′ and B̃′′ do not fully match along the triple line.
However, the only mismatch appears in, at least for our purposes, inessential components.
More precisely, in terms of, say, ∇B̃ the only non-matching terms result from its t̄∗⊗ τ̄∗ resp.
t̄∗ ⊗ n̄ component. In view of the desired evolution equation (5.1d) and the fact that ξ̃ ⊥ t̄∗
due to (5.90), this specific component of ∇B̃ is intrinsically irrelevant for a gradient-flow
calibration (this argument turns out to be robust even with respect to the interpolation
construction from Subsection 5.3.3).

Lemma 5.24. Let (B̃, B̃′, B̃′′) be the preliminary extensions from Construction 5.23 of the
normal velocity vector fields ((Hn̄)|Ī , (H ′n̄′)|Ī′ , (H ′′n̄′′)|Ī′′).

Then it holds B̃ ∈ C0
t C

2
x(Nr(Γ̄) ∩ im(Ψ)) with corresponding estimate

|B̃|+ |∇B̃|+ |∇2B̃| ≤ C in Nr(Γ̄) ∩ im(Ψ), (5.112)

where the constant C > 0 only depends on the data of the smoothly evolving regular double
bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ]. Analogous claims hold true for B̃′ resp. B̃′′ throughout Nr(Γ̄)∩
im(Ψ′) resp. Nr(Γ̄) ∩ im(Ψ′′).

Moreover, the constructions are essentially compatible to first order in the sense that along
the triple line Γ̄ it holds

B̃ = B̃′ = B̃′′ = VΓ̄, (5.113)

(Id−t̄⊗ t̄)(∇B̃) = (Id−t̄′ ⊗ t̄′)(∇B̃′) = (Id−t̄′′ ⊗ t̄′′)(∇B̃′′), (5.114)

for which one should also recall that t̄ = t̄′ = t̄′′ along Γ̄, cf. (5.49).

Note that here the projection Id−t̄⊗ t̄ acts on the components of B̃, not ∇.
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5.3. Local gradient flow calibration at a triple line

Proof. Step 1: Regularity estimates. Due to the definition (5.110), the regularity esti-
mates (5.94) for the gauge rotations, the regularity of the frame (n̄, τ̄ , t̄), see (5.21) and (5.51),
the regularity (5.21) of the extended scalar mean curvatures, and finally the expansion
ansatz (5.111) it suffices to prove that

|αvel|+ |(∇,∇2)αvel| ≤ C in Nr(Γ̄) ∩ im(Ψ), (5.115)

where C > 0 is a constant which depends only on the data of the smoothly evolving regular
double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].

The estimate (5.115) in turn follows directly from explicitly integrating (in each time
slice) the ODEs (5.109) along the integral lines of the tangent field τ̄∗, and exploiting as
before the regularity of the associated geometric quantities.

Step 2: Zeroth order compatibility at triple line. The condition (5.113) is immediate from
the definition (5.111), the identities (5.85), as well as the specific choices (5.108)–(5.109).

Step 3: First order compatibility at triple line. We proceed with the proof of (5.114).
Observe that we have on the interface Ī by direct analogy to the proofs of (5.52) and (5.53)
that

∇n̄ = −κτ̄∗τ̄∗ τ̄∗ ⊗ τ̄∗ − κt̄∗ t̄∗ t̄∗ ⊗ t̄∗ − κτ̄∗ t̄∗ (t̄∗ ⊗ τ̄∗ + τ̄∗ ⊗ t̄∗), (5.116)
∇τ̄∗ = κτ̄∗τ̄∗ n̄⊗ τ̄∗ − (∇ · t̄∗) t̄∗ ⊗ τ̄∗ + κτ̄∗ t̄∗ n̄⊗ t̄∗ + (∇ · τ̄∗) t̄∗ ⊗ t̄∗ (5.117)

+ (n̄ · ∇)τ̄∗ ⊗ n̄.

It follows directly from the definitions (5.50) resp. (5.81) of our orthonormal frames, the
definitions (5.65)–(5.70) of the gauge rotations, as well as the formula (5.103) being valid
along the interface Ī that

(n̄ · ∇)τ̄∗ = R
(2)
n̄

(
(n̄ · ∇)R

(1)
n̄

)
τ̄ = κτ̄ t̄Rn̄t̄ = κτ̄ t̄t̄∗ along Ī .

Starting now from the definition (5.111), the previous display, the choices (5.108)–(5.110)
of the coefficient functions, as well as the formulas (5.116) and (5.117) directly entail along
the interface Ī

∇B̃ = β τ̄∗ ⊗ n̄ +
(
(τ̄∗ · ∇)H + α̂velκτ̄∗τ̄∗

)
n̄⊗ τ̄∗

+
(
(τ̄∗ · ∇)α̂vel −Hκτ̄∗τ̄∗

)
τ̄∗ ⊗ τ̄∗

+ (t̄∗ · ∇)B̃ ⊗ t̄∗

−
(
Hκτ̄∗ t̄∗ + α̂vel(∇ · t̄∗)

)
t̄∗ ⊗ τ̄∗ + κτ̄ t̄t̄∗ ⊗ n̄

= β τ̄∗ ∧ n̄ + (t̄∗ · ∇)B̃ ⊗ t̄∗ (5.118)
−
(
Hκτ̄∗ t̄∗ + α̂vel(∇ · t̄∗)

)
t̄∗ ⊗ τ̄∗ + κτ̄ t̄t̄∗ ⊗ n̄.

Hence, the already established zeroth order condition (5.113) together with the compatibility
conditions (5.80) and (5.82) in form of β = β′ = β′′ along Γ̄ imply (5.114).

The following result provides the approximate evolution equations for our auxiliary con-
structions (ξ̃, R̃′

Ī
ξ̃, R̃′′

Ī
ξ̃ ) in terms of the associated auxiliary velocity B̃, which will eventually

lead us to (5.1d)–(5.1f).

Lemma 5.25. Let (ξ̃, ξ̃′, ξ̃′′) be the initial extensions from Construction 5.21 of the normal
vector fields (n̄|Ī , n̄′|Ī′ , n̄′′|Ī′′). Moreover, let (R̃′

Ī
, R̃′′

Ī
), (R̃Ī′ , R̃

′′
Ī′

) and (R̃Ī′′ , R̃
′
Ī′′

) be the gauged
Herring rotations as provided by Construction 5.19, respectively. Finally, let (B̃, B̃′, B̃′′) be
the initial extensions from Construction 5.23 of the corresponding normal velocity vector fields
((Hn̄)|Ī , (H ′n̄′)|Ī′ , (H ′′n̄′′)|Ī′′).
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

Then there exists a constant C > 0, which depends only on the data of the smoothly evolv-
ing regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], such that for each rotation R ∈ {Id, R̃′

Ī
, R̃′′

Ī
}

it holds ∣∣1− |Rξ̃|2∣∣ ≤ C dist4(·, Ī), (5.119)∣∣∇|Rξ̃|2∣∣ ≤ C dist3(·, Ī), (5.120)∣∣∂t|Rξ̃|2∣∣ ≤ C dist3(·, Ī), (5.121)∣∣∂tRξ̃ + (B̃ · ∇)Rξ̃ + (∇B̃)TRξ̃
∣∣ ≤ C{dist(·, Ī) if R = Id,

dist(·, Γ̄) else,
(5.122)

∣∣∇ · Rξ̃ + B̃ · Rξ̃
∣∣ ≤ C{dist(·, Ī) if R = Id,

dist(·, Γ̄) else,
(5.123)

throughout the domain Nr(Γ̄) ∩ im(Ψ).
Analogous estimates hold true throughout the domain Nr(Γ̄)∩im(Ψ′) in terms of the vector

fields (Rξ̃′, B̃′) for each rotation R ∈ {R̃Ī′ , Id, R̃′′Ī′}, as well as throughout Nr(Γ̄)∩ im(Ψ′′) in
terms of (Rξ̃′′, B̃′′) for each R ∈ {R̃Ī′′ , R̃′Ī′′ , Id}.

Proof. Fix a rotationR ∈ {Id, R̃′
Ī
, R̃′′

Ī
}, and for the purposes of the proof abbreviate αΓ̄(·, t) :=

α(PΓ̄(·, t), t), t ∈ [0, T ].
Step 1: Proof of (5.119)–(5.121). It follows immediately from the ansatz (5.90) and the

orthogonality τ̄∗ · n̄ = 0 that

|Rξ̃|2 = |ξ̃|2 =
(

1− 1

2
α2

Γ̄s
2
)2

+ α2
Γ̄s

2 = 1 +
1

4
α4

Γ̄s
4.

The previous display of course immediately implies the estimates (5.119)–(5.121).
Step 2: Proof of (5.123). By the regularity estimates (5.91) and (5.112), it suffices to

show that (5.123) is exact on the interface Ī if R = Id, or otherwise that (5.123) is exact on
the triple line Γ̄. To this end, let us first assume that Rt̄ = Id. Then we also have R = Id and
hence we may directly infer from the definitions (5.90) and (5.111) of ξ̃ and B̃, respectively,
that ∇· ξ̃ = H = ξ̃ · B̃ on the interface Ī. In the remaining cases, we express R = Rn̄Rt̄R

T
n̄ in

terms of the associated Herring rotation Rt̄ ∈ {R′t̄, R
′′
t̄ }, and then simply read off from (5.97),

(5.98), (5.102), (5.104) and (5.106) that

∇ · Rξ̃ = −H(Rt̄n̄ · n̄) + (∇ · τ̄)(Rt̄n̄ · τ̄)− αΓ̄(Rt̄n̄ · τ̄)

along the triple line Γ̄. Moreover, the definitions (5.90) and (5.111) directly imply that

B̃ · Rξ̃ = H(Rt̄n̄ · n̄) + αvel(Rt̄n̄ · τ̄)

holds true on the interface Ī. Hence, the estimate (5.123) follows from the previous two
displays in combination with the choice (5.88).

Step 3: Proof of (5.122). It suffices again to check that (5.122) is exact on the interface Ī
if R = Id, or otherwise that (5.122) is exact on the triple line Γ̄. Let us also again express
R = Rn̄Rt̄R

T
n̄ in terms of the associated Herring rotation Rt̄ ∈ {Id, R′t̄, R

′′
t̄ }.

Using that the vector field Rn̄ = Rn̄Rt̄n̄ lies in the (n̄, Rn̄τ̄)-plane and has constant
coefficients in this frame, we compute along the interface Ī relying also on (5.90)

∂tRξ̃ + (B̃ · ∇)Rξ̃ + (∇B̃)TRξ̃

= (Rn̄Rt̄n̄ · n̄)
(
∂tn̄ + (B̃ · ∇)n̄ + (∇B̃)Tn̄

)
(5.124)

+ (Rn̄Rt̄n̄ ·Rn̄τ̄)
(
∂tτ̄∗ + (B̃ · ∇)τ̄∗ + (∇B̃)Tτ̄∗

)
+ αΓ̄(∂ts+ (B̃ · ∇)s) τ̄∗.
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The last right hand side term of (5.124) vanishes due to (B̃ · ∇)s = H and (5.29). Differen-
tiating this equation in space yields because of ∇s = n̄

0 = ∇
(
∂ts+ (B̃ · ∇)s

)
= ∂tn̄ + (B̃ · ∇)n̄ + (∇B̃)Tn̄.

Hence, also the first right hand side term of (5.124) vanishes. Since Rt̄ = Id if and only
if R = Id, the estimate (5.122) already follows from these arguments in the case R = Id.
Hence, let us restrict to the case R 6= Id in the following. Recall from the claim (5.122) that
it then suffices to estimate in terms of the distance to the triple line.

It follows from |τ̄∗| = 1 that τ̄∗ ·
(
∂tτ̄∗ + (B̃ · ∇)τ̄∗

)
= 0. Furthermore, the ansatz for the

velocity field B̃ is arranged such that τ̄∗⊗ τ̄∗ : ∇B̃ = 0; cf. the identity (5.118). Hence, in the
evolution equation for the tangent vector field τ̄∗ we may neglect the τ̄∗-component. The n̄-
component also vanishes as a consequence of the orthogonality τ̄∗ · n̄ = 0, the skew-symmetry
τ̄∗⊗ n̄ : ∇B̃ = −n̄⊗ τ̄∗ : ∇B̃, cf. again (5.118), and the already established evolution equation
for the unit normal vector field n̄

n̄ ·
(
∂tτ̄∗ + (B̃ · ∇)τ̄∗ + (∇B̃)Tτ̄∗

)
= −τ̄∗ ·

(
∂tn̄ + (B̃ · ∇)n̄ + (∇B̃)Tn̄

)
= 0.

It therefore suffices to check that the velocity field B̃ correctly captures the translation and
rotation of the tangent vector field τ̄∗ in t̄∗-direction on the triple line Γ̄, i.e., t̄∗ ·

(
∂tτ̄∗+ (B̃ ·

∇)τ̄∗ + (∇B̃)Tτ̄∗
)

= 0, or equivalently by exploiting the orthogonality τ̄∗ · t̄∗ = 0 that

τ̄∗ ·
(
∂tt̄∗ + (B̃ · ∇)t̄∗

)
= t̄∗ · (∇B̃)Tτ̄∗ (5.125)

along the triple line Γ̄.
In order to prove (5.125), we start by noticing that as a consequence of the defini-

tion (5.111), as well as the formulas (5.116) and (5.117) we have

t̄∗ · (∇B̃)Tτ̄∗ = τ̄∗ · (t̄∗ · ∇)B̃ = −Hκτ̄∗ t̄∗ + (t̄∗ · ∇)αvel on Ī . (5.126)

That this expression equals τ̄∗ ·
(
∂tt̄∗ + (B̃ · ∇)t̄∗

)
on the triple line Γ̄ is a consequence

of the following considerations. Let ψΓ̄(·, t) : Γ̄0×[0, T ] → Γ̄(t), t ∈ [0, T ], be a normal
parametrization of the triple line, i.e., it holds ∂tψΓ̄(x0, t) = VΓ̄(ψΓ̄(x0, t), t) for all (x0, t) ∈
Γ̄0×[0, T ]. Choose moreover a C5 diffeomorphic parametrization ϕ0 : [0, 1]→ Γ̄0 of the initial
triple line, and define for all t ∈ [0, T ] the dynamic parametrizations

ϕ : [0, 1]×[0, T ]→ Γ̄(t), (s, t) 7→ ψΓ̄(ϕ0(s), t).

Observe then that due to the zeroth order compatibility condition (5.113) and the definition
of B̃ (5.111) it holds for all (s, t) ∈ [0, 1]×[0, T ]

∂tϕ(s, t) = B̃(ϕ(s, t), t) = (Hn̄)(ϕ(s, t), t) + (αvelτ̄∗)(ϕ(s, t), t). (5.127)

Define finally the differential operator ∂v := ∂s
|∂sϕ| . Note that ∂vϕ(·, t) is a unit tangent vector

field along the triple line Γ̄(t) for all t ∈ [0, T ], and we may choose the orientation such that
∂vϕ(·, t) = t̄∗(ϕ(·, t), t) for all t ∈ [0, T ]. A straightforward computation now yields

∂t∂vϕ = ∂v∂tϕ− (∂v∂tϕ · ∂vϕ)∂vϕ.

In particular, the commutator [∂t∂v, ∂v∂t]ϕ vanishes in τ̄∗-direction along the triple line.
Using the chain rule and the first identity in (5.127), we thus obtain for all (s, t) ∈ [0, 1]×[0, T ],
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

by the orthogonality of the frame (n̄, τ̄∗, t̄∗), the second identity in (5.127), as well as (5.116)
and (5.117) (

τ̄∗ ·
(
∂tt̄∗ + (B̃ · ∇)t̄∗

))
(ϕ(s, t), t)

= τ̄∗(ϕ(s, t), t) · ∂t∂vϕ(s, t)

= τ̄∗(ϕ(s, t), t) · ∂v∂tϕ(s, t)

=
(
τ̄∗ · (t̄∗ · ∇)(Hn̄ + αvelτ̄∗)

)
(ϕ(s, t), t)

= −(Hκτ̄∗ t̄∗)(ϕ(s, t), t) +
(
(t̄∗ · ∇)αvel

)
(ϕ(s, t), t).

Hence, we may obtain (5.125) by (5.126), which concludes the proof.

5.3.3 Global construction by interpolation

Throughout this whole subsection, let the assumptions of Proposition 5.14 and the notation
of Section 5.2, Subsection 5.3.1 and Subsection 5.3.2 be in place. The next results provide the
last missing ingredient for the construction of a local gradient-flow calibration at the triple
line. We refer to Definition 5.15 and Figure 5.3 to recall the geometric setup.

Lemma 5.26. Let i, j, k ∈ {1, 2, 3} such that {i, j, k} = {1, 2, 3}. For each interpolation
wedge WΩ̄i

there exists a pair of associated interpolation functions

λ
Īi,j
Ω̄i
, λ

Īk,i
Ω̄i

:
⋃

t∈[0,T ]

(
WΩ̄i

(t) \ Γ̄(t)
)
×{t} → [0, 1]

of class (C0
t C

1
x∩C1

t C
0
x)
(⋃

t∈[0,T ]

(
WΩ̄i

(t)\Γ̄(t)
)
×{t}

)
such that λĪk,i

Ω̄i
= 1−λĪi,j

Ω̄i
, and where λĪi,j

Ω̄i
is subject to the following additional requirements:

i) On the boundary of the interpolation wedge WΩ̄i
, the values of λĪi,j

Ω̄i
and its derivatives

are given by

λ
Īi,j
Ω̄i

(·, t) = 0, on
(
∂WΩ̄i

(t) ∩ ∂WĪk,i
(t)
)
\ Γ̄(t),

λ
Īi,j
Ω̄i

(·, t) = 1, on
(
∂WΩ̄i

(t) ∩ ∂WĪi,j
(t)
)
\ Γ̄(t),

∇λĪi,j
Ω̄i

(·, t) = 0, ∂tλ
Īi,j
Ω̄i

(·, t) = 0, on
(
Br(Γ̄(t)) ∩ ∂WΩ̄i

(t)
)
\ Γ̄(t),

for all t ∈ [0, T ].

ii) There exists a constant C > 0, which depends only on the data of the smoothly evolving
regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], such that the estimate

|∂tλ
Īi,j
Ω̄i
|+ |∇λĪi,j

Ω̄i
| ≤ C dist−1(·, Γ̄) (5.128)

holds true on
⋃
t∈[0,T ]

(
WΩ̄i

(t) \ Γ̄(t)
)
×{t}.

iii) Denoting again by VΓ̄ the normal velocity vector field of the triple line Γ̄, we have an
improved estimated on the advective derivative∣∣∂tλĪi,jΩ̄i

(·, t) +
(
VΓ̄(PΓ̄(·, t), t) · ∇

)
λ
Īi,j
Ω̄i

(·, t)
∣∣ ≤ C (5.129)

on WΩ̄i
(t) \ Γ̄(t) for all t ∈ [0, T ]. The constant C > 0 depends only on the data of the

smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].
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Proof. Let i, j, k ∈ {1, 2, 3} such that {i, j, k} = {1, 2, 3}. For the construction of the in-
terpolation function λ

Īi,j
Ω̄i

=: 1−λĪk,i
Ω̄i

, we first choose a smooth function λ̃ : R → [0, 1] such

that λ̃ ≡ 0 on [2
3 ,∞) and λ̃ ≡ 1 on (−∞, 1

3 ]. Denote next by θi ∈ (0, π) the constant
opening angle of the interpolation wedge Wi, cf. the representation (5.39). We then define
λi : [−1, 1]→ [0, 1] by λi(u) := λ̃( 1−u

1− cos(θi)
), and based on this auxiliary map an interpolation

function

λ+
i (x, t) := λi

(
X+

Ω̄i

(
PΓ̄(x, t), t

)
· x−PΓ̄(x, t)

|x−PΓ̄(x, t)|

)
, t ∈ [0, T ], x ∈WΩ̄i

(t) \ Γ̄(t).

The interpolation function λ
Īi,j
Ω̄i

is then either defined by λ+
i or by 1−λ+

i , depending on
the right choice of “orientation” to satisfy the first item of (5.26), which in turn is then an
immediate consequence of the definitions. For the proof of (5.128) and (5.129), it anyhow
suffices to work on the level of the interpolation function λ+

i .
The qualitative regularity of λ+

i and the corresponding regularity estimate (5.128) fol-
low directly from the chain rule, the definition of λ+

i , and the regularity requirements of
Definition 5.15. For the improved estimate (5.129) on the advective derivative, we need an
appropriate representation of ∂tPΓ̄ in Nr(Γ̄). Abbreviating g(x, t) := 1

2dist2(x, Γ̄(t)) as well
as gΓ̄(x, t) := g(PΓ̄(x, t), t) for all (x, t) ∈ Nr(Γ̄), we obtain by the chain rule

0 =
d

dt

(
∇gΓ̄(x, t)

)
= (∇∂tg)(y, t)

∣∣
y=PΓ̄(x,t)

+ (∇2g)(y, t)
∣∣
y=PΓ̄(x,t)

∂tPΓ̄(x, t), (x, t) ∈ Nr(Γ̄).

However, it is a well-known fact that −∇∂tg evaluated along Γ̄ precisely represents the normal
velocity of Γ̄ (cf. [11, Theorem 7 ii), p. 18]). Hence, the previous display updates to

VΓ̄

(
PΓ̄(x, t), t

)
= ∇2g(y, t)

∣∣
y=PΓ̄(x,t)

∂tPΓ̄(x, t)

for all (x, t) ∈ Nr(Γ̄). Moreover, ∇2g(·, t) evaluated along the triple line Γ̄(t) represents
for all t ∈ [0, T ] the projection onto the normal bundle Tan⊥Γ̄(t) for all t ∈ [0, T ] (cf. [11,
Theorem 2 ii), p. 12]). In other words,

VΓ̄

(
PΓ̄(x, t), t

)
= (Id−t̄⊗ t̄)(y, t)

∣∣
y=PΓ̄(x,t)

∂tPΓ̄(x, t) (5.130)

for all (x, t) ∈ Nr(Γ̄).
Abbreviating u+

i := u+
i (x, t) := X+

Ω̄i

(
PΓ̄(x, t), t

)
· x−PΓ̄(x,t)
|x−PΓ̄(x,t)| we may now compute by an

application of the chain rule

∂tλ
+
i (x, t)

= λ′i(u
+
i )X+

Ω̄i

(
PΓ̄(x, t), t

)
· ∂t

x−PΓ̄(x, t)

|x−PΓ̄(x, t)|

+ λ′i(u
+
i )

x−PΓ̄(x, t)

|x−PΓ̄(x, t)|
·
(
(t̄ · ∇)X+

Ω̄i

)
(y, t)

∣∣
y=PΓ̄(x,t)

(
t̄(y, t)|y=PΓ̄(x,t) · ∂tPΓ̄(x, t)

)
+ λ′i(u

+
i )

x−PΓ̄(x, t)

|x−PΓ̄(x, t)|
·
(
∂tX

+
Ω̄i

)
(y, t)

∣∣
y=PΓ̄(x,t)

for all (x, t) ∈
⋃
t∈[0,T ]

(
WΩ̄i

(t) \ Γ̄(t)
)
×{t}. Observe that the last two right hand side terms

in the previous display are bounded by the regularity of the projection PΓ̄ and the regularity
of the vector field X+

Ω̄i
, cf. Definition 5.15. Next, for all (x, t) ∈ Nr(Γ̄) \ Γ̄

∂t
x−PΓ̄(x, t)

|x−PΓ̄(x, t)|
= − 1

|x−y|

(
Id− x−y
|x−y|

⊗ x−y
|x−y|

)∣∣∣∣
y=PΓ̄(x,t)

∂tPΓ̄(x, t),
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so that together with (5.130), X+
Ω̄i

(y, t),VΓ̄(y, t) ∈ Tan⊥y Γ̄(t) for all (y, t) ∈ Γ̄, as well as
∇PΓ̄(x, t) =

(
t̄(y, t)|y=PΓ̄(x,t) · ∇

)
PΓ̄(x, t)⊗ t̄(y, t)|y=PΓ̄(x,t) for all (x, t) ∈ Nr(Γ̄)

∂tλ
+
i (x, t)

= −λ′i(u+
i )

1

|x−y|

(
Id− x−y
|x−y|

⊗ x−y
|x−y|

)
X+

Ω̄i
(y, t)

∣∣∣∣
y=PΓ̄(x,t)

· ∂tPΓ̄(x, t) +O(1)

= −λ′i(u+
i )

1

|x−y|

(
Id− x−y
|x−y|

⊗ x−y
|x−y|

)
X+

Ω̄i
(y, t) ·VΓ̄(y, t)

∣∣∣∣
y=PΓ̄(x,t)

+O(1)

= −
(
VΓ̄

(
PΓ̄(x, t), t

)
· ∇
)
λ+
i (x, t) +O(1)

for all (x, t) ∈
⋃
t∈[0,T ]

(
WΩ̄i

(t) \ Γ̄(t)
)
×{t} as asserted.

We may now provide the desired extensions (ξi,j)i,j∈{1,2,3},i 6=j for the unit normal vector
fields as well as the desired extension B of the velocity vector field within a space-time tubular
neighborhood Nr̂(Γ̄) of the evolving triple line Γ̄, where the radius r̂ > 0 has to be chosen
suitably and is potentially smaller than the admissible localization radius r.

Construction 5.27 (Gradient-flow calibration at triple line). Let (ξ̃, ξ̃′, ξ̃′′) be the pre-
liminary extensions from Construction 5.21 of the normal vector fields (n̄|Ī , n̄′|Ī′ , n̄′′|Ī′′).
Let (R̃′

Ī
, R̃′′

Ī
), (R̃Ī′ , R̃

′′
Ī′

) and (R̃Ī′′ , R̃
′
Ī′′

) be the gauged Herring rotations as provided by
Construction 5.19, and let (B̃, B̃′, B̃′′) be the preliminary extensions of the normal veloc-
ity vector fields from Construction 5.23. We also introduce the abbreviations Ω̄ := Ω̄1,
Ω̄′ := Ω̄2 and Ω̄′′ := Ω̄3.

With these ingredients in place, we first define a scale r̂ := r ∧ (2C)−
1
4 , where C > 0

denotes the (maximum of the) constant(s) from the estimate(s) (5.119). This choice of r̂ ∈
(0, r] then entails due to (5.119) that

|ξ̃|2 ∈
[

1
2 ,

3
2

]
in Nr̂(Γ̄) ∩ im(Ψ), (5.131)

|ξ̃′|2 ∈
[

1
2 ,

3
2

]
in Nr̂(Γ̄) ∩ im(Ψ′), (5.132)

|ξ̃′′|2 ∈
[

1
2 ,

3
2

]
in Nr̂(Γ̄) ∩ im(Ψ′′). (5.133)

Based on these non-degeneracy conditions and the properties (5.40)–(5.42) from the wedge
decomposition of Nr(Γ̄), we construct a well-defined set of vector fields

ξ, ξ′, ξ′′ : Nr̂(Γ̄)→ B1(0), (5.134)

B : Nr̂(Γ̄)→ R3 (5.135)

by the following procedure: On the closure of the interface wedges we define

(ξ, ξ′, ξ′′) :=
∣∣ξ̃ ∣∣−1(

ξ̃, R̃′Ī ξ̃, R̃
′′
Ī ξ̃
)

on WĪ , (5.136)

(ξ, ξ′, ξ′′) :=
∣∣ξ̃′∣∣−1(

R̃Ī′ ξ̃
′, ξ̃′, R̃′′Ī′ ξ̃

′) on WĪ′ , (5.137)

(ξ, ξ′, ξ′′) :=
∣∣ξ̃′′∣∣−1(

R̃Ī′′ ξ̃
′′, R̃′Ī′′ ξ̃

′′, ξ̃′′
)

on WĪ′′ , (5.138)

as well as

B := B̃ on WĪ , B := B̃′ on WĪ′ , B := B̃′′ on WĪ′′ . (5.139)

On the interpolation wedges, say WΩ̄, we define

ξ := λĪΩ̄
∣∣ξ̃ ∣∣−1

ξ̃ + λĪ
′′

Ω̄

∣∣ξ̃′′∣∣−1
R̃Ī′′ ξ̃

′′, (5.140)

ξ′ := λĪΩ̄
∣∣ξ̃ ∣∣−1

R̃′Ī ξ̃ + λĪ
′′

Ω̄

∣∣ξ̃′′∣∣−1
R̃′Ī′′ ξ̃

′′, (5.141)

ξ′′ := λĪΩ̄
∣∣ξ̃ ∣∣−1

R̃′′Ī ξ̃ + λĪ
′′

Ω̄

∣∣ξ̃′′∣∣−1
ξ̃′′, (5.142)

B := λĪΩ̄B̃ + λĪ
′′

Ω̄ B̃′′. (5.143)
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5.3. Local gradient flow calibration at a triple line

On the remaining two interpolation wedges WΩ̄′ and WΩ̄′′ , one proceeds analogously for the
definition of these vector fields. ♦

5.3.4 Proof of Proposition 5.14

Let (ξ, ξ′, ξ′′, B) be the vector fields from Construction 5.27. We aim to show that this tuple
of vector fields gives rise to a local gradient flow calibration at the triple line Γ̄ in the sense
of Proposition 5.14 after defining

ξ1,2 := ξ, ξ2,3 := ξ′, ξ3,1 := ξ′′ in Nr̂(Γ̄), (5.144)

as well as ξj,i := −ξi,j for the remaining set of distinct phases i, j ∈ {1, 2, 3}. The proof is
now split into several steps.

In Step 1 of the proof, we will derive the following useful compatibility estimates valid
throughout interpolation wedges and which are needed in all subsequent steps:∣∣∣∣ ξ̃|ξ̃|−R̃Ī′′ ξ̃

′′

|ξ̃′′|

∣∣∣∣+

∣∣∣∣R̃′Ī ξ̃|ξ̃| −R̃
′
Ī′′
ξ̃′′

|ξ̃′′|

∣∣∣∣+

∣∣∣∣R̃′′Ī ξ̃|ξ̃| − ξ̃′′

|ξ̃′′|

∣∣∣∣ ≤ C dist2(·, Γ̄) (5.145)

inWΩ̄∩Nr̂(Γ̄), with analogous estimates being satisfied in the other two interpolation wedges.
Moreover, the constant C > 0 only depends on the data of the smoothly evolving regular
double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].

In Step 2, we will verify that (ξ, ξ′, ξ′′, B) are continuous vector fields throughout Nr̂(Γ̄),
that the extensions of the unit normals (ξ, ξ′, ξ′′) are of class (C0

t C
1
x∩C1

t C
0
x)(Nr̂(Γ̄)\Γ̄) whereas

the extended velocity B is of class C0
t C

1
x(Nr̂(Γ̄) \ Γ̄), and that there exists a constant C > 0

depending only on the data of the smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3)
on [0, T ] such that the estimate

|(∂t,∇)(ξ, ξ′, ξ′′)|+ |B|+ |∇B| ≤ C (5.146)

holds true throughout Nr̂(Γ̄) \ Γ̄. Moreover, we will show that

ξ = n̄|Ī along Ī ∩Nr̂(Γ̄), (5.147)
B = VΓ̄ along Γ̄, (5.148)

σξ + σ′ξ′ + σ′′ξ′′ = 0 in Nr̂(Γ̄), (5.149)

where property (5.147) is also satisfied in terms of (ξ′, n̄′|Ī′) along Ī ′ ∩ Nr̂(Γ̄), or in terms
of (ξ′′, n̄′′|Ī′′) along Ī ′′ ∩Nr̂(Γ̄).

Step 3 of the proof is then devoted to the verification of the approximate evolution
equation

|∂tξ + (B · ∇)ξ + (∇B)Tξ| ≤ C dist(·, Ī) in Nr̂(Γ̄) \ Γ̄, (5.150)

whereas in Step 4 we will prove the estimate

|∇ · ξ +B · ξ| ≤ C dist(·, Ī) in Nr̂(Γ̄) \ Γ̄. (5.151)

We finally conclude in Step 5 by deducing the estimate

(∂t +B · ∇)|ξ|2 ≤ C dist2(·, Ī) in Nr̂(Γ̄). (5.152)

We record for completeness that analogous estimates with respect to (5.150)–(5.152) are
satisfied for (ξ′, B), resp. (ξ′′, B), in terms of dist(·, Ī ′), resp. dist(·, Ī ′′), and that the con-
stant C > 0 again only depends on the data of the smoothly evolving regular double bubble
(Ω̄1, Ω̄2, Ω̄3) on [0, T ].
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

Step 1: Proof of (5.145). Adding zero, making use of the reverse triangle inequality and
recalling the non-degeneracy condition (5.131)–(5.133), we may estimate∣∣∣∣ ξ̃|ξ̃| − R̃Ī′′ ξ̃

′′

|ξ̃′′|

∣∣∣∣ ≤ 1

|ξ̃|

∣∣ξ̃ − R̃Ī′′ ξ̃′′∣∣+

∣∣∣∣ 1

|ξ̃|
− 1

|R̃Ī′′ ξ̃′′|

∣∣∣∣∣∣R̃Ī′′ ξ̃′′∣∣
≤ 1

|ξ̃|

∣∣ξ̃ − R̃Ī′′ ξ̃′′∣∣+
1

|ξ̃|

∣∣∣∣∣ξ̃∣∣− ∣∣R̃Ī′′ ξ̃′′∣∣∣∣∣ ≤ 2
√

2
∣∣ξ̃ − R̃Ī′′ ξ̃′′∣∣.

Due to the compatibility conditions (5.92) and (5.93) as well as the regularity estimates (5.91),
the previous estimate then easily upgrades to∣∣∣∣ ξ̃|ξ̃|−R̃Ī′′ ξ̃

′′

|ξ̃′′|

∣∣∣∣ ≤ C dist2(·, Γ̄) in WΩ̄ ∩Nr̂(Γ̄)

by inserting a second-order Taylor expansion with base point located at the unique nearest
point on the triple line Γ̄. The other two terms on the left hand side of (5.145) are treated
analogously.

Step 2: Proof of (5.146)–(5.149). In terms of the asserted qualitative regularity, we
observe that the first item of Lemma 5.26 together with the definitions from Construc-
tion 5.27 ensure that the vector fields (ξ, ξ′, ξ′′, B) and their required derivatives are continu-
ous across the boundaries of the interpolation wedges (away from the triple line). Continuity
of B throughout the whole space-time neighborhood Nr(Γ̄) with the asserted representa-
tion (5.148) along the triple line Γ̄ follows from the compatibility condition (5.113). The
unit normal extensions (ξ, ξ′, ξ′′) are continuous throughout Nr(Γ̄) due to the compatibil-
ity estimates (5.145). The representation (5.147) along the associated interface in turn is a
consequence of the expansion ansatz (5.90) and the inclusion (5.41).

Next, on interface wedges the regularity estimate (5.146) follows directly from the esti-
mates (5.91) and (5.112). For the derivation of (5.146) throughout an interpolation wedge,
say WΩ̄ ∩ Nr̂(Γ̄), we simply compute by plugging in the definitions from Construction 5.27
and recalling from Lemma 5.26 that λĪ′′

Ω̄
= 1−λĪ

Ω̄

(∂t,∇)ξ = λĪΩ̄(∂t,∇)
ξ̃

|ξ̃|
+ λĪ

′′

Ω̄ (∂t,∇)
R̃Ī′′ ξ̃

′′

|ξ̃′′|
+

(
ξ̃

|ξ̃|
−R̃Ī′′ ξ̃

′′

|ξ̃′′|

)
⊗ (∂t,∇)λĪΩ̄,

∇B = λĪΩ̄∇B̃ + λĪ
′′

Ω̄ ∇B̃
′′ + (B̃−B̃′′)⊗∇λĪΩ̄.

We thus infer (5.146) from the chain rule in form of ∇ 1
|f | = − (∇f)Tf

|f |3 , the regularity esti-
mates (5.91), (5.112) and (5.128), and the compatibility conditions (5.145) and (5.113).

We turn to the proof of (5.149). Recalling the expansion ansatz (5.90) and the defini-
tions (5.71) resp. (5.72) of the gauged Herring rotations, we deduce from (5.64)

σξ̃ + σ′R̃′Ī ξ̃ + σ′′R̃′′Ī ξ̃ = 0 throughout Nr(Γ̄) ∩ im(Ψ), (5.153)

and analogously throughout Nr(Γ̄) ∩ im(Ψ′) in terms of (R̃Ī′ ξ̃
′, ξ̃′, R̃′′

Ī′
ξ̃′), or throughout

Nr(Γ̄) ∩ im(Ψ′′) in terms of (R̃Ī′′ ξ̃
′′, R̃′

Ī′′
ξ̃′′, ξ̃′′). Due to the inclusion (5.41) and the defi-

nitions from Construction 5.27, we thus obtain from (5.153)

σξ + σ′ξ′ + σ′′ξ′′ = |ξ̃|−1
(
σξ̃ + σ′R̃′Ī ξ̃ + σ′′R̃′′Ī ξ̃

)
= 0 in WĪ ∩Nr̂(Γ̄).

An analogous argument works in the case of the other two interface wedges.
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5.3. Local gradient flow calibration at a triple line

On interpolation wedges, say WΩ̄, the extended Herring angle condition (5.149) follows
from a linear combination of the previous ingredients. More precisely, the definitions from
Construction 5.27 and the cancellations (5.153) directly imply

σξ + σ′ξ′ + σ′′ξ′′

= λĪΩ̄|ξ̃|
−1
(
σξ̃ + σ′R̃′Ī ξ̃ + σ′′R̃′′Ī ξ̃

)
+ λĪ

′′

Ω̄ |ξ̃
′′|−1

(
σR̃Ī′′ ξ̃

′′ + σ′R̃′Ī′′ ξ̃
′′ + σ′′ξ̃′′

)
= 0

throughout WΩ̄ ∩ Nr̂(Γ̄) as desired. This concludes the proof of (5.149), and thus Step 2 of
the proof, as on the other interpolation wedges (5.149) follows analogously.

Step 3: Proof of (5.150). We first claim that for each rotation R ∈ {Id, R̃′
Ī
, R̃′′

Ī
} it holds

throughout Nr̂(Γ̄) ∩ im(Ψ)∣∣∣(∂t+(B̃ · ∇)+(∇B̃)T
) Rξ̃
|Rξ̃|

∣∣∣ ≤ C{dist(·, Ī) if R = Id,

dist(·, Γ̄) else,
(5.154)

∣∣∣B̃ · Rξ̃
|Rξ̃|

+∇ · Rξ̃
|Rξ̃|

∣∣∣ ≤ C{dist(·, Ī) if R = Id,

dist(·, Γ̄) else,
(5.155)

for some constant C > 0 which depends only on the smoothly evolving regular double
bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ]. Moreover, analogous estimates hold true throughout the do-
mainNr̂(Γ̄)∩im(Ψ′) in terms of the vector fields (Rξ̃′, B̃′) for each rotationR ∈ {R̃Ī′ , Id, R̃′′Ī′},
as well as throughout Nr̂(Γ̄) ∩ im(Ψ′′) in terms of (Rξ̃′′, B̃′′) for each R ∈ {R̃Ī′′ , R̃′Ī′′ , Id}.

The estimate (5.154) follows from the straightforward computation(
∂t+(B̃ · ∇)+(∇B̃)T

) Rξ̃
|Rξ̃|

=
1

|Rξ̃|
(
∂t+(B̃ · ∇)+(∇B̃)T

)
Rξ̃ − ∂t|Rξ̃|2+(B̃ · ∇)|Rξ̃|2

2|Rξ̃|3
Rξ̃

together with the condition (5.131) and the estimates (5.120), (5.121) and (5.122). The
estimate (5.155) in turn can be deduced from the same ingredients as well as

B̃ · Rξ̃
|Rξ̃|

+∇ · Rξ̃
|Rξ̃|

=
1

|Rξ̃|
(
B · Rξ̃ +∇ · Rξ̃

)
− (Rξ̃ · ∇)|Rξ̃|2

2|Rξ̃|3
.

On interface wedges, facilitated by the inclusion (5.41) the claim (5.150) now follows
from an application of the estimate (5.154) and, if needed, a simple post-processing by
means of (5.44). Hence, let us directly move on with the verification of (5.150) through-
out interpolation wedges, say WΩ̄ ∩ Nr̂(Γ̄). Plugging in the definitions (5.140)–(5.143) from
Construction 5.27 we may compute based on the product rule, adding zero, and recalling
from Lemma 5.26 that λĪ′′

Ω̄
= 1−λĪ

Ω̄(
∂t+(B · ∇)+(∇B)T

)
ξ = λĪΩ̄

(
∂t+(B̃ · ∇)+(∇B̃)T

) ξ̃
|ξ̃|

+
(
1−λĪΩ̄

)(
∂t+(B̃′′ · ∇)+(∇B̃′′)T

)R̃Ī′′ ξ̃′′
|ξ̃′′|

(5.156)

+

(
ξ̃

|ξ̃|
−R̃Ī′′ ξ̃

′′

|ξ̃′′|

)(
∂t+(B · ∇)

)
λĪΩ̄

+ λĪΩ̄
(
(B−B̃) · ∇

) ξ̃
|ξ̃|

+
(
1−λĪΩ̄

)(
(B−B̃′′) · ∇

)R̃Ī′′ ξ̃′′
|ξ̃′′|

+ λĪΩ̄
(
∇B−∇B̃

)T ξ̃

|ξ̃|
+
(
1−λĪΩ̄

)(
∇B−∇B̃′′

)T R̃Ī′′ ξ̃′′
|ξ̃′′|

.
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

The first two right hand side terms of the previous display are at least of order O(dist(·, Γ̄))
due to the estimates (5.154), which in turn are available this time due to the inclusion (5.42).
The third, fourth and fifth right hand side terms are of the same order thanks to the com-
patibility conditions (5.145) and (5.113), the regularity estimates (5.91), (5.112) and (5.146),
the estimate (5.129) on the advective derivative of an interpolation function, as well as the
non-degeneracy conditions (5.131)–(5.133).

Regarding the two right hand side terms from the last line of the previous display, we may
argue as follows. Plugging in the definition of B from Construction 5.27, we compute by the
product rule, the identity λĪ

Ω̄
+λĪ

′′

Ω̄
= 1 and by carefully noting that ξ̃ ⊥ t̄∗ throughoutNr(Γ̄)∩

im(Ψ) due to the expansion ansatz (5.90)

(∇B−∇B̃)Tξ̃ = (1−λĪΩ̄)(∇B̃′′−∇B̃)T(Id−t̄∗ ⊗ t̄∗)ξ̃

+
(
(B̃−B̃′′) · (Id−t̄∗ ⊗ t̄∗)ξ̃

)
∇λĪΩ̄.

Abbreviating t̄Γ̄(x, t) := t̄(PΓ̄(x, t), t) for all (x, t) ∈ Nr(Γ̄) ∩ im(Ψ) and recalling the com-
patibility conditions (5.81) resp. (5.113) as well as the regularity estimate (5.128) for the
interpolation function, we may switch from t̄∗ to t̄Γ̄ in the previous display at the cost of an
admissible error:

(∇B−∇B̃)Tξ̃ = (1−λĪΩ̄)(∇B̃′′−∇B̃)T(Id−t̄Γ̄ ⊗ t̄Γ̄)ξ̃

+
(
(B̃−B̃′′) · (Id−t̄Γ̄ ⊗ t̄Γ̄)ξ̃

)
∇λĪΩ̄ +O(dist(·, Γ̄)).

It then follows from the compatibility conditions (5.49), (5.113) and (5.114), and again the
regularity estimate (5.128) for the interpolation function that

(∇B−∇B̃)Tξ̃ = O(dist(·, Γ̄)).

One may argue similarly for the second term after replacing |ξ̃′′|−1R̃Ī′′ ξ̃
′′ by |ξ̃|−1ξ̃ using the

compatibility estimate (5.145).
In summary, the asserted estimate (5.150) in terms of ξ now follows from the previously

derived estimates for the right hand side terms of (5.156) and a subsequent post-processing
of them by means of (5.43). We finally remark that the argument proceeds analogously for
the other two vector fields ξ′ and ξ′′, respectively.

Step 4: Proof of (5.151). Thanks to the inclusion (5.41), the estimate (5.155), and, if
needed, the estimate (5.44), it again suffices to provide additional details only for the argu-
ment for (5.151) on interpolation wedges, sayWΩ̄∩Nr̂(Γ̄). Plugging in the definitions (5.140)–
(5.143) from Construction 5.27, applying the product rule, recalling from Lemma 5.26 that
λĪ
′′

Ω̄
= 1−λĪ

Ω̄
, and adding zero yields

B · ξ +∇ · ξ = λĪΩ̄

(
B̃ · ξ̃
|ξ̃|

+∇ · ξ̃
|ξ̃|

)
+
(
1−λĪΩ̄

)(
B̃′′ · R̃Ī′′ ξ̃

′′

|ξ̃′′|
+∇ · R̃Ī′′ ξ̃

′′

|ξ̃′′|

)
+ λĪΩ̄(B−B̃) · ξ̃

|ξ̃|
+
(
1−λĪΩ̄

)
(B−B̃′′) · R̃Ī′′ ξ̃

′′

|ξ̃′′|

+

(
ξ̃

|ξ̃|
−R̃Ī′′ ξ̃

′′

|ξ̃′′|

)
· ∇λĪΩ̄.

The right hand side terms of the previous display are all at least of order O(dist(·, Γ̄))—
and thus of required order due to (5.43)—by an application of the inclusion (5.42), the
estimates (5.155), the compatibility conditions (5.113) and (5.145), as well as the regularity
estimate (5.128) for the interpolation function.
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5.3. Local gradient flow calibration at a triple line

This proves (5.151) in terms of ξ. The argument proceeds again analogously for the other
two vector fields ξ′ and ξ′′.

Step 5: Proof of (5.152). There is nothing to prove throughout interface wedges since
the unit normal extensions (ξ, ξ′, ξ′′) are unit length vectors, cf. the definitions from Con-
struction 5.27. On interpolation wedges, say WΩ̄ ∩Nr̂(Γ̄), we may compute by the definition
(5.140) from Construction 5.27

|ξ|2 = 1− λĪΩ̄λ
Ī′′

Ω̄

∣∣∣∣∣ ξ̃|ξ̃|−R̃Ī′′ ξ̃
′′

|ξ̃′′|

∣∣∣∣∣
2

. (5.157)

The estimate (5.152) ist thus a consequence of (5.145), (5.128), (5.146) and (5.43). One may
argue analogously for the other two vector fields ξ′ and ξ′′, respectively.

5.3.5 Compatibility of local gradient-flow calibrations

A regular double bubble is built out of two distinct topological features: the three two-phase
interfaces and the triple line. For each of these topological features, we so far constructed a
tuple of vector fields living in a space-time neighborhood of the feature and locally mimicking
the requirements of a gradient-flow calibration. The remaining step in the construction
consists of pasting together these local vector fields into globally defined ones. This task will
be carried out in Section 5.4. The key issue is to transfer properties from the local to the global
level, which turns out to be possible because, among other things, the local constructions
for the two distinct topological features can be arranged to be sufficiently compatible. We
formalize this as follows.

Proposition 5.28. Let (Ω̄1, Ω̄2, Ω̄3) be a regular double bubble smoothly evolving by MCF in
the sense of Definition 5.10 on a time interval [0, T ]. Let r̂ ∈ (0, 1] be the localization scale
of Proposition 5.14, and for each pair of distinct phases i, j ∈ {1, 2, 3}, denote by (ξ

Īi,j
i,j , B

Īi,j )

the local gradient-flow calibration for the interface Īi,j from Construction 5.12.
For all i, j ∈ {1, 2, 3} with i 6= j, there exists a choice of the tangential component Yi,j

of BĪi,j and a local gradient-flow calibration ((ξΓ̄
i,j)i,j∈{1,2,3},i 6=j , B

Γ̄) at the triple line in the
sense of Proposition 5.14 such that in addition the following compatibility estimates hold true∣∣ξĪi,ji,j − ξ

Γ̄
i,j

∣∣+
∣∣(∇ξĪi,ji,j )TξΓ̄

i,j

∣∣+
∣∣(∇ξΓ̄

i,j)
Tξ

Īi,j
i,j

∣∣ ≤ C dist(·, Īi,j), (5.158)∣∣(ξĪi,ji,j −ξ
Γ̄
i,j) · ξ

Īi,j
i,j

∣∣ ≤ C dist2(·, Īi,j), (5.159)∣∣BĪi,j −BΓ̄
∣∣ ≤ C dist(·, Īi,j), (5.160)∣∣(∇BĪi,j−∇BΓ̄)Tξ

Īi,j
i,j

∣∣ ≤ C dist(·, Īi,j) (5.161)

throughout N r̂
2
(Γ̄) ∩ (WĪi,j

∪WΩ̄i
∪WΩ̄j

), where C > 0 is a constant which depends only on
the smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].

Proof. Let ((ξΓ̄
i,j)i,j∈{1,2,3},i 6=j , B

Γ̄) be the local gradient-flow calibration at the triple line Γ̄
as constructed in the proof of Proposition 5.14, and let i, j ∈ {1, 2, 3} be distinct phases.

Step 1: Proof of (5.158). The estimate |ξĪi,ji,j − ξΓ̄
i,j | ≤ C dist(·, Īi,j) is an immediate

consequence of the regularity estimates (5.24) and (5.30), the inclusions (5.41)–(5.42), as
well as the extension property ξĪi,ji,j = n̄i,j = ξΓ̄

i,j along Īi,j ∩Nr̂(Γ̄).

The estimate |(∇ξĪi,ji,j )TξΓ̄
i,j | ≤ C dist(·, Īi,j) follows from adding zero, the already estab-

lished estimate for the first left hand side term of (5.158), and ξĪi,ji,j being a unit length vector
field due to (5.22).
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

For the remaining part of (5.158), it suffices to estimate 1
2∇|ξ

Γ̄
i,j |2 due to (5.30) and the al-

ready established estimate for the first left hand side term of (5.158). Throughout the interpo-
lation wedgeWĪi,j

∩Nr̂(Γ̄), we have |ξΓ̄
i,j | ≡ 1 in view of the definitions (5.136)–(5.138), so that

the desired estimate is satisfied for trivial reasons. Within the relevant interpolation wedges,
one may employ the representation (5.157) and then deduce

∣∣1
2∇|ξ

Γ̄
i,j |2

∣∣ ≤ C dist(·, Īi,j)
from (5.145), (5.128) and (5.43).

Step 2: Proof of (5.159). Denote by ξ̃ Īi,j the auxiliary extension of the unit normal n̄i,j |Īi,j
from Construction 5.21. Due to (5.136)–(5.138), (5.140)–(5.142), and the compatibility esti-
mates (5.145) it holds

ξΓ̄
i,j = |ξ̃ Īi,j |−1ξ̃ Īi,j +O(dist2(·, Īi,j)) in Nr̂(Γ̄) ∩ (WĪi,j

∪WΩ̄i
∪WΩ̄j

).

Making use of the non-degeneracy conditions (5.131)–(5.133) and the estimate (5.119) we
also obtain

|ξ̃ Īi,j |−1 − 1 =
1− |ξ̃ Īi,j |2

|ξ̃ Īi,j |
(
1+|ξ̃ Īi,j |

) = O(dist2(·, Īi,j)) in Nr̂(Γ̄) ∩ im(Ψi,j).

Recalling the precise representations (5.22) and (5.90), we thus infer from the previous two
displays that∣∣(ξĪi,ji,j −ξ

Γ̄
i,j) · ξ

Īi,j
i,j

∣∣ ≤ ∣∣1− |ξ̃ Īi,j |−1
∣∣+O(dist2(·, Īi,j)) = O(dist2(·, Īi,j))

throughout Nr̂(Γ̄) ∩ (WĪi,j
∪WΩ̄i

∪WΩ̄j
) as asserted.

Step 3: Construction of the tangential component Yi,j of BĪi,j . Let θ be a smooth and
even cutoff function with θ(r) = 1 for |r| ≤ 1

2 and θ(r) = 0 for |r| ≥ 1. Denote by B̃Īi,j the
auxiliary local velocity field from Construction 5.23 with respect to the interface Īi,j . The
tangential component Yi,j of BĪi,j is then simply defined by means of

Yi,j := θ
(dist(·, Γ̄)

r̂

)
(Id−n̄i,j ⊗ n̄i,j)B̃

Īi,j in im(Ψi,j). (5.162)

Note that Yi,j ∈ C0
t C

1
x(im(Ψi,j)) as required by Construction 5.12 due to the regularity (5.21)

of the normal n̄i,j and the regularity estimate (5.112) for B̃Īi,j .
Step 4: Proof of (5.160)–(5.161). It follows from the expansion ansatz (5.111), the

definitions (5.139) and (5.22), the choice of the tangential component (5.162), as well as
the choice of the cutoff θ from the previous step that

BĪi,j = BΓ̄ throughout WĪi,j
∩N r̂

2
(Γ̄). (5.163)

More precisely, denoting by B̃Īi,j the auxiliary local velocity field from Construction 5.23
with respect to the interface Īi,j , we in fact have

BĪi,j = B̃Īi,j throughout (WĪi,j
∪WΩ̄i

∪WΩ̄j
) ∩N r̂

2
(Γ̄). (5.164)

Now (5.160) follows directly from a Taylor-expansion argument exploiting the regularity
estimates (5.25) resp. (5.31) as well as the inclusions (5.41)–(5.42).

In view of (5.163), the estimate (5.161) is satisfied for trivial reasons throughout the
interface wedge N r̂

2
(Γ̄) ∩ WĪi,j

. Within the relevant interpolation wedges, say for con-
creteness N r̂

2
(Γ̄) ∩ WΩ̄i

, we make use of (5.164). Let k ∈ {1, 2, 3} \ {i, j} denote the
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third phase. It then follows from (5.164) and expressing the definition (5.143) in form of
BΓ̄ = λ

Īi,j
Ω̄i
B̃Īi,j + (1−λĪi,j

Ω̄i
)B̃Īk,i

∇BĪi,j −∇BΓ̄ =
(
1−λĪi,j

Ω̄i

)(
∇B̃Īi,j−∇B̃Īk,i

)
−
(
B̃Īi,j−B̃Īk,i

)
⊗∇λĪi,j

Ω̄i
.

Since ξĪi,ji,j = n̄i,j due to (5.22), the estimate (5.161) now follows throughout the interpolation
wedge N r̂

2
(Γ̄) ∩WΩ̄i

by the same argument which deals with estimating the last two right
hand side terms of (5.156). We recall for convenience that the essential input for the latter is
given by the compatibility conditions (5.113) and (5.114) for the auxiliary velocity fields B̃Īi,j

and B̃Īk,i .

5.4 Gradient flow calibrations for double bubbles

5.4.1 Localization of topological features

We start by introducing a family of suitable cutoff functions localizing around the interfaces
and the triple line in a smoothly evolving regular double bubble. This family will be used to
provide the construction of a gradient-flow calibration by means of gluing together the local
constructions from the previous two sections.

Lemma 5.29. Let (Ω̄1, Ω̄2, Ω̄3) be a regular double bubble smoothly evolving by MCF in
the sense of Definition 5.10 on a time interval [0, T ]. Let the notation of Definition 5.11
resp. Definition 5.15 be in place, and let r̂ ∈ (0, 1] be the radius of Proposition 5.14. In
particular, let (ri,j)i,j∈{1,2,3},i 6=j be admissible localization radii for the interfaces in the sense
of Definition 5.11 such that r̂ ≤ r1,2 ∧ r2,3 ∧ r3,1. We next define for each pair i, j ∈ {1, 2, 3}
with i 6= j a scale

3`i,j := min
t∈[0,T ]

min
k,l∈{1,2,3}, k 6=l,
(k,l)/∈{(i,j),(j,i)}

dist
(
Īi,j(t) \Br̂(Γ̄(t)), Īk,l(t)

)
> 0,

and based on these a localization scale r̄ ∈ (0, r1,2 ∧ r2,3 ∧ r3,1] by means of

2r̄ := r̂ ∧ min
i,j∈{1,2,3}, i 6=j

`i,j . (5.165)

There then exists a collection of continuous cutoff functions

ηΓ̄, ηĪ1,2 , ηĪ2,3 , ηĪ3,1 : R3 × [0, T ]→ [0, 1]

satisfying the following properties:

i) The cutoff functions are of class (C0
t C

1
x ∩ C1

t C
0
x)(R3×[0, T ] \ Γ̄) with corresponding reg-

ularity estimates

|(∂t,∇)(ηΓ̄, ηĪ1,2 , ηĪ2,3 , ηĪ3,1)| ≤ C in R3×[0, T ] \ Γ̄ (5.166)

for some constant C > 0 depending only on the data of the smoothly evolving regular
double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].

ii) The family (ηΓ̄, (ηĪi,j )i,j∈{1,2,3},i 6=j) is a partition of unity for the evolving surface cluster
in the sense that ηΓ̄ + ηĪ1,2 + ηĪ2,3 + ηĪ3,1 ≡ 1 holds true on the surface cluster I :=⋃
i,j∈{1,2,3},i 6=j Īi,j.
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

Moreover, for all pairwise distinct i, j, k ∈ {1, 2, 3} it holds

ηĪk,i ≤ C(dist2(·, Īi,j) ∧ 1) in R3×[0, T ], (5.167)

|∇ηĪk,i | ≤ C(dist(·, Īi,j) ∧ 1) in R3×[0, T ] \ Γ̄, (5.168)

|∂tηĪk,i | ≤ C(dist(·, Īi,j) ∧ 1) in R3×[0, T ] \ Γ̄. (5.169)

Defining ηbulk := 1 − ηΓ̄ − ηĪ1,2 − ηĪ2,3 − ηĪ3,1 we have ηbulk ∈ [0, 1] on R3 × [0, T ], and
the bulk cutoff is subject to the estimates

1

C
(dist2(·, I) ∧ 1) ≤ ηbulk ≤ C(dist2(·, I) ∧ 1) in R3×[0, T ], (5.170)

|∇ηbulk| ≤ C(dist(·, I) ∧ 1) in R3×[0, T ] \ Γ̄, (5.171)

|∂tηbulk| ≤ C(dist(·, I) ∧ 1) in R3×[0, T ] \ Γ̄. (5.172)

The constant C ≥ 1 in the estimates (5.167)–(5.172) depends only on the data of the
smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].

iii) For all pairwise distinct i, j, k ∈ {1, 2, 3} and all t ∈ [0, T ] it holds

supp ηĪi,j (·, t) ⊂ Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]), (5.173)

Br̂(Γ̄(t)) ∩ supp ηĪi,j (·, t) ⊂ Br̂(Γ̄(t)) ∩
(
WĪi,j

(t) ∪WΩ̄i
(t) ∪WΩ̄j

(t)
)
, (5.174)

supp ηĪi,j (·, t) ∩ supp ηĪj,k(·, t) ⊂ Br̂(Γ̄(t)) ∩WΩ̄j
(t), (5.175)

supp ηΓ̄(·, t) ⊂ Br̂/2(Γ̄(t)). (5.176)

Proof. The proof is split into several steps.
Step 1: Definition of building blocks. Let θ be a smooth and even cutoff function with

θ(r) = 1 for |r| ≤ 1
2 and θ(r) = 0 for |r| ≥ 1. Then define a smooth quadratic profile ζ : R→

[0, 1] by means of

ζ(r) = (1− r2)θ(r2), r ∈ R. (5.177)

Let δ ∈ (0, 1] be a constant whose value will be determined in subsequent steps of the proof.
For all distinct i, j ∈ {1, 2, 3} we define auxiliary cutoff functions

ζĪi,j := ζ
(si,j
δr̄

)
in im(Ψi,j), (5.178)

ζΓ̄ := ζ
(dist(·, Γ̄)

r̂/2

)
in R3×[0, T ]. (5.179)

Note that as a consequence of the regularity (5.18) of the signed distance, expressing dist(x, Γ̄(t)) =
|x−PΓ̄(x, t)| for all x ∈ Br̂(Γ̄(t)) and all t ∈ [0, T ], the regularity of the projection PΓ̄ onto
the triple line Γ̄ from Definition 5.15, and (5.177) it holds

|(∂t,∇)ζĪi,j | ≤ C dist(·, Īi,j) in im(Ψi,j), (5.180)

|(∂t,∇)ζΓ̄| ≤ C dist(·, Γ̄) in R3×[0, T ]. (5.181)

Step 2: Definition of interface cutoffs. Fix distinct i, j ∈ {1, 2, 3}. We define the cut-
off ηĪi,j : R3×[0, T ]→ [0, 1] for the two-phase interface Īi,j by means of

ηĪi,j (·, t) := ζĪi,j (·, t) in im(Ψi,j(t)) \Br̂(Γ̄(t)), (5.182)

ηĪi,j (·, t) := (1−ζΓ̄(·, t))ζĪi,j (·, t) in Br̂(Γ̄(t)) ∩WĪi,j
(t), (5.183)

ηĪi,j (·, t) := λ
Īi,j
Ω̄i

(·, t)(1−ζΓ̄(·, t))ζĪi,j (·, t) in Br̂(Γ̄(t)) ∩WΩ̄i
(t), (5.184)

ηĪi,j (·, t) := λ
Īi,j
Ω̄j

(·, t)(1−ζΓ̄(·, t))ζĪi,j (·, t) in Br̂(Γ̄(t)) ∩WΩ̄j
(t), (5.185)

ηĪi,j (·, t) := 0 else (5.186)
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for all t ∈ [0, T ]. Here, the maps λĪi,j
Ω̄i

resp. λĪi,j
Ω̄j

are the interpolation functions of Lemma 5.26
on the interpolation wedges WΩ̄i

resp. WΩ̄j
. Observe that (5.183) is well-defined because

of (5.41), and that (5.184) resp. (5.185) are well-defined as a consequence of (5.42). In par-
ticular, the properties (5.173)–(5.175) are immediate consequences of the definitions (5.182)–
(5.186) and the choice (5.165) of the localization scale r̄. Finally, in order to ensure continuity
of ηĪi,j throughout R3×[0, T ] (i.e., compatibility of the definition (5.182) resp. the definition
(5.186) with the definitions (5.183)–(5.185)) we choose the constant δ ∈ (0, 1

2 ] small enough
such that for all t ∈ [0, T ] and all distinct i, j ∈ {1, 2, 3} it holds

∂Br̂(Γ̄(t)) ∩Ψi,j(Īi,j(t)×{t}×[−δr̂, δr̂]) ⊂⊂WĪi,j
(t). (5.187)

Step 3: Definition of triple line cutoff. We construct a cutoff for the triple line ηΓ̄ : R3×[0, T ]→
[0, 1] as follows: for all distinct i, j, k ∈ {1, 2, 3} and all t ∈ [0, T ] we define

ηΓ̄(·, t) := ζΓ̄(·, t)ζĪi,j (·, t) in Br̂(Γ̄(t)) ∩WĪi,j
(t), (5.188)

ηΓ̄(·, t) := λ
Īi,j
Ω̄i

(·, t)ζΓ̄(·, t)ζĪi,j (·, t) (5.189)

+ λ
Īk,i
Ω̄i

(·, t)ζΓ̄(·, t)ζĪk,i(·, t) in Br̂(Γ̄(t)) ∩WΩ̄i
(t),

ηΓ̄(·, t) := 0 in R3 \Br̂(Γ̄(t)). (5.190)

Because of (5.40), the definitions (5.188)–(5.190) provide a definition of ηΓ̄ on the whole
space-time domain R3×[0, T ]. Property (5.176) is obviously satisfied in view of (5.190).
Since λ

Īi,k
Ω̄i

= 1−λĪi,j
Ω̄i

on interpolation wedges WΩ̄i
, we indeed have ηΓ̄(x, t) ∈ [0, 1] for

all (x, t) ∈ R3×[0, T ].
Step 4: Partition of unity property along the surface cluster. Define the bulk cutoff

ηbulk := 1− ηΓ̄ − ηĪ1,2 − ηĪ2,3 − ηĪ3,1 . We claim that

ηbulk = 0 along I =
⋃

i,j∈{1,2,3}, i 6=j

Īi,j . (5.191)

Fix t ∈ [0, T ] and a point x ∈ I(t) \ Br̂(Γ̄(t)). There exists a unique pair of distinct
phases i, j ∈ {1, 2, 3} such that x ∈ Īi,j(t) and, because of the localization properties (5.175)
and (5.176), ηbulk(x, t) = 1−ηĪi,j (x, t). It then follows from the definitions (5.182) and (5.178)
that ηbulk(x, t) = 0.

Now fix t ∈ [0, T ] and consider a point x ∈ I(t) ∩ Br̂(Γ̄(t)). Let i, j ∈ {1, 2, 3} be
the unique pair of distinct phases such that x ∈ Īi,j(t). As a consequence of (5.41), the
localization properties (5.174)–(5.176), and the definitions (5.183) resp. (5.188), we obtain
that ηbulk(x, t) = 1 − ηΓ̄(x, t) − ηĪi,j (x, t) = 1 − ζĪi,j (x, t). Hence, ηbulk(x, t) = 0 due to the
definition (5.178). This concludes the proof of (5.191).

Step 5: Regularity of cutoff functions. Fix i, j ∈ {1, 2, 3} such that i 6= j. The required
derivatives of ηĪi,j exist in R3 \Br̂(Γ̄(t)) resp. in Br̂(Γ̄(t))\ Γ̄(t) in a pointwise sense for all t ∈
[0, T ] due to the definition of ηĪi,j from Step 2 of this proof, the definitions (5.178) and (5.179),
the properties of the interpolation functions from Lemma 5.26, and the regularity (5.180)
and (5.181) of the auxiliary cutoff functions. By the choice (5.187) of the scale δ ∈ (0, 1],
these derivatives do not jump across the boundary of Br̂(Γ̄(t)). Hence, ∂tηĪi,j and ∇ηĪi,j exist
in a pointwise sense in R3×[0, T ] \ Γ̄.

In terms of the required bounds (5.166) for these derivatives, the only possibly critical
cases are those for which at least one derivative hits an interpolation function present in
the definitions (5.184) resp. (5.185). The blow-up of these derivatives (see Lemma 5.26),
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however, is always cured by the presence of the term 1−ζΓ̄. In summary, ηĪi,j ∈ (C0
t C

1
x ∩

C1
t C

0
x)(R3×[0, T ] \ Γ̄) and (5.166) holds true.
Along similar lines, one checks that ∂tηΓ̄ and ∇ηΓ̄ exist in a pointwise sense in R3×[0, T ]\

Γ̄. The required cancellations to counteract the blow-up of derivatives of the interpolation pa-
rameter in interpolation wedges this time comes from recalling λĪk,i

Ω̄i
= 1−λĪi,j

Ω̄i
, which in turn

ensures that potentially critical terms always involve the term ζĪi,j − ζĪk,i . As the latter van-
ishes to first order at the triple line and has a bounded second-order spatial derivative within
interpolation wedges, it follows that ηΓ̄ ∈ (C0

t C
1
x ∩ C1

t C
0
x)(R3×[0, T ] \ Γ̄), and that (5.166)

holds true.
Step 6: Estimates for the bulk cutoff. By construction it holds ηbulk(·, t) ≡ 1 outside of

the space-time domain Br̂(Γ̄(t)) ∪
⋃
i,j∈{1,2,3},i 6=j Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) for all t ∈ [0, T ].

Hence, for a proof of ηbulk ∈ [0, 1] and the estimates (5.170)–(5.172), we may restrict our
attention to

⋃
i,j∈{1,2,3},i 6=j Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) \Br̂(Γ̄(t)) and Br̂(Γ̄(t)) for all t ∈ [0, T ].

In view of the choice (5.165) of the localization scale r̄, one may argue separately on
Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) \Br̂(Γ̄(t)) for each pair of distinct phases i, j ∈ {1, 2, 3} and all t ∈
[0, T ]. Because of the localization properties (5.175) and (5.176) it holds

ηbulk(·, t) = 1− ηĪi,j (·, t)

= 1− ζĪi,j (·, t) in Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) \Br̂(Γ̄(t)) (5.192)

for all t ∈ [0, T ]. Hence, ηbulk ∈ [0, 1] and the estimates (5.170)–(5.172) follow from the
definitions (5.182) and (5.178) in combination with the quadratic behaviour around the origin
of the profile (5.177). Note in this context that (5.165) precisely ensures that the error can
be expressed in terms of dist(·, I) as required.

We move on to the argument in the ball Br̂(Γ̄(t)) for all t ∈ [0, T ]. On interface wedges,
we infer from the localization properties (5.174) and (5.175) as well as the definitions (5.183)
and (5.188) that

ηbulk(·, t) = 1− ηΓ̄(·, t)− ηĪi,j (·, t)

= 1− ζĪi,j (·, t) in Br̂(Γ̄(t)) ∩WĪi,j
(t) (5.193)

for all t ∈ [0, T ], so that the asserted bounds follow as in the previous case together with the
bound (5.45) to express the error in terms of dist(·, I).

On interpolation wedges, we may compute based on (5.174) and (5.175) as well as (5.184)
and (5.189) that (recall the relation λĪk,i

Ω̄i
= 1−λĪi,j

Ω̄i
)

ηbulk(·, t) = 1− ηΓ̄(·, t)− ηĪi,j (·, t)− ηĪk,i(·, t)

= λ
Īi,j
Ω̄i

(1−ζĪi,j )(·, t) + (1−λĪi,j
Ω̄i

)(1−ζĪk,i)(·, t) in Br̂(Γ̄(t)) ∩WΩ̄i
(t) (5.194)

for all t ∈ [0, T ]. It follows immediately that ηbulk(·, t) ∈ [0, 1]. Moreover, the defini-
tion (5.178), the quadratic behavior around the origin of the profile (5.177), and the es-
timate (5.43) directly imply (5.170). Finally, since

∇ηbulk(·, t) = −λĪi,j
Ω̄i

(·, t)∇ζĪi,j (·, t)− (1−λĪi,j
Ω̄i

)(·, t)∇ζĪk,i(·, t) (5.195)

− (ζĪi,j−ζĪk,i)(·, t)∇λ
Īi,j
i (·, t) in Br̂(Γ̄(t)) ∩WΩ̄i

(t)

for all t ∈ [0, T ], we obtain (5.171) and (5.172) because the blow-up of∇λĪi,j
Ω̄i

, see Lemma 5.26,
is cancelled to required order by the term ζĪi,j−ζĪk,i . Indeed, the latter vanishes to first order
at the triple line and has a bounded second-order spatial derivative within interpolation
wedges.
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Step 7: Error estimates for interface cutoffs. The bounds (5.167)–(5.169) are trivially
fulfilled outside of Br̂(Γ̄(t)) for all t ∈ [0, T ] by construction and the choice (5.165) of the
localization scale r̄. In view of the definitions (5.183)–(5.185) and the definition (5.179),
we also have ηĪk,i(·, t) ≤ 1 − ζΓ̄(·, t) ≤ C dist2(·, Γ̄(t)) in Br̂(Γ̄(t)) ∩

(
WĪk,i

(t) ∪ WΩ̄i
(t) ∪

WΩ̄k
(t)
)
for all t ∈ [0, T ]. Recalling the bounds (5.43) and (5.44), this in turn implies (5.167)

throughout Br̂(Γ̄(t)) for all t ∈ [0, T ].
For a proof of (5.168) and (5.169), note that

|(∂t,∇)ηĪk,i(·, t)| ≤ C(1−ζΓ̄(·, t)) + C|(∂t,∇) dist(·, Γ̄(t))|dist(·, Γ̄(t))

in Br̂(Γ̄(t))∩
(
WĪk,i

(t)∪WΩ̄i
(t)∪WΩ̄k

(t)
)
for all t ∈ [0, T ]. The first right hand side term is

estimated as before, while the second one is of required order due to the bounds (5.43) resp.
(5.44) and the regularity of the projection onto the triple line Γ̄, see Definition 5.15, which
in turn one may employ throughout Br̂(Γ̄(t)) based on the representation |x−PΓ̄(x, t)| =
dist(x, Γ̄(t)).

5.4.2 Construction of a gradient-flow calibration

We have everything in place to provide the construction of a gradient-flow calibration for a
regular double bubble smoothly evolving by MCF. We first introduce a global definition for
the vector fields ξi,j extending the unit normal vector fields n̄i,j |Īi,j of the interfaces Īi,j .

Construction 5.30 (Global extensions of the unit normal vector fields n̄i,j |Īi,j ). Consider a
regular double bubble (Ω̄1, Ω̄2, Ω̄3) smoothly evolving by MCF in the sense of Definition 5.10
on a time interval [0, T ]. Let (ηΓ̄, (ηĪi,j )i,j∈{1,2,3},i 6=j) be the partition of unity from the proof
of Lemma 5.29. Fix i, j ∈ {1, 2, 3} with i 6= j. We then define a family of vector fields

ξ
Īk,l
i,j :

⋃
t∈[0,T ]

supp ηĪk,l(·, t)× {t} → B1(0), k, l ∈ {1, 2, 3}, k 6= l, (5.196)

ξΓ̄
i,j :

⋃
t∈[0,T ]

supp ηΓ̄(·, t)× {t} → B1(0) (5.197)

by means of the following procedure:
For k, l ∈ {1, 2, 3} with (k, l) ∈ {(i, j), (j, i)} we let ξĪk,li,j be the corresponding vector field

from Construction 5.12 for the interface Īk,l. For k, l ∈ {1, 2, 3} with (k, l) /∈ {(i, j), (j, i)}
and k 6= l we define ξĪk,li,j := 1

2(
σl,i−σl,j
σi,j

ξ
Īk,l
k,l +

σk,i−σk,j
σi,j

ξ
Īk,l
l,k ), which is well-defined reversing the

roles of i, j and k, l in the previous step. Finally, we denote by ξΓ̄
i,j the corresponding vector

field from the proof of Proposition 5.28.
With this family of local vector fields in place, we now define a global vector field ξi,j : R3×

[0, T ]→ R3 by means of

ξi,j := ηΓ̄ξ
Γ̄
i,j + ηĪ1,2ξ

Ī1,2
i,j + ηĪ2,3ξ

Ī2,3
i,j + ηĪ3,1ξ

Ī3,1
i,j (5.198)

for all distinct pairs of phases i, j ∈ {1, 2, 3}. ♦

We proceed by showing that the vector fields from the previous construction satisfy the
structural assumption (5.1a) and the coercivity estimate (5.1c) of a gradient-flow calibration.

Lemma 5.31. Let the assumptions and notation of Construction 5.30 be in place. Fix i, j ∈
{1, 2, 3} such that i 6= j. The vector field ξi,j is then subject to the following list of properties:
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i) It holds ξi,j ∈ (C0
t C

1
x∩C1

t C
0
x)(R3×[0, T ]\ Γ̄), and there exists a constant C > 0 which de-

pends only on the data of the smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ]
such that

|(∂t,∇)ξi,j | ≤ C in R3×[0, T ] \ Γ̄. (5.199)

Moreover, it holds ξi,j = n̄i,j along Īi,j.

ii) For each phase i ∈ {1, 2, 3}, there exists a vector field ξi : R3×[0, T ] → R3 of class
(C0

t C
1
x ∩ C1

t C
0
x)(R3×[0, T ] \ Γ̄) such that σi,jξi,j = ξi − ξj holds true on R3×[0, T ].

iii) There exists a constant c ∈ (0, 1), which depends only on the data of the smoothly evolving
regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], such that

c(dist2(·, Īi,j) ∧ 1) ≤ 1− |ξi,j | in R3×[0, T ]. (5.200)

Proof. The proof is performed in three steps.
Step 1: Regularity and structural properties. The asserted qualitative regularity of the

vector fields ξi,j together with the estimate (5.199) follows from the definition (5.198), the
regularity (5.166) of the cutoff functions, as well as the regularity of the local building
blocks (5.196) and (5.197) in form of∣∣(∂t,∇)(ξ

Īk,l
i,j , ξ

Γ̄
i,j)
∣∣ ≤ C in R3×[0, T ], (5.201)

which in turn is a consequence of the definitions from Construction 5.30 and the regular-
ity estimates (5.24) and (5.30). The property ξi,j |Īi,j ≡ n̄i,j is immediate from the defi-
nition (5.198), the fact that (ηΓ̄, (ηĪi,j )i,j∈{1,2,3},i 6=j) constitutes a partition of unity along
the network I, and the corresponding property in terms of the local constructions from
Lemma 5.13 and Proposition 5.14.

The existence of vector fields (ξi)i∈{1,2,3} of class (C0
t C

1
x ∩ C1

t C
0
x)(R3×[0, T ] \ Γ̄) such

that σi,jξi,j = ξi − ξj holds true on R3×[0, T ] follows from the following considerations. Let
i, j, k ∈ {1, 2, 3} be pairwise distinct. We define ξΓ̄

i := 1
3(σi,jξ

Γ̄
i,j + σi,kξ

Γ̄
i,k). Since σ1,2ξ

Γ̄
1,2 +

σ2,3ξ
Γ̄
2,3 + σ3,1ξ

Γ̄
3,1 = 0 holds true in the support of ηΓ̄, see Proposition 5.14, we indeed obtain

σi,jξ
Γ̄
i,j = ξΓ̄

i − ξΓ̄
j . Next, fix k, l ∈ {1, 2, 3} with k 6= l, and let i ∈ {1, 2, 3}. We may then

define ξĪk,li := 1
2(σl,iξ

Īk,l
k,l + σk,iξ

Īk,l
l,k ). Again, plugging in the definitions immediately shows

σi,jξ
Īk,l
i,j = ξ

Īk,l
i − ξĪk,lj for all i, j ∈ {1, 2, 3} such that i 6= j. Defining ξi := ηΓ̄ξ

Γ̄
i + ηĪ1,2ξ

Ī1,2
i +

ηĪ2,3ξ
Ī2,3
i + ηĪ3,1ξ

Ī3,1
i therefore entails the desired conclusion.

Step 2: A coercivity condition. As a preparation for the proof of (5.200), we claim that
there exists a constant ε = ε(σ) ∈ (0, 1) such that for all i, j ∈ {1, 2, 3} with i 6= j, as well as
all k, l ∈ {1, 2, 3} with (k, l) /∈ {(i, j), (j, i)} and k 6= l it holds∣∣ξĪk,li,j

∣∣ ≤ ε < 1. (5.202)

Indeed, the estimate (5.202) is an immediate consequence of the definition of the vector
field ξĪk,li,j = 1

2(
σl,i−σl,j
σi,j

ξ
Īk,l
k,l +

σk,i−σk,j
σi,j

ξ
Īk,l
l,k ), see Construction 5.30, and the fact that |σl,i−σl,jσi,j

| <
1 resp. |σk,i−σk,jσi,j

| < 1, which in turn is true since the matrix of surface tensions satisfies the
strict triangle inequality by assumption.

Step 3: Proof of the estimate (5.200). Fix i, j ∈ {1, 2, 3} such that i 6= j. By the local-
ization properties (5.173)–(5.176) and the choice (5.165) of the localization scale r̄, it suffices
to establish the desired estimate throughout supp ηĪk,l(·, t) \ Br̂(Γ̄(t)), Br̂(Γ̄(t)) ∩ WĪk,l

(t)
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or Br̂(Γ̄(t)) ∩ WΩ̄l
(t) for all distinct phases k, l ∈ {1, 2, 3} and all t ∈ [0, T ]. Hence, fix

such k, l ∈ {1, 2, 3} with k 6= l and t ∈ [0, T ], and then observe that due to the defini-
tion (5.198) and the localization properties (5.173)–(5.176) it holds

ξi,j =


ηĪk,lξ

Īk,l
i,j on supp ηĪk,l(·, t) \Br̂(Γ̄(t)),

ηΓ̄ξ
Γ̄
i,j + ηĪk,lξ

Īk,l
i,j on Br̂(Γ̄(t)) ∩WĪk,l

(t),

ηΓ̄ξ
Γ̄
i,j + ηĪk,lξ

Īk,l
i,j + ηĪl,mξ

Īl,m
i,j on Br̂(Γ̄(t)) ∩WΩ̄l

(t), m ∈ {1, 2, 3} \ {k, l}.

(5.203)

Based on (5.203), we now distinguish between two cases.
Substep 3.1: Assume that (k, l) ∈ {(i, j), (j, i)}. In other words, both the phases k

and l are present at the interface Īi,j . In this case, observe first that throughout the three
domains represented in (5.203) it holds due to (5.43), (5.45) and (5.165) that the distance
to I is comparable to the distance to Īi,j : 1

C dist(·, Īi,j) ≤ dist(·, I) ≤ C dist(·, Īi,j) for some
constant C ≥ 1. Furthermore, it follows from (5.203) and the triangle inequality that |ξi,j | ≤
1−ηbulk throughout the three domains represented in (5.203). Hence, the bound (5.200)
follows from the lower bound in (5.170).

Substep 3.2: Assume that (k, l) /∈ {(i, j), (j, i)}. In the first case of (5.203), the esti-
mate (5.200) follows immediately from the coercivity condition (5.202). In the third case
of (5.203), we may additionally assume that (l,m) /∈ {(i, j), (j, i)}; otherwise, we are again
in the setting of the argument from Substep 3.1 above. Plugging in the definitions (5.184),
(5.185) and (5.189), as well as exploiting the coercivity condition (5.202) for both the vector
fields ξĪk,li,j and ξ

Īl,m
i,j (which is admissible due to our assumptions), we may estimate from

below

1− |ξi,j | ≥ 1−
(
ηΓ̄ + εηĪk,l + εηĪl,m

)
≥ (1− ε)(1− ζΓ̄) ≥ (1− ε)(dist2(·, Γ̄) ∧ 1)

on Br̂(Γ̄(t)) ∩WΩ̄l
(t) for all t ∈ [0, T ], so that (5.200) follows again. Since the argument

proceeds similarly in the second case of (5.203), we may conclude the proof.

The next step consists of providing the global definition of a suitable velocity field along
which a smoothly evolving regular double bubble and our associated constructions are trans-
ported.

Construction 5.32 (Global extension of velocity vector field). Let (Ω̄1, Ω̄2, Ω̄3) be a regular
double bubble smoothly evolving by MCF in the sense of Definition 5.10 on a time inter-
val [0, T ]. Let (ηΓ̄, (ηĪi,j )i,j∈{1,2,3},i 6=j) be the partition of unity from the proof of Lemma 5.29.
We then introduce a family of vector fields

BĪi,j :
⋃

t∈[0,T ]

supp ηĪi,j (·, t)× {t} → R3 for all i, j ∈ {1, 2, 3}, i 6= j, (5.204)

BΓ̄ :
⋃

t∈[0,T ]

supp ηΓ̄(·, t)× {t} → R3 (5.205)

as follows: the velocity field BΓ̄ denotes the corresponding vector field from the proof of
Proposition 5.28, whereas BĪi,j is the velocity field from Construction 5.12 with tangential
component chosen as in the proof of Proposition 5.28.

With this family of local vector fields in place, we now define a global velocity field by
means of

B := ηΓ̄B
Γ̄ + ηĪ1,2B

Ī1,2 + ηĪ2,3B
Ī2,3 + ηĪ3,1B

Ī3,1 (5.206)

throughout R3×[0, T ]. ♦
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5. Weak-strong uniqueness for the mean curvature flow of double bubbles

A crucial ingredient for the proof of the estimates (5.1d) and (5.1e) are the following
bounds on the advective derivatives of the partition of unity from Lemma 5.29.

Lemma 5.33. Let the assumptions and notation of Construction 5.32 be in place. In par-
ticular, (ηΓ̄, (ηĪi,j )i,j∈{1,2,3},i 6=j) denotes the partition of unity from the proof of Lemma 5.29.
Then B ∈ C0

t C
1
x(R3×[0, T ] \ Γ̄) with corresponding estimate

|B|+ |∇B| ≤ C in R3×[0, T ] \ Γ̄. (5.207)

Moreover, the velocity field B gives rise to an improved estimate on the advective derivative
of the bulk cutoff in form of

|∂tηbulk + (B · ∇)ηbulk| ≤ C(dist2(·, I) ∧ 1) in R3 × [0, T ], (5.208)

and similarly for all pairwise distinct phases i, j, k ∈ {1, 2, 3}

|∂tηĪk,i + (B · ∇)ηĪk,i | ≤ C(dist2(·, Īi,j) ∧ 1) in R3 × [0, T ]. (5.209)

The constant C > 0 in the estimates (5.207)–(5.209) depends only on the data of the smoothly
evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ].

Proof. The proof is decomposed into three steps.
Step 1: Regularity estimates. The asserted qualitative regularity of the velocity field B

together with the associated estimate (5.207) follow from its definition (5.206), the regular-
ity (5.166) of the cutoff functions, as well as the regularity of the local building blocks (5.204)
and (5.205) in form of∣∣(BΓ̄, BĪi,j )

∣∣+
∣∣∇(BΓ̄, BĪi,j )

∣∣ ≤ C in R3×[0, T ], (5.210)

which is a consequence of (5.25) and (5.31).
Step 2: Proof of (5.208). It holds ηbulk(·, t) ≡ 1 outside of the space-time domainBr̂(Γ̄(t))∪⋃

i,j∈{1,2,3},i 6=j Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) for all t ∈ [0, T ] by construction. Hence, for a proof of
the estimate (5.208), we may restrict our attention to

⋃
i,j∈{1,2,3},i 6=j Ψi,j(Īi,j(t)×{t}×[−r̄, r̄])\

Br̂(Γ̄(t)) and Br̂(Γ̄(t)) for all t ∈ [0, T ]. By the choice (5.165) of the localization scale r̄, one
may even argue separately on Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) \ Br̂(Γ̄(t)) for each pair of distinct
phases i, j ∈ {1, 2, 3} and all t ∈ [0, T ].

Substep 2.1: Proof of (5.208) on Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) \Br̂(Γ̄(t)). It follows from the
representation (5.192) and the definition (5.206) that B = ηĪi,jB

Īi,j and

|∂tηbulk + (B · ∇)ηbulk| ≤
∣∣∂tζĪi,j + (BĪi,j · ∇)ζĪi,j

∣∣+ ηbulk

∣∣(BĪi,j · ∇)ζĪi,j
∣∣ (5.211)

throughout Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]) \Br̂(Γ̄(t)) for all t ∈ [0, T ].
Recall that the signed distance si,j satisfies

∂tsi,j + (BĪi,j · ∇)si,j = 0 in im(Ψi,j) (5.212)

as a consequence of the choice of the local velocity BĪi,j , cf. Construction 5.32, Construc-
tion 5.12 and (5.29). Hence, we infer from the definition (5.178) and an application of the
chain rule that

∂tζĪi,j + (BĪi,j · ∇)ζĪi,j = 0 in im(Ψi,j). (5.213)

For an estimate of the second right hand side term of (5.211), we simply make use of the
upper bound for the bulk cutoff (5.170) as well as the regularity estimates (5.210) and (5.180)
of BĪi,j and ζĪi,j , respectively.
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Substep 2.2: Proof of (5.208) on Br̂(Γ̄(t)) ∩WĪi,j
(t). In the interface wedge WĪi,j

(t) ∩
Br̂(Γ̄(t)), it holds B = ηΓ̄B

Γ̄ + ηĪi,jB
Īi,j thanks to the representation (5.193) and the defini-

tion (5.206). We may then estimate, making use again of (5.193),

|∂tηbulk + (B · ∇)ηbulk| ≤
∣∣∂tζĪi,j + (BĪi,j · ∇)ζĪi,j

∣∣ (5.214)

+ ηbulk

∣∣(BĪi,j · ∇)ζĪi,j
∣∣+ ηΓ̄

∣∣BΓ̄ −BĪi,j
∣∣|∇ζĪi,j |

onWĪi,j
(t)∩Br̂(Γ̄(t)) for all t ∈ [0, T ]. Thanks to (5.41), the identity (5.213) is still applicable

on an interface wedge. In particular, the first two right hand side terms of (5.214) can
be estimated along the same lines as in Substep 2.1. The third right hand side term is of
required order due to the compatibility estimate (5.160), the bound (5.45), and the regularity
estimate (5.180).

Substep 2.3: Proof of (5.208) on Br̂(Γ̄(t)) ∩WΩ̄i
(t). Throughout WΩ̄i

(t) ∩ Br̂(Γ̄(t)), we
may represent, as a consequence of the identity (5.194), the global velocity defined by (5.206)
in form of B = ηΓ̄B

Γ̄ + ηĪi,jB
Īi,j + ηĪk,iB

Īk,i . Plugging in (5.194) and adding zero twice then
entails

|∂tηbulk+(B · ∇)ηbulk|

≤
∣∣∂tλĪi,jΩ̄i

+(B · ∇)λ
Īi,j
Ω̄i

∣∣|ζĪi,j−ζĪk,i | (5.215)

+ λ
Īi,j
Ω̄i

∣∣∂tζĪi,j+(BĪi,j · ∇)ζĪi,j
∣∣+ (1−λĪi,j

Ω̄i
)
∣∣∂tζĪi,k+(BĪk,i · ∇)ζĪk,i

∣∣
+ λ

Īi,j
Ω̄i
ηΓ̄

∣∣BĪi,j−BΓ̄
∣∣|∇ζĪi,j |+ (1−λĪi,j

Ω̄i
)ηΓ̄

∣∣BĪk,i−BΓ̄
∣∣|∇ζĪk,i |

+ λ
Īi,j
Ω̄i
ηĪk,i

∣∣BĪi,j−BĪk,i
∣∣|∇ζĪi,j |+ (1−λĪi,j

Ω̄i
)ηĪi,j

∣∣BĪk,i−BĪi,j
∣∣|∇ζĪk,i |

+ λ
Īi,j
Ω̄i
ηbulk

∣∣(BĪi,j · ∇)ζĪi,j
∣∣+ (1−λĪi,j

Ω̄i
)ηbulk

∣∣(BĪk,i · ∇)ζĪk,i
∣∣.

The last eight right hand side terms of (5.215) can be estimated by means of the same
ingredients as in the previous two substeps, relying in the process also on (5.42) and (5.43).
Hence, we focus only on the first right hand side term of (5.215). Since the difference ζĪi,j−ζĪk,i
vanishes to first order at the triple line and has a bounded second-order spatial derivative
within interpolation wedges, we have the bound

|ζĪi,j − ζĪk,i | ≤ C dist2(·, Γ̄) (5.216)

on WΩ̄i
(t) ∩ Br̂(Γ̄(t)) for all t ∈ [0, T ]. Since the advective derivative of the interpolation

parameter is bounded within interpolation wedges in form of (5.129), we may add zero and
exploit the property (5.33) as well as the regularity estimates (5.207) and (5.128) to obtain∣∣∂tλĪi,jΩ̄i

+(B · ∇)λ
Īi,j
Ω̄i

∣∣ ≤ C (5.217)

throughout WΩ̄i
(t) ∩ Br̂(Γ̄(t)) for all t ∈ [0, T ]. Post-processing (5.216) by means of (5.43)

thus entails (5.208) on WΩ̄i
(t) ∩Br̂(Γ̄(t)) for all t ∈ [0, T ].

Step 3: Proof of (5.209). Fix i, j, k ∈ {1, 2, 3} such that {i, j, k} = {1, 2, 3}. Due to the
localization properties (5.173)–(5.175), the choice (5.165) of the localization scale r̄, and the
regularity estimates (5.166) and (5.207), the estimate (5.209) is satisfied for trivial reasons
outside of Br̂(Γ̄(t)) ∩ (WΩ̄k

(t) ∪WΩ̄i
(t) ∪WĪk,i

(t)) for all t ∈ [0, T ].
Substep 3.1: Proof of (5.209) on Br̂(Γ̄(t))∩WĪk,i

(t). Based on the representation (5.193)
as well as the definition (5.183), it holds ηĪk,i = (1−ζΓ̄)(1−ηbulk) on Br̂(Γ̄(t)) ∩ WĪk,i

(t)

for all t ∈ [0, T ]. By an application of the product rule and the already established esti-
mate (5.208) for the advective derivative of the bulk cutoff we thus infer∣∣∂tηĪk,i + (B · ∇)ηĪk,i

∣∣ ≤ |∂tζΓ̄ + (B · ∇)ζΓ̄|+ C(dist2(·, Īi,j) ∧ 1)
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on Br̂(Γ̄(t)) ∩WĪk,i
(t) for all t ∈ [0, T ]. Expressing dist(x, Γ̄(t)) = |x−PΓ̄(x, t)| for all x ∈

Br̂(Γ̄(t)) and all t ∈ [0, T ], as well as recalling the relations (5.130) and (5.33), we may
compute

∂t dist(x, Γ̄(t)) = − x−PΓ̄(x, t)

|x−PΓ̄(x, t)|
·B(PΓ̄(x, t), t)

= −
(
B(PΓ̄(x, t), t) · ∇

)
dist(x, Γ̄(t)) (5.218)

for all x ∈ Br̂(Γ̄(t)) \ Γ̄(t) and all t ∈ [0, T ]. It is now a consequence of the chain rule and
the regularity estimates (5.207) resp. (5.181) that

|∂tζΓ̄ + (B · ∇)ζΓ̄| ≤ C(dist2(·, Γ̄) ∧ 1) (5.219)

throughout Br̂(Γ̄(t)) \ Γ̄(t) for all t ∈ [0, T ]. Post-processing the previous display by means
of (5.44) then yields (5.209) on Br̂(Γ̄(t)) ∩WĪk,i

(t) for all t ∈ [0, T ].
Substep 3.2: Proof of (5.209) on Br̂(Γ̄(t)) ∩WΩ̄i

(t). Recall (5.184)–(5.185), i.e., ηĪk,i =

λ
Īk,i
Ω̄i

(1−ζΓ̄)ζĪk,i on Br̂(Γ̄(t))∩WΩ̄i
(t) for all t ∈ [0, T ]. It then directly follows from the prod-

uct rule, the trivial estimate 1−ζΓ̄ ≤ C(dist2(·, Γ̄) ∧ 1), the estimate (5.217) on the advec-
tive derivative of the interpolation function λĪk,i

Ω̄i
= 1−λĪi,j

Ω̄i
, the regularity estimates (5.180)

and (5.207), the estimate (5.219), and finally the bound (5.43) that (5.209) holds true on
Br̂(Γ̄(t)) ∩WΩ̄i

(t) for all t ∈ [0, T ].
This concludes the proof of Lemma 5.33 since the argument on the other relevant inter-

polation wedge proceeds analogously.

5.4.3 Approximate transport equations and motion by mean curvature

We establish the validity of the estimates (5.1d)–(5.1f) in terms of the global extensions
(ξi,j)i,j∈{1,2,3},i 6=j of the unit normal vector fields from Construction 5.30 and the global
extension B of the velocity field from Construction 5.32.

Lemma 5.34. Let the assumptions and notation from Construction 5.30 and Construc-
tion 5.32 be in place. There exists a constant C > 0, which depends only on the data of the
smoothly evolving regular double bubble (Ω̄1, Ω̄2, Ω̄3) on [0, T ], such that for all i, j ∈ {1, 2, 3}
with i 6= j it holds throughout R3×[0, T ]

|∂tξi,j + (B · ∇)ξi,j + (∇B)Tξi,j | ≤ C(dist(·, Īi,j) ∧ 1), (5.220)
|B · ξi,j +∇ · ξi,j | ≤ C(dist(·, Īi,j) ∧ 1), (5.221)

|ξi,j · (∂tξi,j + (B · ∇)ξi,j)| ≤ C(dist2(·, Īi,j) ∧ 1). (5.222)

Proof. The main point of the proof is the reduction to the corresponding assertions on the
level of the local constructions (ξ

Īi,j
i,j , B

Īi,j ) at two-phase interfaces (see Lemma 5.13) and the
local construction (ξΓ̄, BΓ̄) at a triple line (see Proposition 5.14). The reduction argument
is facilitated by an interplay of the estimates (5.167)–(5.172) resp. (5.208) and (5.209) with
sufficient compatibility of the local and global constructions. We list and prove the required
compatibility estimates in a first step before starting with the proof of the bounds (5.220)–
(5.222).
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5.4. Gradient flow calibrations for double bubbles

Step 1: Compatibility estimates. We claim that for all i, j ∈ {1, 2, 3} with i 6= j it holds
on R3 × [0, T ]

1supp ηĪi,j

∣∣ξi,j−ξĪi,ji,j

∣∣+ 1supp ηΓ̄

∣∣ξi,j−ξΓ̄
i,j

∣∣ ≤ C(dist(·, Īi,j) ∧ 1), (5.223)

1supp ηĪi,j

∣∣B−BĪi,j
∣∣+ 1supp ηΓ̄

∣∣B−BΓ̄
∣∣ ≤ C(dist(·, Īi,j) ∧ 1), (5.224)

1supp ηĪi,j

∣∣(∇B−∇BĪi,j )Tξ
Īi,j
i,j

∣∣+ 1supp ηΓ̄

∣∣(∇B−∇BΓ̄)TξΓ̄
i,j

∣∣ (5.225)

≤ C(dist(·, Īi,j) ∧ 1),

1supp ηĪi,j

∣∣(ξi,j−ξĪi,ji,j

)
· ξĪi,ji,j

∣∣+ 1supp ηΓ̄

∣∣(ξi,j−ξΓ̄
i,j

)
· ξΓ̄
i,j

∣∣ (5.226)

≤ C(dist2(·, Īi,j) ∧ 1),

1supp ηĪi,j

∣∣ξĪi,ji,j ·
(
(B−BĪi,j ) · ∇

)
ξ
Īi,j
i,j

∣∣+ 1supp ηΓ̄

∣∣ξΓ̄
i,j ·

(
(B−BΓ̄) · ∇

)
ξΓ̄
i,j

∣∣ (5.227)

≤ C(dist2(·, Īi,j) ∧ 1).

For a proof of these compatibility estimates, we only focus on the respective first left hand side
terms. The proof for the second left hand side terms follows along the same lines switching
the roles of Īi,j and Γ̄ in the process.

Inserting the definition (5.198) and exploiting the estimate (5.167) yields ξi,j−ξ
Īi,j
i,j =

ηΓ̄(ξΓ̄
i,j−ξ

Īi,j
i,j ) − ηbulkξ

Īi,j
i,j + O(dist2(·, Īi,j) ∧ 1) on supp ηĪi,j . Hence, we obtain the asserted

bound (5.223) thanks to the estimates (5.158) and (5.170).
Next, the definition (5.206) together with the estimates (5.160), (5.167), (5.170) and (5.210)

impliesB−BĪi,j = ηΓ̄(BΓ̄−BĪi,j )−ηbulkB
Īi,j+O(dist(·, Īi,j)∧1) = O(dist(·, Īi,j)∧1) on supp ηĪi,j

as required.
Moreover, it holds on supp ηĪi,j as a consequence of the definition (5.206), the product

rule, the already established compatibility estimate (5.224), as well as the estimates (5.167),
(5.168) and (5.210) that

(∇B−∇BĪi,j )Tξ
Īi,j
i,j = ηΓ̄(∇BΓ̄−∇BĪi,j )Tξ

Īi,j
i,j − ηbulk(∇BĪi,j )Tξ

Īi,j
i,j

+ (BΓ̄ · ξĪi,ji,j )∇ηΓ̄ + (BĪi,j · ξĪi,ji,j )∇ηĪi,j +O(dist(·, Īi,j) ∧ 1)

= ηΓ̄(∇BΓ̄−∇BĪi,j )Tξ
Īi,j
i,j

− (B · ξĪi,ji,j )∇ηbulk − ηbulk(∇BĪi,j )Tξ
Īi,j
i,j +O(dist(·, Īi,j) ∧ 1).

The previous display in turn implies (5.225) in view of the bounds (5.161), (5.170), (5.171),
(5.210) and (5.207).

By the argument for (5.223) we also have (ξi,j−ξ
Īi,j
i,j ) · ξĪi,ji,j = ηΓ̄(ξΓ̄

i,j−ξ
Īi,j
i,j ) · ξĪi,ji,j −

ηbulk|ξ
Īi,j
i,j |2 + O(dist2(·, Īi,j) ∧ 1) on supp ηĪi,j . Hence, we deduce from (5.159) and (5.170)

that (5.226) holds true.
Finally, based on the definition (5.206) and the estimates (5.167), (5.201) and (5.210), we

may bound on supp ηĪi,j

ξ
Īi,j
i,j ·

(
(B−BĪi,j ) · ∇

)
ξ
Īi,j
i,j

= ηΓ̄

(
ξ
Īi,j
i,j −ξ

Γ̄
i,j

)
·
(
(BΓ̄−BĪi,j ) · ∇

)
ξ
Īi,j
i,j + ηΓ̄ξ

Γ̄
i,j ·

(
(BΓ̄−BĪi,j ) · ∇

)
ξ
Īi,j
i,j

− ηbulkξ
Īi,j
i,j · (B

Īi,j · ∇)ξ
Īi,j
i,j +O(dist2(·, Īi,j) ∧ 1),

so that (5.158), (5.160), (5.170), (5.201) and (5.210) entail the desired estimate (5.227).
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Step 2: Proof of (5.220). For the sake of brevity, from now on we refrain from explicitly
spelling out the application of the regularity estimates (5.199), (5.201), (5.207) or (5.210), and
thus solely concentrate on the error contributions in terms of the distance to the interface Īi,j .

We start estimating based on the definition (5.198), the product rule, as well as the
bounds (5.167) and (5.169)

∂tξi,j = ηΓ̄∂tξ
Γ̄
i,j + ηĪi,j∂tξ

Īi,j
i,j + ξΓ̄

i,j∂tηΓ̄ + ξ
Īi,j
i,j ∂tηĪi,j +O(dist(·, Īi,j) ∧ 1).

As a consequence of the compatibility estimate (5.223) and the bounds (5.169), we may add
zero twice and obtain

ξΓ̄
i,j∂tηΓ̄ + ξ

Īi,j
i,j ∂tηĪi,j = ξi,j(∂tηΓ̄+∂tηĪi,j ) +O(dist(·, Īi,j) ∧ 1)

= −ξi,j∂tηbulk +O(dist(·, Īi,j) ∧ 1).

The previous two displays combine to

∂tξi,j = ηΓ̄∂tξ
Γ̄
i,j + ηĪi,j∂tξ

Īi,j
i,j − ξi,j∂tηbulk +O(dist(·, Īi,j) ∧ 1). (5.228)

Replacing the differential operator ∂t by (B · ∇) in the previous argument entails

(B · ∇)ξi,j = ηΓ̄(B · ∇)ξΓ̄
i,j + ηĪi,j (B · ∇)ξ

Īi,j
i,j

− ξi,j(B · ∇)ηbulk +O(dist(·, Īi,j) ∧ 1).

Making use of the compatibility estimate (5.224) updates the previous display to

(B · ∇)ξi,j = ηΓ̄(BΓ̄ · ∇)ξΓ̄
i,j + ηĪi,j (B

Īi,j · ∇)ξ
Īi,j
i,j (5.229)

− ξi,j(B · ∇)ηbulk +O(dist(·, Īi,j) ∧ 1).

Inserting the definition (5.198), recalling the estimate (5.167), and adding zero based on the
compatibility estimate (5.225) moreover allows to estimate

(∇B)Tξi,j = ηΓ̄(∇B)TξΓ̄
i,j + ηĪi,j (∇B)Tξ

Īi,j
i,j +O(dist(·, Īi,j) ∧ 1)

= ηΓ̄(∇BΓ̄)TξΓ̄
i,j + ηĪi,j (∇B

Īi,j )Tξ
Īi,j
i,j +O(dist(·, Īi,j) ∧ 1). (5.230)

The desired estimate (5.220) thus follows from (5.228)–(5.230), the estimate (5.208) of the
advective derivative of the bulk cutoff, as well as the local versions (5.26) and (5.35) of (5.220),
respectively.

Step 3: Proof of (5.221). We compute as a consequence of the definition (5.198), the
estimate (5.167), and the compatibility estimate (5.224)

B · ξi,j = ηΓ̄B · ξΓ̄
i,j + ηĪi,jB · ξ

Īi,j
i,j +O(dist(·, Īi,j) ∧ 1)

= ηΓ̄B
Γ̄ · ξΓ̄

i,j + ηĪi,jB
Īi,j · ξĪi,ji,j +O(dist(·, Īi,j) ∧ 1). (5.231)

We also directly estimate by means of the definition (5.198), the estimate (5.168), as well as
the compatibility estimate (5.223)

∇ · ξi,j = ηΓ̄∇ · ξΓ̄
i,j+ηĪi,j∇ · ξ

Īi,j
i,j +(ξΓ̄

i,j · ∇)ηΓ̄+(ξ
Īi,j
i,j · ∇)ηĪi,j+O(dist(·, Īi,j) ∧ 1)

= ηΓ̄∇ · ξΓ̄
i,j + ηĪi,j∇ · ξ

Īi,j
i,j − (ξi,j · ∇)ηbulk +O(dist(·, Īi,j) ∧ 1). (5.232)

Hence, the estimate (5.221) follows by combining (5.231)–(5.232), the estimate (5.171) for
the bulk cutoff, and the local versions of (5.221) given by (5.27) and (5.36), respectively.
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Step 4: Proof of (5.222). Plugging in the definition (5.198), recalling the estimate (5.167),
and denoting by k ∈ {1, 2, 3} \ {i, j} the remaining phase yields

ξi,j · ∂tξi,j = ηΓ̄ξ
Γ̄
i,j · ∂tξi,j + ηĪi,jξ

Īi,j
i,j · ∂tξi,j +O(dist2(·, Īi,j) ∧ 1)

= η2
Γ̄ξ

Γ̄
i,j · ∂tξΓ̄

i,j + η2
Īi,j
ξ
Īi,j
i,j · ∂tξ

Īi,j
i,j

+ ηΓ̄ηĪi,jξ
Γ̄
i,j · ∂tξ

Īi,j
i,j + ηΓ̄ηĪi,jξ

Īi,j
i,j · ∂tξ

Γ̄
i,j

+ ηΓ̄ξ
Γ̄
i,j ·

(
ξΓ̄
i,j∂tηΓ̄ + ξ

Īi,j
i,j ∂tηĪi,j + ξ

Īj,k
j,k ∂tηĪj,k + ξ

Īk,i
k,i ∂tηĪk,i

)
+ ηĪi,jξ

Īi,j
i,j ·

(
ξΓ̄
i,j∂tηΓ̄ + ξ

Īi,j
i,j ∂tηĪi,j + ξ

Īj,k
j,k ∂tηĪj,k + ξ

Īk,i
k,i ∂tηĪk,i

)
+O(dist2(·, Īi,j) ∧ 1).

The compatibility estimates (5.223) and (5.226) in combination with the bounds (5.167),
and (5.170) provide an upgrade of the previous display in form of

ξi,j · ∂tξi,j = η2
Γ̄ξ

Γ̄
i,j · ∂tξΓ̄

i,j + η2
Īi,j
ξ
Īi,j
i,j · ∂tξ

Īi,j
i,j (5.233)

+ ηΓ̄ηĪi,jξ
Γ̄
i,j · ∂tξ

Īi,j
i,j + ηΓ̄ηĪi,jξ

Īi,j
i,j · ∂tξ

Γ̄
i,j

+ ηΓ̄(ξΓ̄
i,j · ξi,j)∂t(ηΓ̄+ηĪi,j )

+ ηĪi,j (ξ
Īi,j
i,j · ξi,j)∂t(ηΓ̄+ηĪi,j )

+ ηΓ̄ξ
Γ̄
i,j ·

(
ξ
Īj,k
j,k ∂tηĪj,k + ξ

Īk,i
k,i ∂tηĪk,i

)
+ ηĪi,jξ

Īi,j
i,j ·

(
ξ
Īj,k
j,k ∂tηĪj,k + ξ

Īk,i
k,i ∂tηĪk,i

)
+O(dist2(·, Īi,j) ∧ 1).

Substituting the differential operator (B·∇) for ∂t in the previous argument, making use of the
compatibility estimates (5.227), (5.223) and (5.224), and exploiting twice the estimate (5.209)
then shows that

ξi,j · (∂t+B · ∇)ξi,j

= η2
Γ̄ξ

Γ̄
i,j · (∂t+BΓ̄ · ∇)ξΓ̄

i,j + η2
Īi,j
ξ
Īi,j
i,j · (∂t+B

Īi,j · ∇)ξ
Īi,j
i,j

+ ηΓ̄ηĪi,jξ
Γ̄
i,j · (∂t+BĪi,j · ∇)ξ

Īi,j
i,j + ηΓ̄ηĪi,jξ

Īi,j
i,j · (∂t+B

Γ̄ · ∇)ξΓ̄
i,j

− ηΓ̄(ξΓ̄
i,j · ξi,j)(∂t+B · ∇)ηbulk − ηĪi,j (ξ

Īi,j
i,j · ξi,j)(∂t+B · ∇)ηbulk

+O(dist2(·, Īi,j) ∧ 1).

Hence, employing the local versions (5.28) and (5.37) of (5.222) and making use of the
estimate (5.208) for the bulk cutoff shows that

ξi,j · (∂t+B · ∇)ξi,j

= ηΓ̄ηĪi,jξ
Γ̄
i,j · (∂t+BĪi,j · ∇)ξ

Īi,j
i,j + ηΓ̄ηĪi,jξ

Īi,j
i,j · (∂t+B

Γ̄ · ∇)ξΓ̄
i,j (5.234)

+O(dist2(·, Īi,j) ∧ 1).

Adding zero, making use of the local evolution equations (5.26) resp. (5.28), and exploiting
the compatibility estimates (5.223) and (5.225) further implies that

ηΓ̄ηĪi,jξ
Γ̄
i,j ·

(
∂tξ

Īi,j
i,j +(BĪi,j · ∇)ξ

Īi,j
i,j

)
= ηΓ̄ηĪi,jξ

Γ̄
i,j ·

(
∂tξ

Īi,j
i,j +(BĪi,j · ∇)ξ

Īi,j
i,j +(∇BĪi,j )Tξ

Īi,j
i,j

)
− ηΓ̄ηĪi,jξ

Γ̄
i,j · (∇BĪi,j )Tξ

Īi,j
i,j

= −ηΓ̄ηĪi,j
(
ξ
Īi,j
i,j −ξ

Γ̄
i,j

)
(∇B)Tξ

Īi,j
i,j +O(dist2(·, Īi,j) ∧ 1).
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Switching the roles of Γ̄ and Īi,j in the argument leading to the previous display, relying in
the process on the local evolution equations (5.35) resp. (5.37), we then in summary obtain
together with (5.223)

ηΓ̄ηĪi,jξ
Γ̄
i,j ·

(
∂tξ

Īi,j
i,j +(BĪi,j · ∇)ξ

Īi,j
i,j

)
+ ηΓ̄ηĪi,jξ

Īi,j
i,j ·

(
∂tξ

Γ̄
i,j+(BΓ̄ · ∇)ξΓ̄

i,j

)
= −ηΓ̄ηĪi,j

(
ξ
Īi,j
i,j −ξ

Γ̄
i,j

)
(∇B)T

(
ξ
Īi,j
i,j −ξ

Γ̄
i,j

)
+O(dist2(·, Īi,j) ∧ 1)

= O(dist2(·, Īi,j) ∧ 1). (5.235)

The combination of the estimates (5.234) and (5.235) thus entails the bound (5.222).

5.4.4 Existence of a gradient-flow calibration: Proof of Theorem 5.3

This is only a matter of collecting already established facts. More precisely, the required
regularity for ((ξi,j)i,j∈{1,2,3},i 6=j , B) is part of Lemma 5.31 and Lemma 5.33, respectively.
The calibration resp. extension property (5.1a) as well as the coercivity estimate (5.1c) for
the extensions of the unit normal vector fields follow from Lemma 5.31. The estimates (5.1d)–
(5.1f) are finally the content of Lemma 5.34.

5.5 Existence of transported weights

Proof of Proposition 5.5. The proof proceeds in several steps.
Step 1: Construction of an auxiliary family of transported weights. We first fix a smooth

truncation of the identity. More precisely, let ϑ : R → R be a smooth and non-decreasing map
such that ϑ(r) = r for |r| ≤ 1

2 , ϑ(r) = 1 for r ≥ 1 and ϑ(r) = −1 for r ≤ −1. Let r̂ ∈ (0, 1]
be the localization scale of Proposition 5.14, let r̄ ∈ (0, 1] be the localization scale defined
by (5.165), and let finally δ ∈ (0, 1] be the constant from Step 2 of the proof of Lemma 5.29
(cf. the defining property (5.187) for all i, j ∈ {1, 2, 3}, i 6= j). We then define building blocks

ϑi,j := ϑ
(si,j
δr̄

)
in im(Ψi,j), (5.236)

ϑext := ϑ
(dist(·, Γ̄)

r̂

)
in R3 × [0, T ]. (5.237)

Note that by definition (5.165) of the localization scale r̄, we have for all phases i ∈ {1, 2, 3}
a covering of ∂Ω̄i in form of

∂Ω̄i ⊂ Br̂(Γ̄(t)) ∪
⋃

j∈{1,2,3},j 6=i

imr̄(Ψi,j)(t) \Br̂(Γ̄(t)) =: N ∂Ω̄i
r̂,r̄ (t), (5.238)

for all t ∈ [0, T ], and where we abbreviated

imr̄(Ψi,j)(t) := Ψi,j(Īi,j(t)×{t}×[−r̄, r̄]), t ∈ [0, T ].

Note that this also implies a disjoint covering of R3 by means of

R3 = N ∂Ω̄i
r̂,r̄ (t) ∪

(
Ω̄i(t) \ N ∂Ω̄i

r̂,r̄ (t)
)
∪
(
(R3 \ Ω̄i(t)) \ N ∂Ω̄i

r̂,r̄ (t)
)

(5.239)

for all t ∈ [0, T ].
For each phase i ∈ {1, 2, 3}, denote by j, k ∈ {1, 2, 3} \ {i} the remaining two phases. We

then define, based on the building blocks (5.236) and (5.237), a weight ϑ̂i : R3×[0, T ]→ [−1, 1]
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by means of

ϑ̂i(·, t) := ϑi,`(·, t) in imr̄(Ψi,j)(t) \Br̂(Γ̄(t)), ` 6= i, (5.240)

ϑ̂i(·, t) := ϑi,`(·, t) in WĪi,j
(t) ∩Br̂(Γ̄(t)), ` 6= i, (5.241)

ϑ̂i(·, t) := λ
Īi,j
Ω̄i

(·, t)ϑi,j(·, t) (5.242)

+ λ
Īk,i
Ω̄i

(·, t)ϑi,k(·, t) in WΩ̄i
(t) ∩Br̂(Γ̄(t)),

ϑ̂i(·, t) := ϑext(·, t) in WĪj,k
(t) ∩Br̂(Γ̄(t)), (5.243)

ϑ̂i(·, t) := λ
Īi,j
Ω̄j

(·, t)ϑi,j(·, t) (5.244)

+ λ
Īj,k
Ω̄j

(·, t)ϑext(·, t) in WΩ̄j
(t) ∩Br̂(Γ̄(t)),

ϑ̂i(·, t) := λ
Īk,i
Ω̄k

(·, t)ϑi,k(·, t) (5.245)

+ λ
Īj,k
Ω̄k

(·, t)ϑext(·, t) in WΩ̄k
(t) ∩Br̂(Γ̄(t)),

ϑ̂i(·, t) := −1 in Ω̄i(t) \ N ∂Ω̄i
r̂,r̄ (t), (5.246)

ϑ̂i(·, t) := 1 else (5.247)

for all t ∈ [0, T ]. For the construction and properties of the interpolation functions, we refer
to Lemma 5.29. Note that ϑ̂i is well-defined in view of (5.238), (5.239) and (5.40). Moreover,
due to the defining property (5.187) of the constant δ ∈ (0, 1], we infer that ϑ̂i is continuous
throughout R3×[0, T ].

Step 2: Properties of the auxiliary family of transported weights. In this step, we verify
that the auxiliary family ϑ̂ = (ϑ̂i)i∈{1,2,3} satisfies all the requirements of Definition 5.4
with the (obvious) exception that ϑ̂i ∈ L1(R3×[0, T ]). The W 1,∞-regularity on R3×[0, T ]
as well as the required conditions from item ii) of Definition 5.4 are immediate from the
definitions (5.240)–(5.247). Hence, we focus in the following on the deduction of the advection
estimate (5.2).

Substep 2.1: Preliminary estimates. We first claim that for all i, j ∈ {1, 2, 3} with i 6= j
and all t ∈ [0, T ] it holds

|∂tϑi,j+(B · ∇)ϑi,j |(·, t) ≤ C dist(·, ∂Ω̄i(t)) in imr̄(Ψi,j)(t) \Br̂(Γ̄(t)), (5.248)
|∂tϑi,j+(B · ∇)ϑi,j |(·, t) ≤ C dist(·, ∂Ω̄i(t)) (5.249)

in Br̂(Γ̄(t)) ∩
(
WĪi,j

(t) ∪WΩ̄i
(t) ∪WΩ̄j

(t)
)
,

|∂tϑext+(B · ∇)ϑext|(·, t) ≤ C dist(·, Γ̄(t)) in Br̂(Γ̄(t)) \ Γ̄(t). (5.250)

We start with a proof of (5.248). It follows from the representation (5.192) and the
definition (5.206) that B = ηĪi,jB

Īi,j in imr̄(Ψi,j)(t) \ Br̂(Γ̄(t)) for all t ∈ [0, T ]. We may
then estimate by the chain rule, the definition (5.236), the identity (5.212), the representa-
tion (5.192), as well as the estimate (5.170)

|∂tϑi,j+(B · ∇)ϑi,j | ≤ ηbulk|(BĪi,j · ∇)ϑi,j | ≤ C dist(·, Ω̄i)

throughout imr̄(Ψi,j)(t) \Br̂(Γ̄(t)) for all t ∈ [0, T ].
We next prove (5.249). Throughout the interface wedge WĪi,j

(t) ∩ Br̂(Γ̄(t)), it holds
B = ηΓ̄B

Γ̄ + ηĪi,jB
Īi,j thanks to the representation (5.193) and the definition (5.206). Em-

ploying (5.193) once more, we then estimate making also use of the chain rule, the defini-
tion (5.236) and the identity (5.212)

|∂tϑi,j+(B · ∇)ϑi,j | ≤ ηbulk|(BĪi,j · ∇)ϑi,j |+ ηΓ̄

∣∣((BΓ̄−BĪi,j ) · ∇
)
ϑi,j
∣∣
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on WĪi,j
(t) ∩ Br̂(Γ̄(t)) for all t ∈ [0, T ]. Post-processing the previous display by means

of (5.170), (5.160) and (5.45) thus yields (5.249) on WĪi,j
(t) ∩Br̂(Γ̄(t)), t ∈ [0, T ].

ThroughoutWΩ̄i
(t)∩Br̂(Γ̄(t)), we may write, as a consequence of the representation (5.194),

the global velocity defined by (5.206) in form of B = ηΓ̄B
Γ̄ + ηĪi,jB

Īi,j + ηĪk,iB
Īk,i . Hence,

based on the same ingredients as in the case of interface wedges we may estimate

|∂tϑi,j+(B · ∇)ϑi,j |

≤ ηbulk|(BĪi,j · ∇)ϑi,j |+ ηΓ̄

∣∣((BΓ̄−BĪi,j ) · ∇
)
ϑi,j
∣∣+ ηĪk,i

∣∣((BĪk,i−BĪi,j ) · ∇
)
ϑi,j
∣∣

on WΩ̄i
(t) ∩Br̂(Γ̄(t)) for all t ∈ [0, T ]. The previous display in turn upgrades to the desired

estimate (5.249) thanks to (5.170), (5.160) and (5.43).
Finally, the estimate (5.250) is a direct consequence of the chain rule, the definition (5.237),

the identity (5.218) and the regularity estimate (5.207).
Substep 2.2: Proof of (5.2) in terms of (ϑ̂i)i∈{1,2,3}. We first observe that as a consequence

of the definitions (5.240)–(5.247), there exists C ≥ 1 such that

1

C
|ϑ̂i| ≤ dist(·, ∂Ω̄i) ≤ C|ϑ̂i| in R3×[0, T ]. (5.251)

Modulo this post-processing, the claim (5.2) in terms of ϑ̂i is then directly implied for the
regions (5.240), (5.241) and (5.243) by the estimates (5.248)–(5.250) and (5.44). Furthermore,
the only additional ingredients needed in the interpolation regions (5.242), (5.244) and (5.245)
are given by the estimate (5.217) for the interpolation functions as well as the bound (5.43).
Since there is nothing to prove for the regions (5.246) and (5.247), this in turn concludes the
proof of (5.2) in terms of (ϑ̂i)i∈{1,2,3}.

Step 3: Enforcing integrability of the weights. We slightly modify the construction from
the previous step to take care of the integrability issue. To this end, we first choose a smooth
and concave function κ : [0,∞) → [0, 1] such that κ(0) = 0 as well as κ(r) = 1 for r ≥ 1.
Which we think of as an upper concave approximation of the map r 7→ r ∧ 1 on the interval
[0,∞). Choose a sufficiently large radius R > 0 such that⋃

t∈[0,T ]

⋃
i,j∈{1,2,3},i 6=j

Br̂(Īi,j(t))× {t} ⊂⊂ BR(0). (5.252)

We then define a weight ηR ∈W 1,∞(R3) ∩W 1,1(R3) by means of

ηR(x) := κ(exp(R−|x|)), x ∈ R3, (5.253)

with its spatial gradient being bounded in form of

|∇ηR| ≤ C|ηR| in R3. (5.254)

With all of these ingredients in place, we may finally define ϑi := ηRϑ̂i for all phases i ∈
{1, 2, 3}. Note that ϑi ∈W 1,1(R3×[0, T ]; [−1, 1]) as desired. Moreover, the weights ϑi directly
inherit all the other required properties of Definition 5.4 from the auxiliary weights ϑ̂i of the
previous step, as can be seen from the definitions.
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