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Abstract. We consider the flow of two viscous and incompressible fluids
within a bounded domain modeled by means of a two-phase Navier–Stokes

system. The two fluids are assumed to be immiscible, meaning that they are

separated by an interface. With respect to the motion of the interface, we con-
sider pure transport by the fluid flow. Along the boundary of the domain, a

complete slip boundary condition for the fluid velocities and a constant ninety

degree contact angle condition for the interface are assumed.
The main result of the present work establishes in 2D a weak-strong unique-

ness result in terms of a varifold solution concept à la Abels (Interfaces Free

Bound. 9, 2007). The proof is based on a relative entropy argument. More
precisely, we extend ideas from the recent work of Fischer and the first author

(Arch. Ration. Mech. Anal. 236, 2020) to incorporate the contact angle condi-
tion. To focus on the effects of the necessarily singular geometry, we work for

simplicity in the regime of same viscosities for the two fluids.
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1. Introduction

1.1. Context. The question of uniqueness or non-uniqueness of weak solution con-
cepts in the context of classical fluid mechanics models has seen a series of intriguing
breakthroughs throughout the last three decades. In case of the Euler equations,
the journey started with the seminal works of Scheffer [21] and Shnirelman [23]
providing the construction of compactly supported nonzero weak solutions. The
first example of an energy dissipating weak solution to the Euler equations is again
due to Shnirelman [24]. Later, De Lellis and Székelyhidi Jr. not only strengthened
these results in their groundbreaking works (see, e.g., [8] and [9]), but in retrospect
even more importantly introduced a novel perspective on the problem: their proofs
are based on a nontrivial transfer of convex integration techniques from typically
geometric PDEs to the framework of the Euler equations. Indeed, their ideas even-
tually culminated in the resolution of Onsager’s conjecture by Isett [16]; see also
the work of Buckmaster, De Lellis, Székelyhidi Jr. and Vicol [7].

By now, these developments also generated spectacular results for the Navier–
Stokes equations. For instance, Buckmaster and Vicol [5] as well as Buckmaster,
Colombo and Vicol [6] establish that mild solutions in the energy class are non-
unique. The constructed solutions are not Leray–Hopf solutions, i.e., it is not proven
that they are subject to the energy dissipation inequality. However, Albritton,
Brué and Colombo [2] even show in a very recent preprint that one can construct
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an external force such that there exists a finite time horizon so that one may
construct at least two distinct Leray–Hopf solutions for the associated forced full-
space Navier–Stokes equations in 3D (both starting from zero initial data).

Hence, in terms of uniqueness of weak solutions the best one can expect in general
is essentially a weak-strong uniqueness principle. Roughly speaking, this refers to
uniqueness of weak solutions within a class of sufficiently regular solutions. In the
context of the incompressible Navier–Stokes equations, such results are classical and
can be traced back to the works of Leray [18], Prodi [19] and Serrin [22]. In the case
of the compressible Navier–Stokes equations, we mention the works of Germain [14],
Feireisl, Jin and Novotný [10], as well as Feireisl and Novotný [11]. The usual
strategy to establish these results is based on a by now widely used method which
infers weak-strong uniqueness from a quantitative stability estimate for a suitable
distance measure between two solutions, the so-called relative entropy (or relative
energy). We refer to the survey article by Wiedemann [27] for an overview on the
relative entropy method in the context of mathematical fluid mechanics.

In the present work, we are concerned with the question of weak-strong unique-
ness with respect to a two-phase free boundary fluid problem within a physical
domain Ω ⊂ Rd, d ∈ {2, 3}. More precisely, we study this question in terms of
varifold solutions à la Abels [1] for the specific evolution problem of the flow of
two incompressible Navier–Stokes fluids separated by a sharp interface. Along the
boundary of the domain, a complete slip boundary condition for the fluid velocities
as well as a constant ninety degree contact angle condition for the interface are as-
sumed. For the precise PDE formulation of the model, we refer to Subsection 1.2.
For a discussion of the weak solution concept and its precise definition, we instead
refer to Subsection 1.3 and Definition 11, respectively. Even when neglecting the
fluid mechanics, uniqueness of weak solutions in form of a weak-strong uniqueness
principle is in general the best one can expect also for interface evolution problems.
In this context, this is due to the formation of singularities and topology changes;
see already, for instance, the work of Brakke [4] for mean curvature flow of net-
works of interfaces in R2 or the work of Angenent, Ilmanen and Chopp [3] for mean
curvature flow of surfaces in R3.

When restricting to the full-space setting Ω = Rd, Fischer and the first au-
thor [12] recently established a weak-strong uniqueness principle up to the first
topology change for the corresponding two-phase free boundary fluid problem con-
sidered in this work. Their approach relies on a suitable extension of the relative
entropy method to get control on the difference in the underlying geometries of
two solutions; cf. Subsection 1.4 for a discussion in this direction. Their ideas
were later generalized by Fischer, Laux, Simon and the first author [13] to derive a
weak-strong uniqueness principle for BV solutions of Laux and Otto [17] to mean
curvature flow of networks of interfaces in R2, or even for canonical multiphase
Brakke flows of Stuvard and Tonegawa [26] (cf. also [15]).

The main goal of the present work is to extend parts of the analysis of [12]
to include the nontrivial boundary effects. More precisely, in our main result we
establish a weak-strong uniqueness principle in the framework of varifold solutions
to the two-phase free boundary fluid problem specified in Subsection 1.2 below.
We refer to Theorem 1 for the precise mathematical formulation of our result. In
the spirit of [13], we also derive a conditional weak-strong uniqueness result in the
three-dimensional setting; cf. Proposition 4 for the precise statement.
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1.2. Strong PDE formulation of the two-phase fluid model. We start with a
description of the underlying evolving geometry. Denoting by Ω a bounded domain
in Rd with smooth and orientable boundary ∂Ω, d ∈ {2, 3}, each of the two fluids
is contained within a time-evolving domain Ω+(t) ⊂ Ω resp. Ω−(t) ⊂ Ω, t ∈ [0, T ).
The interface separating both fluids is given as the common boundary between the
two fluid domains. Denoting it at time t ∈ [0, T ) by I(t) ⊂ Ω, we then have a
disjoint decomposition of Ω in form of Ω = Ω+(t)∪Ω−(t)∪ (I(t)∩Ω)∪∂Ω for every
t ∈ [0, T ). We write n∂Ω to refer to the inner pointing unit normal vector field
of ∂Ω, as well as nI(·, t) to denote the unit normal vector field along I(t) pointing
towards Ω+(t), t ∈ [0, T ).

With respect to internal boundary conditions along the separating interface,
first, a no-slip boundary condition is assumed. This in fact allows to represent the
two fluid velocity fields by a single continuous vector field v. We also consider a
single scalar field p as the pressure, which in contrast may jump across the interface.
Second, along the interface the internal forces of the fluids have to match a surface
tension force. Denoting by χ(·, t) the characteristic function associated with the
domain Ω+(t), t ∈ [0, T ), and defining µ(χ) := µ+χ + µ−(1−χ) with µ+ and µ−

being the viscosities of the two fluids, the stress tensor T := µ(χ)(∇v+∇vT)− p Id
is required to satisfy

[[TnI ]](·, t) = σHI(·, t) along I(t) (1)

for all t ∈ [0, T ), where moreover [[·]] denotes the jump in normal direction, σ > 0
is the fixed surface tension coefficient of the interface, and HI(·, t) represents the
mean curvature vector field along the interface I(t), t ∈ [0, T ).

With respect to boundary conditions along ∂Ω, we assume in terms of the two
fluids a complete slip boundary conditions. In terms of the evolving geometry, a
ninety degree contact angle condition at the contact set of the fluid-fluid interface
with the boundary of the domain is imposed. Mathematically, this amounts to

v(·, t) · n∂Ω = 0 along ∂Ω, (2)(
n∂Ω · µ(χ)(∇v +∇vT)(·, t)B

)
= 0 along ∂Ω (3)

for all t ∈ [0, T ) and all tangential vector fields B along ∂Ω, as well as

nI(·, t) · n∂Ω = 0 along I(t) ∩ ∂Ω (4)

for all t ∈ [0, T ). These boundary conditions not only prescribe that the fluid can-
not exit from the domain and that it can move only tangentially to its boundary,
but they also exclude any external contribution to the viscous stress and any fric-
tion effect with the boundary. Observe also that the ninety degree contact angle
condition is consistent with the complete slip boundary conditions (2) and (3), in
the sense that (4) together with (2) implies (3). Furthermore, the ninety degree
contact angle may be imposed only as an initial condition: for later times it can
be deduced using (2) and (3) and a Gronwall-type argument. For details, see the
remark after Definition 10.

Now, defining ρ(χ) := ρ+χ+ρ−(1−χ) with ρ+ and ρ− representing the densities
of the two fluids, the fluid motion is given by the incompressible Navier–Stokes
equation, which by (1) and (3) can be formulated as

∂t
(
ρ(χ)v

)
+∇ ·

(
ρ(χ)v ⊗ v

)
= −∇p+∇ ·

(
µ(χ)(∇v +∇vT)

)
+ σHI |∇χ|⌞Ω, (5)

∇ · v = 0, (6)
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where |∇χ|(·, t)⌞Ω represents the surface measure Hd−1⌞(I(t)∩Ω), t ∈ [0, T ). Sec-
ond, the interface is assumed to be transported along the fluid flow. In other words,
the associated normal velocity of the interface is given by the normal component
of the fluid velocity v. Thanks to (2), (4) and (6), this is formally equivalent to

∂tχ+ (v · ∇)χ = 0. (7)

Finally, from a modeling perspective, the total energy of the PDE system (5)–(7)
is given by the sum of kinetic and surface tension energies

E[χ, v] :=

ˆ
Ω

1

2
ρ(χ)|v|2 dx+ σ

ˆ
Ω

1 d|∇χ|+ σ+

ˆ
∂Ω

χdS + σ−
ˆ
∂Ω

(1− χ) dS, (8)

where σ+ and σ− are the surface tension coefficients of ∂Ω ∩ Ω+
t and ∂Ω ∩ Ω−

t ,
respectively. Note that the ninety degree contact angle condition (4) corresponds
to σ− = σ+. Indeed, a general constant contact angle α ∈ (0, π) is prescribed by
Young’s equation which in our notation reads as follows

σ cosα = σ+ − σ−.

In particular, by subtracting the constant
´
∂Ω

1 dS from (8) we see that the relevant
part of the total energy does not contain a surface energy contribution along ∂Ω in
our special case of a constant ninety degree contact angle. By formal computations,
one finally observes that this energy satisfies an energy dissipation inequality

E[χ, v](T ′) +

ˆ T ′

0

ˆ
Ω

µ(χ)

2
|∇v +∇vT |2 dxdt ≤ E[χ, v](0), T ′ ∈ [0, T ). (9)

1.3. Varifold solutions for two-phase fluid flow with 90◦ contact angle. In
terms of weak solution theories for the evolution problem (5)–(7), the energy dissipa-
tion inequality suggests to consider velocity fields in the space L∞(0, T ;L2(Ω;Rd))∩
L2(0, T ;H1(Ω;Rd)), and the evolving geometry may be modeled based on a time-
evolving set of finite perimeter so that the associated characteristic function χ is
an element of L∞(0, T ;BV (Ω; {0, 1})).

However, a well-known problem arises when considering limit points of a se-
quence of pairs (χk, vk)k∈N representing solutions originating from an approxima-
tion scheme for (5)–(7). Ignoring the time variable for the sake of the discussion,
the main point is that a uniform bound of the form supk∈N ∥χk∥BV (Ω) < ∞ in
general does not suffice to pass to the limit (not even subsequentially) in the sur-
face tension force σHIk |∇χk|⌞Ω. Recalling that we work in a setting with a ninety
degree angle condition, this term is represented in distributional form byˆ

Ω

HIk ·B d|∇χk| = −
ˆ
Ω

(Id− nk ⊗ nk) : ∇B d|∇χk| (10)

for all smooth vector fields B which are tangential along ∂Ω, where nk = ∇χk

|∇χk|
denotes the measure-theoretic interface unit normal. One may pass to the limit on
the right hand side of the previous display provided |∇χk|(Ω) → |∇χ|(Ω). However,
for standard approximation schemes there is in general no reason why this should
be true. For instance, hidden boundaries may be generated within Ω in the limit.
Furthermore, but now specific to the setting of a bounded domain, nontrivial parts
of the approximating interfaces may converge towards the boundary ∂Ω.

The upshot is that one has to pass to an even weaker representation of the surface
tension force than (10). A popular workaround is based on the concept of (oriented)
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varifolds. In the setting of the present work and in view of the preceding discussion,
this in fact amounts to consider the space of finite Radon measures on the product
space Ω×Sd−1. Indeed, introducing the varifold lift Vk := |∇χk|⌞Ω ⊗ (δnk(x))x∈Ω

one may equivalently express the right hand side of (10) in terms of the functional
B 7→ −

´
Ω×Sd−1(Id−s⊗s) : ∇B dVk(x, s) which is now stable with respect to weak∗

convergence in the space of finite Radon measures on Ω×Sd−1. Note also that by
the choice of working in a varifold setting, one expects σ

´
Ω
1 d|V |Sd−1 instead of

σ
´
Ω
1 d|∇χ| as the interfacial energy contribution in (8), where the finite Radon

measure |V |Sd−1 denotes the mass of the varifold V .
Motivated by the previous discussion, we give a full formulation of a varifold

solution concept to two-phase fluid flow with surface tension and constant ninety
degree contact angle in Definition 11 below. This definition is nothing else but
the suitable analogue of the definition by Abels [1], who provides for the full-space
setting a global-in-time existence theory for such varifold solutions with respect
to rather general initial data. Unfortunately, in the bounded domain case with
non-zero interfacial surface tension, to the best of our knowledge a global-in-time
existence result for varifold solutions is missing. In particular, such a result is not
contained in the work of Abels [1]. For this reason, we include in this work at
least a sketch of an existence proof. To this end, one may follow on one side the
higher-level structure of the argument given by Abels [1] for the full-space setting.
On the other side, additional arguments are of course necessary due to the specified
boundary conditions for the geometry and the fluids, respectively. These additional
arguments are outlined in Appendix A.

1.4. Weak-strong uniqueness for varifold solutions of two-phase fluid flow.
In case the two fluids occupy the full space Rd, d ∈ {2, 3}, a weak-strong uniqueness
result for Abels’ [1] varifold solutions of the system (5)–(7) was recently established
by Fischer and the first author [12]. Given sufficiently regular initial data, it is
shown that on the time horizon of existence of the associated unique strong solution,
any varifold solution in the sense of Abels [1] starting from the same initial data
has to coincide with this strong solution.

This result is achieved by extending a by now several decades old idea in the
analysis of classical PDE models from continuum mechanics to a previously not
covered class of problems: a relative entropy method for surface tension driven in-
terface evolution. The gist of this method can be described as follows. Based on
a dissipated energy functional, one first tries to build an error functional — the
relative entropy — which penalizes the difference between two solutions in a suffi-
ciently strong sense. A minimum requirement is to ensure that the error functional
vanishes if and only if the two solutions coincide. In a second step, one proceeds by
computing the time evolution of this error functional. In a third step, one tries to
identify all the terms appearing in this computation as contributions which either
are controlled by the error functional itself or otherwise may be absorbed into a
residual quadratic term represented essentially by the difference of the dissipation
energies. One finally concludes by an application of Gronwall’s lemma.

The novelty of the work [12] consists of an implementation of this strategy for
the full-space version of the energy functional (8). More precisely, the relative
entropy as it was originally constructed in the full-space setting in [12] essentially
consists of two contributions. The first aims for a penalization of the difference of
the underlying geometries of the two solutions. This in fact is performed at the
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level of the interfaces by introducing a tilt-excess type error functional with respect
to the two associated unit normal vector fields. To this end, the construction of
a suitable extension of the unit normal vector field of the interface of the strong
solution in the vicinity of its space-time trajectory is required. Furthermore, the
length of this vector field is required to decrease quadratically fast as one moves
away from the interface of the strong solution. The merit of this is that one also
obtains a measure of the interface error in terms of the distance between them.

Due to the inclusion of contact point dynamics in form of a constant ninety
degree contact angle, some additional ingredients are needed for the present work.
We refer to Subsection 2.2 below for a detailed and mathematical account on the
geometric part of the relative entropy functional. There are however two notable
additional difficulties in comparison to [12] which are worth emphasizing already
at this point. Both are related to the required extension ξ of the unit normal
vector field associated with the evolving interface of the strong solution. The first
is concerned with the correct boundary condition for the extension ξ along ∂Ω.
Since along the contact set the interface intersects the boundary of the domain
orthogonally, it is natural to enforce ξ to be tangential along ∂Ω. This indeed turns
out to be the right condition as it allows by an integration by parts to rewrite the
interfacial part of the relative entropy as the sum of interfacial energy of the weak
solution and a linear functional with respect to the characteristic function χ of the
weak solution. This is crucial to even attempt computing the time evolution.

The second difference concerns the actual construction of the extension ξ. In
contrast to [12], where only a finite number of sufficiently regular closed curves
(d = 2) or closed surfaces (d = 3) are allowed at the level of the strong solution,
this results in a nontrivial and subtle task in the context of the present work due
to the necessarily singular geometry in contact angle problems. The main difficulty
roughly speaking is to provide a construction which on one side respects the re-
quired boundary condition and on the other side is regular enough to support the
computations and estimates in the Gronwall-type argument. For a complete list of
the required conditions for the extension ξ, we refer to Definition 2 below.

We finally turn to a brief discussion of the second contribution in the total
relative entropy functional from [12]. In principle, this term on first sight should
be nothing else than the relative entropy analogue to the kinetic part of the energy
of the system, thus controlling the squared L2-distance between the fluid velocities
of the two solutions. However, as recognized in [12] a major problem arises for
the two-phase fluid problem in the regime of different viscosities µ+ ̸= µ−: without
performing a very careful (and in its implementation highly technical) perturbation
of this naive ansatz for the fluid velocity error, a Gronwall-type argument will not
be realizable; cf. for more details the discussion in [12, Subsection 3.4]. Since the
main focus of the present work lies on the inclusion of the ninety degree contact
angle condition, we do not delve into these issues and simply assume for the rest
of this work that the viscosities of the two fluids coincide: µ := µ+ = µ−. We
emphasize, however, that at least for the construction of the extension ξ and the
verification of its properties we in fact do not rely on this assumption.

2. Main results

2.1. Weak-strong uniqueness and stability of evolutions. The main result
of this work reads as follows.
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Theorem 1. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and
smooth boundary. Let (χu, u, V ) be a varifold solution to the incompressible Navier–
Stokes equation for two fluids in the sense of Definition 11 on a time interval [0, Tw).
Let (χv, v) be a strong solution to the incompressible Navier–Stokes equation for two
fluids in the sense of Definition 10 on a time interval [0, Ts) where Ts ≤ Tw.

Then, for every T ∈ (0, Ts) there exists a constant C = C(χv, v, T ) > 0 such
that the relative entropy functional (28) and the bulk error functional (30) satisfy
stability estimates of the form

E[χu, u, V |χv, v](t) ≤ CeCtE[χu, u, V |χv, v](0), (11)

Evol[χu|χv](t) ≤ CeCt
(
E[χu, u, V |χv, v](0) + Evol[χu|χv](0)

)
(12)

for almost every t ∈ [0, T ].
In particular, in case the initial data for the varifold solution and strong solution

coincide, it follows that

χu(·, t) = χv(·, t), u(·, t) = v(·, t) a.e. in Ω for a.e. t ∈ [0, Ts), (13)

Vt = (|∇χu(·, t)|⌞Ω)⊗
(
δ ∇χu(·,t)

|∇χu(·,t)| (x)

)
x∈Ω

for a.e. t ∈ [0, Ts). (14)

The proof of Theorem 1 may be divided into two steps as explained in the
following two subsections.

2.2. Quantitative stability by a relative entropy approach. Following the
general strategy of [12], our weak-strong uniqueness result essentially relies on two
ingredients: i) the construction of a suitable extension ξ of the unit normal vector
field of the interface of a strong solution, and ii) based on this extension, the
introduction of a suitably defined error functional penalizing the interface error
between a varifold and a strong solution in a sufficiently strong sense. In comparison
to [12], the extension of the unit normal has to be carefully constructed in the sense
that the vector field ξ is required to be tangent to the domain boundary ∂Ω (which
is the natural boundary condition in case of a 90◦ contact angle). Due to the
singular nature of the geometry at the contact set, this is a nontrivial task. The
precise conditions on the extension ξ are summarized as follows.

Definition 2 (Boundary adapted extension of the interface unit normal). Let d ∈
{2, 3}, and let Ω ⊂ Rd be a bounded domain with orientable and smooth boundary.
Let T ∈ (0,∞) be a finite time horizon. Let (χv, v) be a strong solution to the
incompressible Navier–Stokes equation for two fluids in the sense of Definition 10
on the time interval [0, T ].

In this setting, we call a vector field ξ : Ω× [0, T ] → Rd a boundary adapted ex-
tension of nIv for two-phase fluid flow (χv, v) with 90◦ contact angle if the following
conditions are satisfied:

• In terms of regularity, it holds ξ ∈
(
C0

t C
2
x∩C1

t C
0
x

)(
Ω×[0, T ]\(Iv∩(∂Ω×[0, T ]))

)
.

• The vector field ξ extends the unit normal vector field nIv (pointing inside Ω+
v )

of the interface Iv subject to the conditions

|ξ| ≤ max
{
0, 1−C dist2(·, Iv)

}
in Ω× [0, T ], (15a)

ξ · n∂Ω = 0 on ∂Ω× [0, T ], (15b)

∇ · ξ = −HIv on Iv, (15c)
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for some C > 0. Here, HIv denotes the scalar mean curvature of the interface Iv
(oriented with respect to the normal nIv).

• The fluid velocity approximately transports the vector field ξ in form of

∂tξ + (v · ∇)ξ + (Id−ξ ⊗ ξ)(∇v)Tξ = O(dist(·, Iv) ∧ 1) in Ω× [0, T ], (15d)

∂t|ξ|2 + (v · ∇)|ξ|2 = O(dist2(·, Iv) ∧ 1) in Ω× [0, T ]. (15e)

Let us comment on the motivation behind this definition. Given a vector field ξ
with respect to a fixed strong solution (χv, v) as in the previous definition, we may
introduce for any varifold solution (χu, u, V ) and for all t ∈ [0, T ] a functional

E[χu, V |χv](t) := σ

ˆ
Ω

1 d|Vt|Sd−1 − σ

ˆ
Iu(t)

∇χu(·, t)
|∇χu(·, t)|

· ξ(·, t) dHd−1, (16)

where Iu(t) := supp|∇χu(·, t)| ∩ Ω denotes the interface associated to the varifold
solution. The functional E[χu, V |χv] is a measure for the interfacial error between
the two solutions for the following reasons. First of all, it is a consequence of the
definition of a varifold solution, cf. the compatibility condition (41), that for almost
every t ∈ [0, T ] it holds |∇χu(·, t)|⌞Ω ≤ |Vt|Sd−1⌞Ω in the sense of measures on Ω.
In particular, it follows that the functional E[χu, V |χv] controls its “BV-analogue”

0 ≤ E[χu|χv](t) := σ

ˆ
Iu(t)

1− ∇χu(·, t)
|∇χu(·, t)|

· ξ(·, t) dHd−1 ≤ E[χu, V |χv](t). (17)

Introducing the Radon–Nikodým derivative θt := d|∇χu(·,t)|⌞Ω
d|Vt|Sd−1⌞Ω

, one can be even

more precise in the sense that

E[χu, V |χv](t) = σ

ˆ
∂Ω

1 d|Vt|Sd−1 + σ

ˆ
Ω

1− θt d|Vt|Sd−1 + E[χu|χv](t). (18)

This representation of the functional E[χu, V |χv] as well as the length constraint (15a)
for the vector field ξ lead to the following two observations. First, the func-
tional E[χu, V |χv] controls the mass of hidden boundaries and higher multiplicity
interfaces (i.e., where θt ∈ [0, 1)) in the sense of

σ

ˆ
∂Ω

1 d|Vt|Sd−1 + σ

ˆ
Ω

1− θt d|Vt|Sd−1 ≤ E[χu, V |χv](t). (19)

Second, because of (15a) it measures the interface error in the sense that

σ

ˆ
Iu(t)

1

2

∣∣∣∣ ∇χu(·, t)
|∇χu(·, t)|

− ξ

∣∣∣∣2 dHd−1 ≤ E[χu|χv](t), (20)

σ

ˆ
Iu(t)

min
{
1, C dist2(·, Iv(t))

}
dHd−1 ≤ E[χu|χv](t). (21)

On a different note, the compatibility condition (41) satisfied by a varifold solu-
tion together with the boundary condition (15b) also allows to represent the error
functional E[χu, V |χv] in the alternative form

E[χu, V |χv](t) = σ

ˆ
Ω×Sd−1

1− s · ξ dVt, (22)

which then entails as a consequence of (15a)

σ

ˆ
Ω×Sd−1

1

2
|s− ξ|2 dVt ≤ E[χu, V |χv](t), (23)



STABILITY FOR TWO-PHASE FLUID FLOW WITH 90◦ CONTACT ANGLE 9

σ

ˆ
Ω

min
{
1, C dist2(·, Iv(t))

}
d|Vt|Sd−1 ≤ E[χu, V |χv](t). (24)

Finally, let us quickly discuss what is implied by E[χu, V |χv](t) = 0. We claim
that (14) and Iu(t) ⊂ Iv(t) up to Hd−1-negligible sets have to be satisfied. Indeed,
the latter follows directly from (17) and (21). The former is best seen when rep-
resenting the varifold Vt⌞(Ω×Sd−1) by its disintegration (|Vt|Sd−1⌞Ω) ⊗ (νx,t)x∈Ω.
Then, it follows on one side from (19) that |Vt|Sd−1⌞∂Ω = 0 and |Vt|Sd−1⌞Ω =
|∇χu(·, t)|⌞Ω as measures on ∂Ω and Ω, respectively, and then on the other side
that νx,t = δ ∇χu(·,t)

|∇χu(·,t)| (x)
for |∇χu(·, t)|-a.e. x ∈ Ω due to

ˆ
Ω

ˆ
Sd−1

1

2

∣∣∣∣s− ∇χu(·, t)
|∇χu(·, t)|

(x)

∣∣∣∣2 dνx,t(s) d(|∇χu(·, t)|⌞Ω)(x)

=

ˆ
Ω

ˆ
Sd−1

1− s · ∇χu(·, t)
|∇χu(·, t)|

(x) dνx,t(s) d(|∇χu(·, t)|⌞Ω)(x) = 0,

where for the last equality we simply plugged in the compatibility condition (41)
and again |Vt|Sd−1⌞∂Ω = 0 as well as |Vt|Sd−1⌞Ω = |∇χu(·, t)|⌞Ω.

Apart from these coercivity conditions, it is equally important to be able to esti-
mate the time evolution of the error functional E[χu, V |χv]. The main observation
in this regard is that the functional can be rewritten as a perturbation of the in-
terface energy E[χu, V ](t) := σ

´
Ω
1 d|Vt|Sd−1 which is linear in the dependence on

the indicator function χu. Indeed, thanks to the boundary condition (15b) for the
extension ξ, a simple integration by parts readily reveals

E[χu, V |χv](t) = E[χu, V ](t) + σ

ˆ
Ω

χu(·, t)(∇ · ξ)(·, t) dx. (25)

This structure is in fact the very reason why we call E[χu, V |χv] a relative entropy.
Computing the time evolution of E[χu|χv] then only requires to exploit the dissi-
pation of energy and using ∇ · ξ as a test function in the evolution equation of the
phase indicator χu of the varifold solution. The latter in turn requires knowledge
on the time evolution of ξ itself, which is encoded in terms of the fluid velocity v
through the equations (15d) and (15e). The condition (15c) is natural in view
of the interpretation of ξ as an extension of the unit normal nIv away from the
interface Iv.

Even though all of this may already be quite promising, there is one small caveat:
obviously, one can not deduce from E[χu, V |χv] = 0 that χu = χv (e.g., χu repre-
senting an empty phase is consistent with having vanishing relative entropy). This
lack of coercivity in the regime of vanishing interface measure motivates to intro-
duce a second error functional which directly controls the deviation of χu from χv.
The main input to such a functional is captured in the following definition.

Definition 3 (Transported weight). Let d ∈ {2, 3}, and let Ω ⊂ Rd be a bounded do-
main with orientable and smooth boundary. Let T ∈ (0,∞) be a finite time horizon,
consider a solenoidal vector field v ∈ L2([0, T ];H1(Ω;Rd)) with (v · n∂Ω)|∂Ω = 0,
and let (Ω+

v (t))t∈[0,T ] be a family of sets of finite perimeter in Ω. Denote by Iv(t),

t ∈ [0, T ], the reduced boundary of Ω+
v (t) in Ω. Writing χv(·, t) for the indicator

function associated to Ω+
v (t), assume that ∂tχv = −∇ · (χvv) in a weak sense.

In this setting, we call a map ϑ : Ω× [0, T ] → [−1, 1] a transported weight with
respect to (χv, v) if the following conditions are satisfied:
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• (Regularity) It holds ϑ ∈W 1,∞
x,t (Ω× [0, T ]).

• (Coercivity) Throughout the essential interior of Ω+
v (relative to Ω) it holds

ϑ < 0, throughout the essential exterior of Ω+
v (relative to Ω) it holds ϑ > 0,

and along Iv ∪ ∂Ω we have ϑ = 0. There also exists C > 0 such that

dist(·, ∂Ω) ∧ dist(·, Iv) ∧ 1 ≤ C|ϑ| in Ω× [0, T ]. (26)

• (Transport equation) There exists C > 0 such that

|∂tϑ+ (v · ∇)ϑ| ≤ C|ϑ| in Ω× [0, T ]. (27)

The merit of the previous two definitions is now the following result. It reduces
the proof of Theorem 1 to the existence of a boundary adapted extension ξ of
the interface unit normal and a transported weight ϑ with respect to a strong
solution (χv, v), respectively.

Proposition 4 (Conditional weak-strong uniqueness principle). Let d ∈ {2, 3},
and let Ω ⊂ Rd be a bounded domain with orientable and smooth boundary. Let
(χu, u, V ) be a varifold solution to the incompressible Navier–Stokes equation for
two fluids in the sense of Definition 11 on a time interval [0, T ]. Consider in
addition a strong solution (χv, v) to the incompressible Navier–Stokes equation for
two fluids in the sense of Definition 10 on a time interval [0, T ].

Assume there exists a boundary adapted extension ξ of the unit normal nIv as
well as a transported weight ϑ with respect to (χv, v) in the sense of Definition 2
and Definition 3, respectively. Then the stability estimates (11) and (12) for the
relative entropy functional (28) and the bulk error functional (30) are satisfied,
respectively. Moreover, if the initial data of the varifold solution and the strong
solution coincide, we may conclude that

χu(·, t) = χv(·, t), u(·, t) = v(·, t) a.e. in Ω for a.e. t ∈ [0, T ],

Vt = (|∇χu(·, t)|⌞Ω)⊗
(
δ ∇χu(·,t)

|∇χu(·,t)| (x)

)
x∈Ω

for a.e. t ∈ [0, T ].

A proof of this conditional weak-strong uniqueness principle is presented in Sub-
section 3.3 below. We emphasize again that it is valid for d ∈ {2, 3}. The key
ingredient to the stability estimate (11) is the following relative entropy inequality.
We refer to Subsection 3.1 for a proof.

Proposition 5 (Relative entropy inequality in case of a 90◦ contact angle). Let
d ∈ {2, 3}, and let Ω ⊂ Rd be a smooth and bounded domain. Let (χu, u, V ) be a
varifold solution to the incompressible Navier–Stokes equation for two fluids in the
sense of Definition 11 on a time interval [0, T ]. In particular, let θ be the density

θt :=
d|∇χu(·,t)|⌞Ω
d|Vt|Sd−1⌞Ω

as defined in (42). Furthermore, let (χv, v) be a strong solution

in the sense of Definition 10 on the same time interval [0, T ], and assume there
exists a boundary adapted extension ξ of the interface unit normal nIv with respect
to (χv, v) as in Definition 2.

Then, the total relative entropy defined by (recall the definition (16) of the in-
terface contribution E[χu, V |χv])

E[χu, u, V |χv, v](t) :=

ˆ
Ω

1

2
ρ(χu(·, t))|u(·, t)− v(·, t)|2 dx+ E[χu, V |χv](t) (28)

satisfies the relative entropy inequality

E[χu, u, V |χv, v](T
′) +

ˆ T ′

0

ˆ
Ω

µ

2
|∇(u− v) +∇(u− v)T|2 dxdt
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≤ E[χu, u, V |χv, v](0) +Rdt +Radv +RsurTen, (29)

for almost every T ′ ∈ [0, T ], where we made use of the abbreviations (denote by

nu := ∇χu

|∇χu| the measure-theoretic unit normal)

Rdt = −
ˆ T ′

0

ˆ
Ω

(ρ(χv)− ρ(χu))(u− v) · ∂tv dxdt,

Radv =−
ˆ T ′

0

ˆ
Ω

(ρ(χu)− ρ(χv))(u− v) · (v · ∇)v dxdt

−
ˆ T ′

0

ˆ
Ω

ρ(χu)(u− v) · ((u− v) · ∇)v dxdt,

as well as

RsurTen =− σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt

+ σ

ˆ T ′

0

ˆ
Ω

(1− θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
Ω

(χu − χv)((u− v) · ∇)(∇ · ξ) dxdt

− σ

ˆ T ′

0

ˆ
Ω

(nu − ξ) · (∂tξ + (v · ∇)ξ + (Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

(
∂t

1

2
|ξ|2 + (v · ∇)

1

2
|ξ|2

)
d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

(1− nu · ξ)(∇ · v) d|∇χu|dt.

The stability estimate (12) for the bulk error functional is in turn based on the
following auxiliary result; see Subsection 3.2 for a proof.

Lemma 6 (Time evolution of the bulk error). Let d ∈ {2, 3}, and let Ω ⊂ Rd be
a smooth and bounded domain. Let T ∈ (0,∞) be a finite time horizon, and let
(χv, v) be as in Definition 3 of a transported weight. Let (χu, u, V ) be a varifold
solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 11 on [0, T ]. Assume there exists a transported weight ϑ with respect
to (χv, v) in the sense of Definition 3, and define the bulk error functional

Evol[χu|χv](t) :=

ˆ
Ω

|χu(·, t)− χv(·, t)||ϑ(·, t)|dx. (30)

Then the following identity holds true for almost every T ′ ∈ [0, T ]

Evol[χu|χv](T
′) = Evol[χu|χv](0) +

ˆ T ′

0

ˆ
Ω

(χu − χv)(∂tϑ+ (v · ∇)ϑ) dxdt (31)
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+

ˆ T ′

0

ˆ
Ω

(χu − χv)
(
(u− v) · ∇

)
ϑ dx dt.

2.3. Existence of boundary adapted extensions of the interface unit nor-
mal and transported weights in planar case. To upgrade the conditional
weak-strong uniqueness principle of Proposition 4 to the statement of Theorem 1,
it remains to construct a boundary adapted extension ξ of nIv and a transported
weight ϑ associated to a given strong solution (χv, v). In the context of the present
work, we perform this task for simplicity in the planar regime d = 2. However,
it is expected that the principles of the construction carry over to the case d = 3
involving contact lines.

Proposition 7. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable
and smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–
Stokes equation for two fluids in the sense of Definition 10 on a time interval [0, T ].
Then there exists a boundary adapted extension ξ of nIv w.r.t. (χv, v) in the sense
of Definition 2.

A proof of this result is presented in Subsection 6.2 below. One major step
in the proof consists of reducing the global construction to certain local construc-
tions being supported in the bulk Ω or in the vicinity of contact points along ∂Ω,
respectively. The main ingredients for this reduction argument are provided in
Subsection 6.1. The construction of suitable local vector fields subject to condi-
tions as in Definition 2 is in turn relegated to Section 4 (bulk construction) and
Section 5 (construction near contact points). We finally provide the construction
of a transported weight in Section 7.

Lemma 8. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and
smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–
Stokes equation for two fluids in the sense of Definition 10 on a time interval [0, T ].
Then there exists a transported weight ϑ w.r.t. (χv, v) in the sense of Definition 3.

2.4. Definition of varifold and strong solutions. In this subsection, we present
definitions of strong and varifold solutions for the free-boundary problem of the
evolution of two immiscible, incompressible, viscous fluids separated by a sharp
interface with surface tension inside a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, with
smooth and orientable boundary. Recall in this context that we restrict ourselves
to the case of a 90◦ contact angle between the interface and the boundary of the
domain Ω. In order to define a notion of strong solutions, we first introduce the
notion of a smoothly evolving domain within Ω.

Definition 9 (Smoothly evolving domains and smoothly evolving interfaces with
90◦ contact angle). Let d ∈ {2, 3}, and let Ω ⊂ Rd be a bounded domain with
orientable and smooth boundary. Let T ∈ (0,∞) be a finite time horizon. Consider
an open subset Ω+

0 ⊂ Ω subject to the following regularity conditions:

• Denoting by I0 the closure of ∂Ω+
0 ∩ Ω in Ω, we require I0 to be a (d−1)-

dimensional uniform C3
x submanifold of Ω with or without boundary. Moreover,

I0 is compact and consists of finitely many connected components.
• Interior points of I0 are contained in Ω, whereas boundary points of I0 are
contained in ∂Ω. In particular, I0 ∩ ∂Ω is a (d−2)-dimensional uniform C3

x

submanifold of ∂Ω.
• Whenever I0 intersects with ∂Ω, it does so by forming an angle of 90◦.
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Now, consider a set Ω+ =
⋃

t∈[0,T ] Ω
+(t)×{t} represented in terms of open subsets

Ω+(t) ⊂ Ω for all t ∈ [0, T ]. Denote by I(t) the closure of ∂Ω+(t) ∩ Ω in Ω,
t ∈ [0, T ]. We call Ω+ a smoothly evolving domain in Ω, and I =

⋃
t∈[0,T ] I(t)×{t}

a smoothly evolving interface with 90◦ contact angle, if there exists a flow map
ψ : Ω× [0, T ] → Ω such that the following requirements are satisfied:

• ψ(·, 0) = Id. For any t ∈ [0, T ], the map ψt := ψ(·, t) : Ω → Ω is a C3
x diffeo-

morphism such that ψt(Ω) = Ω, ψt(∂Ω) = ∂Ω and supt∈[0,T ] ∥ψt∥W 3,∞
x (Ω) <∞.

• For all t ∈ [0, T ], it holds Ω+(t) = ψt(Ω
+
0 ) and I(t) = ψt(I0).

• ∂tψ ∈ C([0, T ];C1(Ω)) such that supt∈[0,T ] ∥∂tψ(·, t)∥W 1,∞
x (Ω) <∞.

• Whenever I(t), t ∈ [0, T ], intersects ∂Ω it does so by forming an angle of 90◦.

With the geometric setup in place, we can proceed with our notion of strong
solutions to two-phase Navier–Stokes flow with 90◦ contact angle.

Definition 10 (Strong solution). Let d ∈ {2, 3}, and let Ω ⊂ Rd be a bounded
domain with orientable and smooth boundary. Let a surface tension constant σ > 0,
the densities and shear viscosity of the two fluids ρ±, µ > 0, and a finite time Ts > 0
be given. Let χ0 denote the indicator function of an open subset Ω+

0 ⊂ Ω subject
to the conditions of Definition 9. Denoting the associated initial interface by Iv(0),
let a solenoidal initial velocity profile v0 ∈ L2(Ω;Rd) be given such that it holds
v0 ∈ C2(Ω \ Iv(0)). (Of course, additional compatibility conditions in terms of an
initial pressure p0 have to be satisfied by v0 to allow for the below required regularity
of the solution.)

A pair (χv, v) consisting of a velocity field v : Ω× [0, Ts) → Rd and an indicator
function χv : Ω × [0, Ts) → {0, 1} is called a strong solution to the free boundary
problem for the Navier–Stokes equation for two fluids with 90◦ contact angle and
initial data (χ0, v0) if for all T ∈ (0, Ts) it is a strong solution on [0, T ] in the
following sense:

• It holds

v ∈W 1,∞([0, T ];W 1,∞(Ω;Rd)),

∇v ∈ L1([0, T ]; BV(Ω;Rd×d)),

χv ∈ L∞([0, T ]; BV(Ω; {0, 1})).

• Define Ω+
v (t) := {x ∈ Ω : χv(x, t) = 1}. Then, Ω+

v =
⋃

t∈[0,T ] Ω
+
v (t)×{t} is a

smoothly evolving domain in Ω in the sense of Definition 9 with Ω+
v (0) = Ω+

0 .

Denoting by Iv(t) the closure of ∂Ω+
v (t) ∩ Ω in Ω for all t ∈ [0, T ], the set

Iv =
⋃

t∈[0,T ] Iv(t)×{t} is a smoothly evolving interface with 90◦ contact angle

in the sense of Definition 9. In particular, for every t ∈ [0, T ] and every contact
point c(t) ∈ Iv(t) ∩ ∂Ω

n∂Ω(c(t)) · nIv (c(t), t) = 0. (32)

Moreover, for every t ∈ [0, T ] and every c(t) ∈ Iv(t)∩ ∂Ω the following higher-
order compatibility condition is required to hold:

−
(
(n∂Ω · ∇)(nIv · v)

)
(c(t), t) = H∂Ω(c(t))(nIv · v)(c(t), t), (33)

where H∂Ω denotes the scalar mean curvature of ∂Ω (with respect to the inward
pointing unit normal n∂Ω).
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• The velocity field v has vanishing divergence ∇ · v = 0, and it satisfies the
boundary conditions

v(·, t) · n∂Ω = 0 along ∂Ω, (34)(
n∂Ω · µ(∇v +∇vT)(·, t)B

)
= 0 along ∂Ω (35)

for all t ∈ [0, T ] and all tangential vector fields B along ∂Ω. Moreover, the
equation for the momentum balanceˆ

Ω

ρ(χv(·, T ′))v(·, T ′) · η(·, T ′) dx−
ˆ
Ω

ρ(χ0))v0 · η(·, 0) dx

=

ˆ T ′

0

ˆ
Ω

ρ(χv)v · ∂tη dxdt+
ˆ T ′

0

ˆ
Ω

ρ(χv)v ⊗ v : ∇η dx dt (36)

−
ˆ T ′

0

ˆ
Ω

µ(∇v +∇vT) : ∇η dxdt+ σ

ˆ T ′

0

ˆ
Iv(t)

HIv · η dS dt

holds true for almost every T ′ ∈ [0, T ] and every η ∈ C∞(Ω × [0, T ];Rd) such
that ∇ · η = 0 as well as (η · n∂Ω)|∂Ω = 0. Here, HIv (·, t) denotes the mean
curvature vector of the interface Iv(t). For the sake of brevity, we have used
the abbreviation ρ(χ) := ρ+χ+ ρ−(1− χ).

• The indicator function χv is transported by the fluid velocity v in form ofˆ
Ω

χv(·, T ′)φ(·, T ′) dx−
ˆ
Ω

χ0φ(·, 0) dx =

ˆ T ′

0

ˆ
Ω

χv(∂tφ+(v · ∇)φ) dxdt (37)

for almost every T ′ ∈ [0, T ] and all φ ∈ C∞(Ω× [0, T ]).

• It holds v ∈ C1
t C

0
x(Ω×[0, T ] \ Iv) ∩ C0

t C
2
x(Ω×[0, T ] \ Iv).

We conclude the discussion on strong solutions with a series of remarks. First,
by standard arguments one may deduce from (37), the solenoidality of v, and the
boundary condition (v · n∂Ω)|∂Ω = 0 that VIv = v · nIv holds true along the inter-
face Iv for the normal speed VIv of Iv (oriented with respect to nIv ). Second, as a
consequence of the contact point condition (32) it holds for all t ∈ [0, Ts)ˆ

Iv(t)

HIv · η dS = −
ˆ
Iv(t)

(
Id−nIv (·, t)⊗ nIv (·, t)

)
: ∇η dS

for all test fields η ∈ C∞(Ω;Rd) subject to ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. Third,
note that Definition 10 implies that all pairs of two distinct contact points at the
initial time remain distinct at all later times within a finite time horizon. This in
fact is a consequence of the regularity of the velocity field and the evolving interface.
Indeed, denoting by t 7→ c(t) ∈ Iv(t)∩∂Ω resp. t 7→ ĉ(t) ∈ Iv(t)∩∂Ω the trajectories
of two distinct contact points, we may estimate the time evolution of their squared
distance α(t) := 1

2 |c(t)−ĉ(t)|
2 by means of

d

dt
α(t) =

(
c(t)−ĉ(t)

)
·
(
v(c(t), t)−v(ĉ(t), t)

)
≥ −2∥∇v∥L∞

x,t
α(t).

Using Gronwall’s Lemma, we can conclude that α(t) ≥ α(0) exp(−2∥∇v∥L∞
x,t
t).

Fourth, we remark that it actually suffices to require the compatibility condi-
tions (32) and (33) at the initial time t = 0 only. For later times t ∈ (0, T ], they
are in fact consequences of the regularity of a strong solution, which can be seen as
follows. For the sake fo simplicity, consider the case d = 2. By means of the chain
rule, the fact that v ·n∂Ω = 0 along ∂Ω, and the formulas for ∇n∂Ω and ∇τ∂Ω from
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Lemma 19, we may rewrite the boundary condition (µ(∇v+∇vT) : n∂Ω⊗ τ∂Ω) = 0
along ∂Ω as

H∂Ω(v · τ∂Ω) + (n∂Ω · ∇)(v · τ∂Ω) = 0 along ∂Ω,

which holds in particular at a contact point c(t) for any t ∈ [0, T ]. Then, since the
quantities |τ∂Ω ·τIv | = |nIv ·n∂Ω|, |τ∂Ω−nIv | , |n∂Ω+τIv | evaluated at a contact point
can all be bounded from above by

√
1− nIv · τ∂Ω, we may compute by adding zeros

(see also the formulas for ∇n∂Ω and ∇τ∂Ω as well as the expressions for d
dtτ∂Ω(c(t))

and d
dtnIv (c(t), t) from Lemma 19 and Lemma 20, respectively)

d

dt
[1− nIv (c(t), t) · τ∂Ω(c(t))]

= −
(
(nIv · n∂Ω)((n∂Ω · ∇)(v · τ∂Ω) + (τIv · ∇)(v · nIv ))

)∣∣
(c(t),t)

= −
(
(nIv · n∂Ω)(∇v : (τ∂Ω − nIv )⊗ n∂Ω +∇v : nIv ⊗ (n∂Ω + τIv )

−HIv (v · τIv )(τ∂Ω · τIv ))
)∣∣

(c(t),t)

≤ C∥∇v∥L∞
x,t

[1− nIv (c(t), t) · τ∂Ω(c(t))]

for some C > 0 and any t ∈ [0, T ]. From an application of a Gronwall-type argument
and the validity of the contact angle condition (32) at the initial time t = 0, we
may conclude that (32) is indeed satisfied for any t ∈ [0, T ]. The compatibility
condition (33) in turn follows from differentiating in time the angle condition (32)
along a smooth trajectory t 7→ c(t) ∈ Iv(t) ∩ ∂Ω of a contact point, see for details
the proof of Lemma 20.

We proceed with the notion of a varifold solution.

Definition 11 (Varifold solution in case of 90◦ contact angle condition). Let a
surface tension constant σ > 0, the densities and shear viscosity of the two fluids
ρ±, µ > 0, a finite time Tw > 0, a solenoidal initial velocity profile u0 ∈ L2(Ω;Rd),
and an indicator function χ0 ∈ BV(Ω) be given.

A triple (χu, u, V ) consisting of a velocity field u, an indicator function χu, and
an oriented varifold V with

u ∈ L2([0, Tw];H
1(Ω;Rd)) ∩ L∞([0, Tw];L

2(Ω;Rd)),

χu ∈ L∞([0, Tw]; BV(Ω; {0, 1})),

V ∈ L∞
w ([0, Tw];M(Ω× Sd−1)),

is called a varifold solution to the free boundary problem for the Navier-Stokes
equation for two fluids with 90◦ contact angle and initial data (χ0, u0) if the fol-
lowing conditions are satisfied:

• The velocity field u has vanishing divergence ∇ · u = 0, its trace a vanishing
normal component on the boundary of the domain (u · n∂Ω)|∂Ω = 0, and the
equation for the momentum balanceˆ

Ω

ρ(χu(·, T ))u(·, T ) · η(·, T ) dx−
ˆ
Ω

ρ(χ0))u0 · η(·, 0) dx

=

ˆ T

0

ˆ
Ω

ρ(χu)u · ∂tη dx dt+
ˆ T

0

ˆ
Ω

ρ(χu)u⊗ u : ∇η dx dt (38)

−
ˆ T

0

ˆ
Ω

µ(∇u+∇uT) : ∇η dxdt
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− σ

ˆ T

0

ˆ
Ω×Sd−1

(Id−s⊗ s) : ∇η dVt(x, s) dt

is satisfied for almost every T ∈ [0, Tw) and for every test vector field η subject
to η ∈ C∞([0, Tw);C

1(Ω;Rd) ∩
⋂

p≥2W
2,p(Ω;Rd)), ∇ · η = 0 as well as (η ·

n∂Ω)|∂Ω = 0. We again made use of the abbreviation ρ(χ) := ρ+χ+ρ−(1−χ).
• The indicator χu satisfies the weak formulation of the transport equation

ˆ
Ω

χu(·, T )φ(·, T ) dx−
ˆ
Ω

χ0φ(·, 0) dx =

ˆ T

0

ˆ
Ω

χu(∂tφ+(u · ∇)φ) dxdt (39)

for almost every T ∈ [0, Tw) and all φ ∈ C∞(Ω× [0, Tw)).
• The energy dissipation inequality

ˆ
Ω

1

2
ρ(χu(·, T ))|u(·, T )|2 dx+ σ|VT |Sd−1(Ω) +

ˆ T

0

ˆ
Ω

µ

2
|∇u+∇uT|2 dx dt

≤
ˆ
Ω

1

2
ρ(χ0(·))|u0(·)|2 dx+ σ|∇χ0|(Ω) (40)

is satisfied for almost every T ∈ [0, Tw).
• The phase boundary ∂∗{χu(·, t) = 0} ∩ Ω and the varifold Vt satisfy the com-

patibility condition

ˆ
Ω×Sd−1

ψ(x) · sdVt(x, s) =
ˆ
Ω

ψ(x) · d∇χu(x, t) (41)

for almost every t ∈ [0, Tw) and every smooth function ψ ∈ C∞(Ω;Rd) such
that (ψ · n∂Ω)|∂Ω = 0.

Finally, if (χu, V ) satisfy (14) we call the pair (χu, u) a BV solution to the free
boundary problem for the Navier-Stokes equation for two fluids with 90◦ contact
angle and initial data (χ0, u0).

We conclude with a remark concerning the notion of varifold solutions. Denote by
Vt ∈ M(Ω×Sd−1) the non-negative measure representing at time t ∈ [0, Tw) the var-
ifold associated to a varifold solution (χu, u, V ). The compatibility condition (41)
entails that |∇χu(·, t)|⌞Ω is absolutely continuous with respect to |Vt|Sd−1⌞Ω; in
fact, |∇χu(·, t)|⌞Ω ≤ |Vt|Sd−1⌞Ω in the sense of measures on Ω. Hence, we may
define the Radon–Nikodym derivative

θt :=
d|∇χu(·, t)|⌞Ω
d|Vt|Sd−1⌞Ω

, (42)

which is a (|Vt|Sd−1⌞Ω)-measurable function with |θt| ≤ 1 valid (|Vt|Sd−1⌞Ω)-almost
everywhere in Ω. In other words, the quantity 1

θt
represents the multiplicity of the

varifold (in the interior). With this notation in place, it then holds

ˆ
Ω

f(x) d|∇χu(·, t)|(x) =
ˆ
Ω

θt(x)f(x) d|Vt|Sd−1(x) (43)

for every f ∈ L1(Ω, |∇χu(·, t)|) and almost every t ∈ [0, Tw).
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2.5. Notation. Throughout the present work, we employ the notational conven-
tions of [12]. A notable addition is the following convention. If D ⊂ Rd is an open
subset and Γ ⊂ D a closed subset of Hausdorff-dimension k ∈ {0, . . . , d−1}, we
write Ck(D \ Γ) for all maps f : D → R which are k-times continuously differen-
tiable throughout D\Γ such that the function together with all its derivatives stays
bounded throughout D \ Γ. Analogously, one defines the space Ck

t C
m
x (D \ Γ) for

D =
⋃

t∈[0,T ]D(t)× {t} and Γ =
⋃

t∈[0,T ] Γ(t)× {t}, where (D(t))t∈[0,T ] is a family

of open subsets of Rd and (Γ(t))t∈[0,T ] is a family of closed subsets Γ(t) ⊂ D(t) of
constant Hausdorff-dimension k ∈ {0, . . . , d−1}.

3. Proof of main results

3.1. Relative entropy inequality: Proof of Proposition 5. The general struc-
ture of the proof is in parts similar to the proof of [12, Proposition 10]. In what
follows, we thus mainly focus on how to exploit the boundary conditions for the
velocity fields (u, v) and a boundary adapted extension ξ of the strong interface
unit normal in these computations.

Step 1: Since ρ(χv) is an affine function of χv, it consequently satisfies

ˆ
Ω

ρ(χv(·, T ′))φ(·, T ′) dx−
ˆ
Ω

ρ(χ0
v)φ(·, 0) dx =

ˆ T

0

ˆ
Ω

ρ(χv)(∂tφ+ (v · ∇)φ) dxdt

(44)
for almost every T ′ ∈ [0, T ] and all φ ∈ C∞(Ω × [0, T ]). By the regularity of v
and an approximation argument, we may test this equation with v · η for any
η ∈ C∞(Ω× [0, T ];Rd), yieldingˆ

Ω

ρ(χv(·, T ′))v(·, T ′) · η(·, T ′) dx−
ˆ
Ω

ρ(χ0
v)v(·, 0) · η(·, 0) dx

=

ˆ T ′

0

ˆ
Ω

ρ(χv)(v · ∂tη + η · ∂tv) dxdt (45)

+

ˆ T ′

0

ˆ
Ω

ρ(χv)(η · (v · ∇)v + v · (v · ∇)η) dxdt

for almost every T ′ ∈ [0, T ]. Next, we subtract from (45) the equation for the
momentum balance (36) of the strong solution. It follows that the velocity field v
of the strong solution satisfies

0 =

ˆ T ′

0

ˆ
Ω

ρ(χv)η · ∂tv dxdt+
ˆ T ′

0

ˆ
Ω

ρ(χv)η · (v · ∇)v dxdt (46)

+

ˆ T ′

0

ˆ
Ω

µ(∇v +∇vT ) : ∇η dxdt− σ

ˆ T ′

0

ˆ
Iv(t)

HIv · η dS dt

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞(Ω× [0, T ];Rd) such
that ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. For any such test vector field η, note that
by means of (15c), the incompressibility of η as well as (η · n∂Ω)|∂Ω = 0, we may
rewrite

−σ
ˆ T ′

0

ˆ
Iv(t)

HIv · η dS dt = σ

ˆ T ′

0

ˆ
Iv(t)

(∇ · ξ)η · nIv dS dt
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= −σ
ˆ T ′

0

ˆ
Ω

χv(η · ∇)(∇ · ξ) dxdt. (47)

Hence, we deduce from inserting (47) back into (46) that

0 =

ˆ T ′

0

ˆ
Ω

ρ(χv)η · ∂tv dx dt+
ˆ T ′

0

ˆ
Ω

ρ(χv)η · (v · ∇)v dx dt (48)

+

ˆ T ′

0

ˆ
Ω

µ(∇v +∇vT ) : ∇η dxdt− σ

ˆ T ′

0

ˆ
Ω

χv(η · ∇)(∇ · ξ) dx dt

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞(Ω × [0, T ];Rd)
such that ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. The merit of rewriting (46) into the
form (48) consists of the following observation. Consider a test vector field η ∈
C∞([0, T ];H1(Ω;Rd)) such that ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. Denoting by ψ
a standard mollifier, for every k ∈ N by ψk := kdψ(k·) its usual rescaling, and
by PΩ the Helmholtz projection associated with the smooth domain Ω, it follows
from standard theory (e.g., by a combination of [25] and standard Wm,2(Ω)-elliptic
regularity theory – see also Appendix A) that ηk := PΩ(ψk ∗ η) is an admissible
test vector field for (48). Moreover, taking the limit k → ∞ in (48) with ηk as test
vector fields is admissible and results in

0 =

ˆ T ′

0

ˆ
Ω

ρ(χv)η · ∂tv dx dt+
ˆ T ′

0

ˆ
Ω

ρ(χv)η · (v · ∇)v dx dt (49)

+

ˆ T ′

0

ˆ
Ω

µ(∇v +∇vT ) : ∇η dxdt− σ

ˆ T ′

0

ˆ
Ω

χv(η · ∇)(∇ · ξ) dx dt

for almost every T ′ ∈ [0, T ] and every test vector field η ∈ C∞([0, T ];H1(Ω;Rd))
such that ∇ · η = 0 and (η · n∂Ω)|∂Ω = 0. As an important consequence, because of
the boundary condition for the velocity fields (u, v) and their solenoidality, we may
choose (after performing a mollification argument in the time variable) η = u − v
as a test function in (49) which entails for almost every T ′ ∈ [0, T ]

0 =

ˆ T ′

0

ˆ
Ω

ρ(χv)(u− v) · ∂tv dxdt+
ˆ T ′

0

ˆ
Ω

ρ(χv)(u− v) · (v · ∇)v dx dt (50)

+

ˆ T ′

0

ˆ
Ω

µ(∇v+∇vT) : ∇(u−v) dx dt− σ

ˆ T ′

0

ˆ
Ω

χv((u−v) · ∇)(∇ · ξ) dx dt.

We proceed by testing the analogue of (44) for the phase-dependent density ρ(χu)
with the test function 1

2 |v|
2, obtaining for almost every T ′ ∈ [0, T ]

ˆ
Ω

1

2
ρ(χu(·, T ′))|v(·, T ′)|2 dx−

ˆ
Ω

1

2
ρ(χ0

u)|v0(·)|2 dx

=

ˆ T ′

0

ˆ
Ω

ρ(χu)v · ∂tv dxdt+
ˆ T ′

0

ˆ
Ω

ρ(χu)v · (u · ∇)v dxdt. (51)

We next want to test (38) with the fluid velocity v. Modulo a mollification argument
in the time variable, we have to argue that ∇v does not jump across the interface so
that v is an admissible test function. Indeed, since the tangential derivative (τIv ·∇)v
is continuous across the interface it follows from∇·v = 0 that also nIv ·(nIv ·∇)v does
not jump across Iv. The only component which may jump is thus τIv · (nIv · ∇)v.
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However, this is ruled out by the equilibrium condition for the stresses along Iv
together with having µ+ = µ−. In summary, using v in (38) implies

−
ˆ
Ω

ρ(χu(·, T ′))u(·, T ′) · v(·, T ′) dx+

ˆ
Ω

ρ(χ0
u))u0 · v0(·) dx

−
ˆ T ′

0

ˆ
Ω

µ(∇u+∇uT) : ∇v dxdt

=−
ˆ T ′

0

ˆ
Ω

ρ(χu)u · ∂tv dx dt−
ˆ T ′

0

ˆ
Ω

ρ(χu)u · (u · ∇)v dxdt (52)

+ σ

ˆ T ′

0

ˆ
Ω×Sd−1

(Id−s⊗ s) : ∇v dVt(x, s) dt

for almost every T ′ ∈ [0, T ]. We finally use σ(∇·ξ) as a test function in the transport
equation (39) for the indicator function χu of the varifold solution. Hence, we obtain

σ

ˆ
Ω

χu(·, T ′)(∇ · ξ)(·, T ′) dx−
ˆ
Ω

χ0
u(∇ · ξ)(·, 0) dx

= σ

ˆ T ′

0

ˆ
Ω

χu(∇ · ∂tξ + (u · ∇)(∇ · ξ)) dxdt.

for almost every T ′ ∈ [0, T ]. Based on the boundary condition (15b), which in turn
in particular implies (∂tξ · n∂Ω)|∂Ω = ∂t(ξ · n∂Ω)|∂Ω = 0, we may integrate by parts
to upgrade the previous display to

− σ

ˆ
Ω

nu(·, T ′) · ξ(·, T ′) d|∇χu(·, T )|+
ˆ
Ω

n0u · ξ(·, 0) d|∇χu(·, 0)|

= −σ
ˆ T ′

0

ˆ
Ω

nu · ∂tξ d|∇χu|dt+ σ

ˆ T ′

0

ˆ
Ω

χu(u · ∇)(∇ · ξ) dx dt (53)

for almost every T ′ ∈ [0, T ].
Step 2: Summing (50), (51), (40) as well as (52), we obtain

LHSkin(T
′) + LHSvisc + LHSsurEn(T

′)

≤ RHSkin(0) +RHSsurEn(0) +RHSdt +RHSadv +RHSsurTen, (54)

where the individual terms are given by (cf. the proof of [12, Proposition 10])

LHSkin(T
′) :=

ˆ
Ω

1

2
ρ(χu(·, T ′))|u−v|2(·, T ′) dx, (55)

RHSkin(0) :=

ˆ
Ω

1

2
ρ(χ0

u)|u0 − v0|2 dx, (56)

LHSsurEn(T
′) := σ|∇χu(·, T ′)|(Ω) + σ

ˆ
Ω

(1− θT ′) d|VT ′ |Sd−1(x), (57)

RHSsurEn(0) := σ|∇χ0
u(·)|(Ω), (58)

LHSvisc :=

ˆ T ′

0

ˆ
Ω

µ

2
|∇(u− v) +∇(u− v)T|2 dxdt, (59)

RHSdt := −
ˆ T ′

0

ˆ
Ω

(ρ(χv)− ρ(χu))(u− v) · ∂tv dx dt, (60)
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RHSadv := −
ˆ T ′

0

ˆ
Ω

(ρ(χu)− ρ(χv))(u− v) · (v · ∇)v dxdt (61)

−
ˆ T ′

0

ˆ
Ω

ρ(χu)(u− v) · ((u− v) · ∇)v dxdt,

RHSsurTen := −σ
ˆ T ′

0

ˆ
Ω

χv((u−v) · ∇)(∇ · ξ) dx dt (62)

+ σ

ˆ T ′

0

ˆ
Ω×Sd−1

(Id−s⊗ s) : ∇v dVt(x, s) dt.

Adding zeros, ∇ · v = 0, the boundary condition n∂Ω · (∇v+(∇v)T)ξ = n∂Ω ·
(∇v+(∇v)T)(Id − n∂Ω ⊗ n∂Ω)ξ = 0 due to (35) and (15b), and the compatibility
condition (41) allow to rewrite the second term of (62) as follows

σ

ˆ T ′

0

ˆ
Ω×Sd−1

(Id−s⊗ s) : ∇v dVt(x, s) dt

=− σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt

− σ

ˆ T ′

0

ˆ
Ω×Sd−1

s · (∇v + (∇v)T)ξ dVt(x, s) dt

+ σ

ˆ T ′

0

ˆ
Ω×Sd−1

ξ · (ξ · ∇)v dVt(x, s) dt

=− σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt (63)

− σ

ˆ T ′

0

ˆ
Ω

ξ · (nu · ∇)v d|∇χu|dt− σ

ˆ T ′

0

ˆ
Ω

nu · (ξ · ∇)v d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt.

Furthermore, because of (43) we obtain

σ

ˆ T ′

0

ˆ
Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt (64)

= σ

ˆ T ′

0

ˆ
Ω

(1−θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt+ σ

ˆ T ′

0

ˆ
Ω

θtξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt

= σ

ˆ T ′

0

ˆ
Ω

(1− θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt+ σ

ˆ T ′

0

ˆ
Ω

ξ · (ξ · ∇)v d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt.

The combination of (62), (63) and (64) together with ∇ · v = 0 then implies

RHSsurTen =− σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt (65)
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+ σ

ˆ T ′

0

ˆ
Ω

(1− θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt (66)

− σ

ˆ T ′

0

ˆ
Ω

χv((u− v) · ∇)(∇ · ξ) dx dt

− σ

ˆ T ′

0

ˆ
Ω

ξ · ((nu − ξ) · ∇)v d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

(nu − ξ) · (ξ · ∇)v d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

(Id−ξ ⊗ ξ) : ∇v d|∇χu|dt.

In summary, plugging back (55)–(61) and (65) into (54), and then summing (53) to
the resulting inequality yields in view of the definition (28) of the relative entropy

E[χu, u, V |χv, v](T
′) +

ˆ T ′

0

ˆ
Ω

µ

2
|∇(u− v) +∇(u− v)T|2 dxdt

≤ E[χu, u, V |χv, v](0) +Rdt +Radv +R
(1)
surTen +R

(2)
surTen (67)

for almost every T ′ ∈ [0, T ], where in addition to the notation of Proposition 5 we
also defined the two auxiliary quantities

R
(1)
surTen := −σ

ˆ T ′

0

ˆ
Ω×Sd−1

(s− ξ) · ((s− ξ) · ∇)v dVt(x, s) dt (68)

+ σ

ˆ T ′

0

ˆ
Ω

(1− θt)ξ · (ξ · ∇)v d|Vt|Sd−1 dt

+ σ

ˆ T ′

0

ˆ
∂Ω

ξ · (ξ · ∇)v d|Vt|Sd−1 dt,

R
(2)
surTen := σ

ˆ T

0

ˆ
Ω

χu(u · ∇)(∇ · ξ) dx dt (69)

− σ

ˆ T ′

0

ˆ
Ω

χv((u−v) · ∇)(∇ · ξ) dxdt

− σ

ˆ T ′

0

ˆ
Ω

ξ · ((nu − ξ) · ∇)v d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

(nu − ξ) · (ξ · ∇)v d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

(Id−ξ ⊗ ξ) : ∇v d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

nu · ∂tξ d|∇χu|dt.

The remainder of the proof is concerned with the post-processing of the termR
(2)
surTen.
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Step 3: By adding zeros, we can rewrite the last right hand side term of (69) as

− σ

ˆ T ′

0

ˆ
Ω

nu · ∂tξ d|∇χu|dt

= −σ
ˆ T ′

0

ˆ
Ω

(nu−ξ) · (∂tξ+(v · ∇)ξ+(Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu|dt (70)

− σ

ˆ T ′

0

ˆ
Ω

((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

(
∂t

1

2
|ξ|2 + (v · ∇)

1

2
|ξ|2

)
d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

ξ ⊗ (nu − ξ) : ∇v d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

nu · ((v · ∇)ξ) d|∇χu|dt.

We proceed by manipulating the last term in the latter identity. To this end, we
compute applying the product rule in the first step and then adding zero

σ

ˆ T ′

0

ˆ
Ω

nu · ((v · ∇)ξ) d|∇χu|dt

= σ

ˆ T ′

0

ˆ
Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt (71)

+ σ

ˆ T ′

0

ˆ
Ω

(1− nu · ξ)(∇ · v) d|∇χu|dt− σ

ˆ T ′

0

ˆ
Ω

Id : ∇v d|∇χu|dt.

Noting that for symmetry reasons ∇· (∇· (ξ⊗ v)) = ∇· (∇· (v⊗ ξ)), an integration
by parts based on the boundary conditions (15b) and (v · n∂Ω)|∂Ω = 0 entails

σ

ˆ T ′

0

ˆ
Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt

=− σ

ˆ T ′

0

ˆ
Ω

χu∇ · (∇ · (v ⊗ ξ)) dx dt− σ

ˆ T ′

0

ˆ
∂Ω

χu(n∂Ω ⊗ v : ∇ξ) dS dt

= σ

ˆ T ′

0

ˆ
Ω

nu · (∇ · (v ⊗ ξ)) d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
∂Ω

χu(n∂Ω · ((ξ · ∇)v − (v · ∇)ξ)) dS dt.

We next observe that the last right hand side term of the previous display is zero.
Indeed, note first that thanks to the boundary conditions (15b) and (v ·n∂Ω)|∂Ω = 0
the involved gradients are in fact tangential gradients along ∂Ω. Since the tangential
gradient of a function only depends on its definition along the manifold, we are free
to substitute (ξ · τ∂Ω)τ∂Ω for ξ resp. (v · τ∂Ω)τ∂Ω for v, obtaining in the process

ˆ T ′

0

ˆ
∂Ω

χu(n∂Ω · ((ξ · ∇)v − (v · ∇)ξ)) dS dt

=

ˆ T ′

0

ˆ
∂Ω

χu[(ξ · ∇)(v · τ∂Ω)− (v · ∇)(ξ · τ∂Ω)](τ∂Ω · n∂Ω) dS dt
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+

ˆ T ′

0

ˆ
∂Ω

χu[((v · τ∂Ω)ξ − (ξ · τ∂Ω)v) · ∇)τ∂Ω] · n∂Ω dS dt = 0.

The combination of the previous two displays together with an integration by parts
and an application of the product rule thus yields

σ

ˆ T ′

0

ˆ
Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt

= σ

ˆ T ′

0

ˆ
Ω

(nu · v)(∇ · ξ) d|∇χu|dt+ σ

ˆ T ′

0

ˆ
Ω

nu ⊗ ξ : ∇v d|∇χu|dt.

By another integration by parts, relying in the process also on ∇ · v = 0 and
(v · n∂Ω)|∂Ω = 0, we may proceed computing

σ

ˆ T ′

0

ˆ
Ω

nu · (∇ · (ξ ⊗ v)) d|∇χu|dt

=− σ

ˆ T ′

0

ˆ
Ω

χu∇ · (v(∇ · ξ)) dx dt+ σ

ˆ T ′

0

ˆ
Ω

nu ⊗ ξ : ∇v d|∇χu|dt

=− σ

ˆ T ′

0

ˆ
Ω

χu(v · ∇)(∇ · ξ) dx dt+ σ

ˆ T ′

0

ˆ
Ω

nu ⊗ ξ : ∇v d|∇χu|dt. (72)

In summary, taking together (70)–(72) and adding for a last time zero yields

−σ
ˆ T ′

0

ˆ
Ω

nu · ∂tξ d|∇χu|dt

=− σ

ˆ T ′

0

ˆ
Ω

χu(v · ∇)(∇ · ξ) dxdt (73)

− σ

ˆ T ′

0

ˆ
Ω

(nu−ξ) · (∂tξ+(v · ∇)ξ+(Id−ξ ⊗ ξ)(∇v)Tξ) d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

((nu − ξ) · ξ)(ξ ⊗ ξ : ∇v) d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

(
∂t

1

2
|ξ|2 + (v · ∇)

1

2
|ξ|2

)
d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

(1− nu · ξ)(∇ · v) d|∇χu|dt

+ σ

ˆ T ′

0

ˆ
Ω

(nu − ξ)⊗ ξ : ∇v d|∇χu|dt+ σ

ˆ T ′

0

ˆ
Ω

ξ ⊗ (nu − ξ) : ∇v d|∇χu|dt

− σ

ˆ T ′

0

ˆ
Ω

(Id−ξ ⊗ ξ) : ∇v d|∇χu|dt.

Inserting (73) into (69) then implies that R
(1)
surTen+R

(2)
surTen combines to the desired

term RsurTen. In particular, the estimate (67) upgrades to (29) as asserted. □

3.2. Time evolution of the bulk error: Proof of Lemma 6. Note that the
sign conditions for the transported weight ϑ, see Definition 3, ensure that

Evol[χu|χv](t) =

ˆ
Ω

(
χu(·, t)− χv(·, t)

)
ϑ(·, t) dx
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for all t ∈ [0, T ]. Hence, as a consequence of the transport equations for χv and χu

(see Definition 10 and Definition 11, respectively) one obtains

Evol[χu|χv](T
′) = Evol[χu|χv](0) (74)

+

ˆ T ′

0

ˆ
Ω

(χu−χv)∂tϑ dxdt+

ˆ T ′

0

ˆ
Ω

(χuu−χvv) · ∇ϑdx dt

for almost every T ′ ∈ [0, T ]. Note that for any sufficiently regular solenoidal vector
field F with (F ·n∂Ω)|∂Ω = 0, since ϑ = 0 along Iv (see Definition 3), an integration
by parts yields ˆ

Ω

χv(F · ∇)ϑ dx = 0. (75)

Adding zero in (74) and making use of (75) with respect to the choices F = u
and F = v in form of

´
Ω
χv

(
(u−v) · ∇

)
ϑdx = 0 then updates (74) to (31). This

concludes the proof of Lemma 6. □

3.3. Conditional weak-strong uniqueness: Proof of Proposition 4. Starting
point for a proof of the conditional weak-strong uniqueness principle is the following
important coercivity estimate (cf. [12, Lemma 20]).

Lemma 12. Let the assumptions and notation of Proposition 4 be in place. Then
there exists a constant C = C(χv, v, T ) > 0 such that for all δ ∈ (0, 1] it holds
ˆ T ′

0

ˆ
Ω

|χv−χu||u−v|dxdt ≤
C

δ

ˆ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt

+ δ

ˆ T ′

0

ˆ
Ω

|∇u−∇v|2 dx dt (76)

for all T ′ ∈ [0, T ].

Proof. It turns out to be convenient to introduce a decomposition of the interface Iv
into its topological features: the connected components of Iv∩Ω and the connected
components of Iv ∩ ∂Ω. Let N ∈ N denote the total number of such topological
features of Iv, and split {1, . . . , N} =: I ·∪ C as follows. The subset I enumerates
the space-time connected components of Iv ∩ Ω (being time-evolving connected
interfaces), whereas the subset C enumerates the space-time connected components
of Iv ∩ ∂Ω (being time-evolving contact points if d = 2, or time-evolving connected
contact lines if d = 3). If i ∈ I, we let Ti denote the space-time trajectory in Ω
of the corresponding connected interface. Furthermore, for every c ∈ C we write Tc
representing the space-time trajectory in ∂Ω of the corresponding contact point (if
d = 2) or line (if d = 3). Finally, let us write i ∼ c for i ∈ I and c ∈ C if and only
if Ti ends at Tc. With this language and notation in place, the proof is now split
into five steps.

Step 1: (Choice of a suitable localization scale) Denote by n∂Ω the unit normal
vector field of ∂Ω pointing into Ω, and by nIv (·, t) the unit normal vector field of
Iv(t) pointing into Ωv(t). Because of the uniform C2

x regularity of the boundary ∂Ω
and the uniform CtC

2
x regularity of the interface Iv(t), t ∈ [0, T ], we may choose a

scale r ∈ (0, 12 ] such that for all t ∈ [0, T ] and all i ∈ I the maps

Ψ∂Ω : ∂Ω× (−3r, 3r) → Rd, (x, y) 7→ x+ yn∂Ω(x), (77)

ΨTi(t) : Ti(t)× (−3r, 3r) → Rd, (x, y) 7→ x+ ynIv (x, t) (78)
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are C1 diffeomorphisms onto their image. By uniform regularity of ∂Ω and Iv (the
latter in space-time), we have bounds

sup
∂Ω×[−r,r]

|∇Ψ∂Ω| ≤ C, sup
Ψ∂Ω(∂Ω×[−r,r])

|∇Ψ−1
∂Ω| ≤ C, (79)

sup
t∈[0,T ]

sup
Ti(t)×[−r,r]

|∇ΨTi(t)| ≤ C, sup
t∈[0,T ]

sup
ΨTi(t)

(Ti(t)×[−r,r])

|∇Ψ−1
Ti(t)

| ≤ C (80)

for all i ∈ I. By possibly choosing r ∈ (0, 12 ] even smaller, we may also guarantee
that for all t ∈ [0, T ] and all i ∈ I it holds

ΨTi(t)(Ti(t)×[−r, r]) ∩ΨTi′ (t)
(Ti′(t)×[−r, r]) = ∅ for all i′ ∈ I, i′ ̸= i, (81)

ΨTi(t)(Ti(t)×[−r, r]) ∩Ψ∂Ω(∂Ω×[−r, r]) ̸= ∅ ⇔ ∃c ∈ C : i ∼ c, (82)

ΨTi(t)(Ti(t)×[−r, r]) ∩Ψ∂Ω(∂Ω×[−r, r]) ⊂ B2r(Tc(t)) if ∃c ∈ C : i ∼ c (83)

B2r(Tc(t)) ∩B2r(Tc′(t)) = ∅ for all c, c′ ∈ C, c′ ̸= c. (84)

Note finally that because of the 90◦ contact angle condition and by possibly choosing
r ∈ (0, 12 ] even smaller, we can furthermore ensure that

Ω \
(
Ψ∂Ω(∂Ω×[−r, r]) ∪

⋃
i∈I

ΨTi(t)(Ti(t)×[−r, r])
)

⊂ Ω ∩ {x ∈ Rd : dist(x, ∂Ω) ∧ dist(x, Iv(t)) > r}
(85)

for all t ∈ [0, T ]. Indeed, for x ∈ Ω\
(
Ψ∂Ω(∂Ω×[−r, r])∪

⋃
i∈I ΨTi(t)(Ti(t)×[−r, r])

)
it follows that dist(x, ∂Ω) > r. In case the interface Iv(t) intersects ∂Ω it may
not be immediately clear that also dist(x, Iv(t)) > r holds true. Assume there
exists a point x ∈ Ω \

(
Ψ∂Ω(∂Ω×[−r, r]) ∪

⋃
i∈I ΨTi(t)(Ti(t)×[−r, r])

)
such that

dist(x, Iv(t)) ≤ r. Then necessarily x ∈ (Ω ∩ Br(c(t))) \
⋃

i∈I ΨTi(t)(Ti(t)×[−r, r])
for some boundary point c(t) ∈ ∂Ω ∩ Iv(t). Hence, because of the uniform C2

x

regularity of ∂Ω and Iv(t) intersecting ∂Ω at an angle of 90◦, one may choose
r ∈ (0, 12 ] small enough such that x ∈ (Ω∩Br(c(t))) implies dist(x, ∂Ω) ≤ r. As we
have already seen, this contradicts x ∈ Ω \Ψ∂Ω(∂Ω×[−r, r]).

Step 2: (A reduction argument) We may estimate by a union bound and (85)

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v|dx dt

≤
ˆ T ′

0

ˆ
Ω∩Ψ∂Ω(∂Ω×[−r,r])\

⋃
c∈C B2r(Tc(t))

|χv−χu||u−v|dxdt (86)

+
∑
i∈I

ˆ T ′

0

ˆ
Ω∩ΨTi(t)

(Ti(t)×[−r,r])\
⋃

c∈C B2r(Tc(t))

|χv−χu||u−v|dxdt

+ C
∑
c∈C

ˆ T ′

0

ˆ
Ω∩B2r(Tc(t))

|χv−χu||u−v|dxdt

+

ˆ T ′

0

ˆ
Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}

|χv−χu||u−v|dxdt.

An application of Hölder’s inequality and Young’s inequality, the definition (28)
of the relative entropy functional, the coercivity estimate (26) for the transported
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weight, and the definition (30) of the bulk error functional further imply
ˆ T ′

0

ˆ
Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}

|χv−χu||u−v|dxdt

≤ C

ˆ T ′

0

ˆ
Ω∩{dist(·,∂Ω)∧dist(·,Iv(t))>r}

|χv−χu|dx dt+ C

ˆ T ′

0

E[χu, u, V |χv, v](t) dt

≤ C

ˆ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu, χv](t) dt.

Hence, it remains to estimate the first three terms on the right hand side of (86).
Step 3: (Estimate near the interface but away from contact points) First of all,

because of the localization properties (81)–(83) it holds for all i ∈ I

dist(·, Ti) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) (87)

in Ω∩ΨTi(t)(Ti(t)×[−r, r])\
⋃

c∈C B2r(Tc(t)). Hence, the local interface error height
as measured in the direction of nIv on Ti

hTi
(x, t) :=

ˆ r

−r

|χu − χv|(ΨTi(t)(x, y), t) dy, x ∈ Ti(t), t ∈ [0, T ],

is, because of (87) and the coercivity estimate (26) of the transported weight ϑ,
subject to the estimate

h2Ti
(x, t) ≤ C

ˆ r

−r

|χu − χv|(ΨTi(t)(x, y), t)y dy

≤ C

ˆ r

−r

|χu − χv|(ΨTi(t)(x, y), t)|ϑ|(ΨTi(t)(x, y), t) dy (88)

for all x ∈ Ti(t)\
⋃

c∈C B2r(Tc(t)), all t ∈ [0, T ] and all i ∈ I. Carrying out the slicing
argument of the proof of [12, Lemma 20] in Ω∩ΨTi(t)(Ti(t)×[−r, r])\

⋃
c∈C B2r(Tc(t))

by means of ΨTi(t), which is indeed admissible thanks to (78), (80) and (88), shows
that one obtains an estimate of required form∑

i∈I

ˆ T ′

0

ˆ
Ω∩ΨTi(t)

(Ti(t)×[−r,r])\
⋃

c∈C B2r(Tc(t))

|χv−χu||u−v|dx dt

≤ C

δ

ˆ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt+ δ

ˆ T ′

0

ˆ
Ω

|∇u−∇v|2 dxdt.

Step 4: (Estimate near the boundary of the domain but away from contact points)
The argument is similar to the one of the previous step, with the only major differ-
ence being that the slicing argument of the proof of [12, Lemma 20] is now carried
out in Ω ∩ Ψ∂Ω(∂Ω×[−r, r]) \

⋃
c∈C B2r(Tc(t)) by means of Ψ∂Ω. This in turn is

facilitated by the following facts. First, the localization properties (81)–(83) ensure

dist(·, ∂Ω) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) (89)

in Ω ∩ Ψ∂Ω(∂Ω×[−r, r]) \
⋃

c∈C B2r(Tc(t)). Second, as a consequence of (89) and
the coercivity estimate (26) of the transported weight ϑ, the local interface error
height as measured in the direction of n∂Ω

h∂Ω(x, t) :=

ˆ r

−r

|χu − χv|(Ψ∂Ω(x, y), t) dy, x ∈ ∂Ω, t ∈ [0, T ],
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satisfies the estimate

h2∂Ω(x, t) ≤ C

ˆ r

−r

|χu − χv|(Ψ∂Ω(x, y), t)y dy

≤ C

ˆ r

−r

|χu − χv|(Ψ∂Ω(x, y), t)|ϑ|(Ψ∂Ω(x, y), t) dy. (90)

Hence, we obtain

ˆ T ′

0

ˆ
Ω∩Ψ∂Ω(∂Ω×[−r,r])\

⋃
c∈C B2r(Tc(t))

|χv−χu||u−v|dx dt

≤ C

δ

ˆ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt+ δ

ˆ T ′

0

ˆ
Ω

|∇u−∇v|2 dxdt.

Step 5: (Estimate near contact points) Fix c ∈ C, and let i ∈ I denote the
unique connected interface Ti such that i ∼ c. Because of the regularity of ∂Ω,
the regularity of Ti, and the 90◦ contact angle condition we may decompose the
neighborhood Ω∩B2r(Tc(t))—by possibly reducing the localization scale r ∈ (0, 12 ]
even further—into three pairwise disjoint open sets W∂Ω(t), WTi

(t) and W∂Ω∼Ti
(t)

such that Ω ∩B2r(Tc(t)) \
(
W∂Ω(t) ∪WTi(t) ∪W∂Ω∼Ti(t)

)
is an Hd null set and

dist(·, ∂Ω) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) in W∂Ω(t), (91)

dist(·, Ti(t)) = dist(·, ∂Ω) ∧ dist(·, Iv(t)) in WTi
(t), (92)

dist(·, ∂Ω) ∼ dist(·, Ti(t)) ∼ dist(·, Iv(t)) in W∂Ω∼Ti
(t), (93)

as well as

W∂Ω(t) ⊂ Ψ∂Ω(∂Ω×(−3r, 3r)), (94)

WTi
(t) ⊂ ΨTi(t)(Ti(t)×(−3r, 3r)), (95)

W∂Ω∼Ti
(t) ⊂ Ψ∂Ω(∂Ω×(−3r, 3r)) ∩ΨTi(t)(Ti(t)×(−3r, 3r)). (96)

(Up to a rigid motion, these sets can in fact be defined independent of t ∈ [0, T ].)
Hence, applying the argument of Step 3 based on (92) and (95) with respect to
Ω ∩ B2r(Tc(t)) ∩ WTi

(t), the argument of Step 4 based on (91) and (94) with
respect to Ω ∩ B2r(Tc(t)) ∩W∂Ω(t), and either the argument of Step 3 or Step 4
based on (93) and (96) with respect to Ω ∩B2r(Tc(t)) ∩W∂Ω∼Ti

(t) entails∑
c∈C

ˆ T ′

0

ˆ
Ω∩B2r(Tc(t))

|χv−χu||u−v|dxdt

≤ C

δ

ˆ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt+ δ

ˆ T ′

0

ˆ
Ω

|∇u−∇v|2 dxdt.

This in turn concludes the proof of Lemma 12. □

Proof of Proposition 4. The proof proceeds in three steps.
Step 1: (Post-processing the relative entropy inequality (29)) It follows immedi-

ately from the L∞
x,t-bound for ∂tv and ρ(χv)− ρ(χu) = (ρ+−ρ−)(χv−χu) that

|Rdt| ≤ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v|dxdt (97)
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for almost every T ′ ∈ [0, T ]. Furthermore, the L∞
t W

1,∞
x -bound for v, the defini-

tion (28) of the relative entropy functional, and again the identity ρ(χv)− ρ(χu) =
(ρ+−ρ−)(χv−χu) imply that

|Radv| ≤ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v|dxdt+ C

ˆ T ′

0

E[χu, u, V |χv, v](t) dt (98)

for almost every T ′ ∈ [0, T ]. For a bound on the interface contribution RsurTen,
we rely on the L∞

t W
1,∞
x -bound for v, the L∞

t W
2,∞
x -bound for ξ, the L∞

t W
1,∞
x -

bound for B, the definition (28) of the relative entropy functional, as well as the
estimates (15d) and (15e) of a boundary adapted extension ξ of nIv to the effect
that

|RsurTen| ≤ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v|dxdt (99)

+ C

ˆ T ′

0

ˆ
Ω×Sd−1

|s− ξ|2 dVt(x, s) dt

+ C

ˆ T ′

0

ˆ
Ω

1− θt d|Vt|Sd−1 dt

+ C

ˆ T ′

0

ˆ
∂Ω

1 d|Vt|Sd−1 dt

+ C

ˆ T ′

0

ˆ
Ω

|nu − ξ|2 d|∇χu|dt

+ C

ˆ T ′

0

ˆ
Ω

dist2(·, Iv) ∧ 1 d|∇χu|dt

+ C

ˆ T ′

0

ˆ
Ω

|ξ · (ξ − nu)|d|∇χu|dt

+ C

ˆ T ′

0

E[χu, u, V |χv, v](t) dt

for almost every T ′ ∈ [0, T ]. It follows from property (15a) of a boundary adapted
extension ξ and the trivial estimates |ξ ·(ξ−nu)| ≤ (1−|ξ|2)+(1−nu ·ξ) ≤ 2(1−|ξ|)+
(1−nu · ξ) and 1− |ξ| ≤ 1− nu · ξ that

ˆ T ′

0

ˆ
Ω

dist2(·, Iv) ∧ 1 d|∇χu|dt+
ˆ T ′

0

ˆ
Ω

|ξ · (ξ − nu)|d|∇χu|dt (100)

≤ C

ˆ T ′

0

E[χu, u, V |χv, v](t) dt.

Moreover, the trivial estimate |nu − ξ|2 ≤ 2(1− nu · ξ) implies

ˆ T ′

0

ˆ
Ω

|nu − ξ|2 d|∇χu|dt ≤ C

ˆ T ′

0

E[χu, u, V |χv, v](t) dt. (101)

Recall finally from (23) and (19) that

ˆ T ′

0

ˆ
Ω×Sd−1

|s− ξ|2 dVt(x, s) dt ≤ C

ˆ T ′

0

E[χu, u, V |χv, v](t) dt,



STABILITY FOR TWO-PHASE FLUID FLOW WITH 90◦ CONTACT ANGLE 29

ˆ T ′

0

ˆ
Ω

1− θt d|Vt|Sd−1 dt+

ˆ T ′

0

ˆ
∂Ω

1 d|Vt|Sd−1 dt ≤ C

ˆ T ′

0

E[χu, u, V |χv, v](t) dt.

(102)

By inserting back the estimates (97)–(102) into the relative entropy inequal-
ity (29), then making use of the coercivity estimate (76) and Korn’s inequality,
and finally carrying out an absorption argument, it follows that there exist two
constants c = c(χv, v, T ) > 0 and C = C(χv, v, T ) > 0 such that for almost every
T ′ ∈ [0, T ]

E[χu, u, V |χv, v](T
′) + c

ˆ T ′

0

ˆ
Ω

|∇(u−v) +∇(u−v)T|2 dx dt

≤ E[χu, u, V |χv, v](0) + C

ˆ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt. (103)

Step 2: (Post-processing the identity (31)) By the L∞
t W

1,∞
x -bound for the trans-

ported weight ϑ, the estimate (27) on the advective derivative of the transported
weight ϑ, and the definition (30) of the bulk error functional we infer that

Evol[χu|χv](T
′) ≤ Evol[χu|χv](0) + C

ˆ T ′

0

Evol[χu|χv](t) dt

+ C

ˆ T ′

0

ˆ
Ω

|χv−χu||u−v|dxdt

for almost every T ′ ∈ [0, T ]. Adding (103) to the previous display, and making
use of the coercivity estimate (76) in combination with Korn’s inequality and an
absorption argument thus implies that for almost every T ′ ∈ [0, T ]

E[χu, u, V |χv, v](T
′) + Evol[χu|χv](T

′) + c

ˆ T ′

0

ˆ
Ω

|∇(u−v) +∇(u−v)T|2 dxdt

≤ E[χu, u, V |χv, v](0) + Evol[χu|χv](0) (104)

+ C

ˆ T ′

0

E[χu, u, V |χv, v](t) + Evol[χu|χv](t) dt.

Step 3: (Conclusion) The stability estimates (11) and (12) are an immediate
consequence of the estimate (104) by an application of Gronwall’s lemma. In case
of coinciding initial conditions, it follows that Evol[χu|χv](t) = 0 for almost every
t ∈ [0, T ]. This in turn implies that χu(·, t) = χv(·, t) almost everywhere in Ω for
almost every t ∈ [0, T ]. The asserted representation of the varifold follows from the
fact that E[χu, u, V |χv, v](t) = 0 for almost every t ∈ [0, T ]. This concludes the
proof of the conditional weak-strong uniqueness principle. □

3.4. Proof of Theorem 1. This is now an immediate consequence of Proposition 4
and the existence results of Proposition 7 and Lemma 8, respectively. □

4. Bulk extension of the interface unit normal

The aim of this short section is the construction of an extension of the interface
unit normal in the vicinity of a space-time trajectory in Ω of a connected component
of the interface Iv corresponding to a strong solution in the sense of Definition 10
on a time interval [0, T ].
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Mainly for reference purposes in later sections, it turns out to be beneficial to
introduce already at this stage some notation in relation to a decomposition of the
interface Iv into its topological features: the connected components of Iv ∩ Ω and
the connected components of Iv ∩ ∂Ω. Denoting by N ∈ N the total number of
such topological features present in the interface Iv we split {1, . . . , N} =: I ·∪ C by
means of two disjoint subsets. In particular, the subset I enumerates the space-time
connected components of Iv ∩ Ω, i.e., time-evolving connected interfaces, whereas
the subset C enumerates the space-time connected components of Iv ∩ ∂Ω, i.e.,
time-evolving contact points. If i ∈ I, we denote by Ti :=

⋃
t∈[0,T ] Ti(t)×{t} ⊂

Iv ∩ (Ω×[0, T ]) the space-time trajectory of the corresponding connected interfaces
Ti(t) ⊂ Iv(t) ∩ Ω, t ∈ [0, T ].

For each i ∈ I, we want to define a vector field ξi subject to conditions as in
Definition 2; at least in a suitable neighborhood of Ti. We first formalize what we
mean by the latter in form of the following definition.

Definition 13. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable
and smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–
Stokes equation for two fluids in the sense of Definition 10 on a time interval [0, T ].
Fix a two-phase interface i ∈ I. We call ri ∈ (0, 1] an admissible localization radius
for the interface Ti ⊂ Iv ∩ (Ω×[0, T ]) if the map

ΨTi
: Ti × (−2ri, 2ri) → R2 × [0, T ], (x, t, s) 7→

(
x+ snIv (x, t), t

)
(105)

is bijective onto its image im(ΨTi
) := ΨTi

(
Ti×(−2ri, 2ri)

)
, and its inverse is a

diffeomorphism of class C0
t C

2
x(im(ΨTi)) ∩ C1

t C
0
x(im(ΨTi)).

In case such a scale ri ∈ (0, 1] exists, we may express the inverse by means of
Ψ−1

Ti
=: (PTi

, Id, sTi
) : im(ΨTi

) → Ti×(−2ri, 2ri). Hence, the map PTi
represents

in each time slice the nearest-point projection onto the interface Ti(t) ⊂ Iv(t) ∩Ω,
t ∈ [0, T ], whereas sTi

bears the interpretation of a signed distance function with ori-

entation fixed by ∇sTi = nIv . In particular, sTi ∈ C0
t C

3
x(im(ΨTi))∩C1

t C
1
x(im(ΨTi))

as well as PTi
∈ C0

t C
2
x(im(ΨTi

)) ∩ C1
t C

0
x(im(ΨTi

)).
By a slight abuse of notation, we extend to im(ΨTi

) the definition of the normal
vector field resp. the scalar mean curvature of Ti by means of

nIv : im(ΨTi
) → S1, (x, t) 7→ nIv (PTi

(x, t), t) = ∇sTi
(x, t), (106)

HIv : im(ΨTi) → R, (x, t) 7→ −(∆sTi)(PTi(x, t), t). (107)

Hence, we may register that nIv ∈ C0
t C

2
x(im(ΨTi)) ∩ C1

t C
0
x(im(ΨTi)) as well as

HIv ∈ C0
t C

1
x(im(ΨTi

)).

It is clear from Definition 10 of a strong solution to the incompressible Navier–
Stokes equation for two fluids, in particular Definition 9 of smoothly evolving do-
mains and interfaces, that all interfaces admit an admissible localization radius in
the sense of Definition 13 as a consequence of the tubular neighborhood theorem.

Construction 14. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable
and smooth boundary. Let (χv, v) be a strong solution to the incompressible Navier–
Stokes equation for two fluids in the sense of Definition 10 on a time interval [0, T ].
Fix a two-phase interface i ∈ I and let ri ∈ (0, 1] be an admissible localization radius
for the interface Ti ⊂ Iv in the sense of Definition 13. Then a bulk extension of
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the unit normal nIv along a smooth interface Ti is the vector field ξi defined by

ξi(x, t) := nIv (x, t), (x, t) ∈ im(ΨTi) ∩ (Ω×[0, T ]). (108)

We record the required properties of the vector field ξi.

Proposition 15. Let the assumptions and notation of Construction 14 be in place.
Then, in terms of regularity it holds that ξi ∈ C0

t C
2
x ∩C1

t C
0
x(im(ΨTi) ∩ (Ω×[0, T ])).

Moreover, we have

∇ · ξi +HIv = O(dist(·, Ti)), (109)

∂tξ
i + (v · ∇)ξi + (Id−ξi ⊗ ξi)(∇v)Tξi = O(dist(·, Ti)), (110)

∂t|ξi|2 + (v · ∇)|ξi|2 = 0 (111)

throughout the space-time domain im(ΨTi) ∩ (Ω×[0, T ]).

Proof. The asserted regularity of ξi is a direct consequence of its definition (108)
and the regularity of nIv from Definition 13. In view of the definitions (108), (106)
and (107), the estimate (109) is directly implied by a Lipschitz estimate based on
the regularity of HIv from Definition 13. The equation (111) is trivially fulfilled
because ξi is a unit vector, cf. the definition (108).

For a proof of (110), we first note that ∂tsTi
(x, t) = −

(
v(PTi

(x, t), t) ·∇
)
sTi

(x, t)
for all (x, t) ∈ im(ΨTi

)∩(Ω×[0, T ]). Indeed, ∂tsTi
equals the normal speed (oriented

with respect to −nIv ) of the nearest point on the connected interface Ti, which
in turn by nIv = ∇sTi is precisely given by the asserted right hand side term.
Differentiating the equation for the time evolution of sTi then yields (110) by means
of ∇PTi

= Id− nIv ⊗ nIv − sTi
∇nIv , the chain rule, and the regularity of v. Note

carefully that this argument is actually valid regardless of the assumption µ− = µ+

since (τIv · ∇)v does not jump across the interface Ti. □

5. Extension of the interface unit normal at a 90◦ contact point

This section constitutes the core of the present work. We establish the existence
of a boundary adapted extension of the interface unit normal in the vicinity of a
space-time trajectory of a 90◦ contact point on the boundary ∂Ω.

The vector field from the previous section serves as the main building block for
an extension of nIv away from the domain boundary ∂Ω. However, it is immediately
clear that the bulk construction in general does not respect the necessary boundary
condition n∂Ω · ξ = 0 along ∂Ω. (Even more drastically, on non-convex parts of ∂Ω
the domain of definition for the bulk construction from the previous section may
not even include ∂Ω!) Hence, in the vicinity of contact points a careful perturbation
of the rather trivial construction from the previous section is required to enforce
the boundary condition. That this can indeed be achieved is summarized in the
following Proposition 16, representing the main result of this section.

For its formulation, it is convenient for the purposes of Section 6 to recall the no-
tation in relation to the decomposition of the interface Iv in terms of its topological
features. More precisely, denoting by N ∈ N the total number of such topological
features present in the interface Iv, we split {1, . . . , N} =: I ·∪C, where I enumerates
the time-evolving connected interfaces of Iv ∩ Ω, whereas C enumerates the time-
evolving contact points of Iv∩∂Ω. If i ∈ I, Ti :=

⋃
t∈[0,T ] Ti(t)×{t} ⊂ Iv∩(Ω×[0, T ])

denotes the space-time trajectory of the corresponding connected interface, whereas
if c ∈ C, we denote by Tc :=

⋃
t∈[0,T ] Tc(t)×{t} ⊂ Iv ∩ (∂Ω×[0, T ]) the space-time
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trajectory of the corresponding contact point. Finally, we write i ∼ c for i ∈ I and
c ∈ C if and only if Ti ends at Tc; otherwise i ̸∼ c.

Proposition 16. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable
and smooth boundary ∂Ω. Let (χv, v) be a strong solution to the incompressible
Navier–Stokes equation for two fluids in the sense of Definition 10 on a time inter-
val [0, T ]. Fix a contact point c ∈ C and let i ∈ I be such that i ∼ c. Let rc ∈ (0, 1]
be an associated admissible localization radius in the sense of Definition 17 below.

There exists a potentially smaller radius r̂c ∈ (0, rc], and a vector field

ξc : Nr̂c,c(Ω) → S1

defined on the space-time domain Nr̂c,c(Ω) :=
⋃

t∈[0,T ]

(
Br̂c(Tc(t)) ∩ Ω

)
×{t}, such

that the following conditions are satisfied:

i) It holds ξc ∈
(
C0

t C
2
x ∩ C1

t C
0
x

)(
Nr̂c,c(Ω) \ Tc

)
.

ii) We have ξc(·, t) = nIv (·, t) and ∇ · ξc(·, t) = −HIv (·, t) along Ti(t)∩Br̂c(Tc(t))
for all t ∈ [0, T ].

iii) The required boundary condition is satisfied even away from the contact point,
namely ξc · n∂Ω = 0 along Nr̂c,c(Ω) ∩ (∂Ω×[0, T ]).

iv) The following estimates on the time evolution of ξchold true in Nr̂c,c(Ω)

∂tξ
c + (v · ∇)ξc + (Id−ξc ⊗ ξc)(∇v)Tξc = O

(
dist(·, Ti)

)
, (112)

∂t|ξc|2 + (v · ∇)|ξc|2 = 0. (113)

v) Let ri ∈ (0, 1] be an admissible localization radius for the interface Ti, and
let ξi be the bulk extension of the interface unit normal on scale ri as provided
by Proposition 15. The vector field ξc is a perturbation of the bulk extension ξi

in the sense that the following compatibility bounds hold true

|ξi(·, t)− ξc(·, t)|+ |∇ · ξi(·, t)−∇ · ξc(·, t)| ≤ C dist(·, Ti(t)), (114)

|ξi(·, t) · (ξi−ξc)(·, t)| ≤ C dist2(·, Ti(t)) (115)

within Br̂c∧ri(Tc(t)) ∩
(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
for all t ∈ [0, T ], cf. Definition 17.

A vector field ξc subject to these requirements will be referred to as a contact point
extension of the interface unit normal on scale r̂c.

A proof of Proposition 16 is provided in Subsection 5.4. The preceding three
subsections collect all the ingredients required for the construction.

5.1. Description of the geometry close to a moving contact point, choice
of orthonormal frames, and a higher-order compatibility condition. We
provide a suitable decomposition for a space-time neighborhood of a moving contact
point Tc, c ∈ C. The main ingredient is given by the following notion of an admis-
sible localization radius. Though rather technical and lengthy in appearance, all
requirements in the definition are essentially a direct consequence of the regularity
of a strong solution. The main purpose of the notion of an admissible localization
radius is to collect in a unified way notation and properties which will be referred
to numerous times in the sequel.

Definition 17. Let d = 2, and let Ω ⊂ R2 be a bounded domain with orientable and
smooth boundary ∂Ω. Let (χv, v) be a strong solution to the incompressible Navier–
Stokes equation for two fluids in the sense of Definition 10 on a time interval [0, T ].
Fix a contact point c ∈ C and let i ∈ I be such that i ∼ c. Let ri ∈ (0, 1] be an
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admissible localization radius for the connected interface Ti in the sense of Defini-
tion 13. We call rc ∈ (0, ri] an admissible localization radius for the moving 90◦

contact point Tc if the following list of properties is satisfied:

i) Let the map Ψ∂Ω : ∂Ω×(−2rc, 2rc) → R2 be given by (x, s) 7→ x+sn∂Ω(x). We
require Ψ∂Ω to be bijective onto its image im(Ψ∂Ω) := Ψ∂Ω

(
∂Ω×(−2rc, 2rc)

)
,

and its inverse Ψ−1
∂Ω is a diffeomorphism of class C2

x(im(Ψ∂Ω)). We may ex-

press the inverse by means of Ψ−1
∂Ω =: (P∂Ω, s∂Ω) : im(Ψ∂Ω) → ∂Ω×(−2rc, 2rc).

Hence, P∂Ω represents the nearest-point projection onto ∂Ω, whereas s∂Ω is the
signed distance function with orientation fixed by ∇s∂Ω = n∂Ω. In particular,
s∂Ω ∈ C3

x(im(Ψ∂Ω)) and P∂Ω ∈ C2
x(im(Ψ∂Ω)).

By a slight abuse of notation, we extend to im(Ψ∂Ω) the definition of the
normal vector field resp. the scalar mean curvature of ∂Ω by means of

n∂Ω : im(Ψ∂Ω) → S1, (x, t) 7→ n∂Ω(P∂Ω(x)) = ∇s∂Ω(x), (116)

H∂Ω : im(Ψ∂Ω) → R, (x, t) 7→ −(∆s∂Ω)(P∂Ω(x)). (117)

Hence, we note that n∂Ω ∈ C2
x(im(Ψ∂Ω)) and H∂Ω ∈ C1

x(im(Ψ∂Ω)).
ii) There exist sets W c

Ti
=

⋃
t∈[0,T ]W

c
Ti
(t)×{t}, W c

Ω±
v
=

⋃
t∈[0,T ]W

c
Ω±

v
(t)×{t} and

W±,c
∂Ω =

⋃
t∈[0,T ]W

±,c
∂Ω (t)×{t} with the following properties:

First, for every t ∈ [0, T ], the sets W c
Ti
(t), W c

Ω±
v
(t) and W±,c

∂Ω (t) are non-

empty subsets of Brc(Tc(t)) with pairwise disjoint interior. For all t ∈ [0, T ],
each of these sets is represented by a cone with apex at the contact point Tc(t)
intersected with Brc(Tc(t)). More precisely, there exist six time-dependent pair-
wise distinct unit-length vectors X±

Ti
, XΩ±

v
and X±

∂Ω of class C1
t ([0, T ]) such

that for all t ∈ [0, T ] it holds

W c
Ti
(t) =

(
Tc(t)+{αX+

Ti
(t) + βX−

Ti
(t) : α, β ∈ [0,∞)}

)
∩Brc(Tc(t)), (118)

W c
Ω±

v
(t) =

(
Tc(t)+{αXΩ±

v
(t) + βX±

Ti
(t) : α, β ∈ [0,∞)}

)
∩Brc(Tc(t)), (119)

W±,c
∂Ω (t) =

(
Tc(t)+{αX±

∂Ω(t) + βXΩ±
v
(t) : α, β ∈ [0,∞)}

)
∩Brc(Tc(t)). (120)

The opening angles of these cones are constant, and numerically fixed by

X±
∂Ω ·XΩ±

v
= X+

Ti
·X−

Ti
= cos(π/3), XΩ±

v
·X±

Ti
= cos(π/6). (121)

Second, for every t ∈ [0, T ], the sets W c
Ti
(t), W c

Ω±
v
(t) and W±,c

∂Ω (t) provide a

decomposition of Brc(Tc(t)) in form of

Brc(Tc(t)) ∩ Ω

=
(
W c

Ti
(t) ∪W c

Ω+
v
(t) ∪W c

Ω−
v
(t) ∪W+,c

∂Ω (t) ∪W−,c
∂Ω (t)

)
∩ Ω.

(122)

Third, for each t ∈ [0, T ], the following inclusions hold true (recall from
Definition 13 the notation for the diffeomorphism ΨTi

):

Brc(Tc(t)) ∩ Ti(t) ⊂
(
W c

Ti
(t) \ Tc(t)

)
⊂ {x ∈ Ω: (x, t) ∈ im(ΨTi)}, (123)

Brc(Tc(t)) ∩ ∂Ω ⊂W+,c
∂Ω (t) ∪W−,c

∂Ω (t), (124)

W±,c
∂Ω (t) ⊂ {x ∈ R2 : x ∈ im(Ψ∂Ω)}, (125)

W c
Ω±

v
(t) \ Tc(t) ⊂ Ω±

v (t) ∩ {x ∈ Ω: (x, t) ∈ im(ΨTi
), x ∈ im(Ψ∂Ω)}. (126)
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∂Ω

TiTc

(a) Interface wedge W c
Ti
.

∂Ω

TiTc

(b) Boundary wedges W±
∂Ω.

∂Ω

TiTc

(c) Interpolation wedges W c

Ω±
v
.

Figure 1. Decomposition for a space-time neighborhood of Tc.

iii) Finally, there exists a constant C > 0 such that

dist(·, Tc) ∨ dist(·, ∂Ω) ≤ C dist(·, Ti) on W c
Ω±

v
∪W±,c

∂Ω , (127)

We refer from here onwards to W c
Ti

as the interface wedge, W±,c
∂Ω as boundary

wedges, and W c
Ω±

v
as interpolation wedges.

Figures 1–2 contain several illustrations of the previous definition. Before moving
on, we briefly discuss the existence of an admissible localization radius.

Lemma 18. Let the assumptions and notation of Definition 17 be in place. There
exists a constant C = C(∂Ω, χv, v, T ) ≥ 1 such that each rc ∈ (0, 1

C ] is an admissible
localization radius for the contact point Tc in the sense of Definition 17.

Proof. The first item in the definition of an admissible localization radius is an
immediate consequence of the tubular neighborhood theorem, which in turn is
facilitated by the regularity of the domain boundary ∂Ω.
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∂Ω

TiTc

(a) Inclusion in the image of ΨTi .

∂Ω

TiTc

(b) Inclusion in the image of Ψ∂Ω.

Figure 2. Inclusion properties of diffeomorphisms.

For a construction of the wedges, we only have to provide a definition for the
vectors X±

Ti
, XΩ±

v
and X±

∂Ω A possible choice is the following. Fix t ∈ [0, T ]

and let {c(t)} = Tc(t). The desired unit vectors are obtained through rotation
of the inward-pointing unit normal n∂Ω(c(t)). Note that

(
n∂Ω(c(t)), nIv (c(t), t)

)
form an orthonormal basis of R2 thanks to the contact angle condition (32). We

then let X±
Ti
(t) be the unique unit vector with X±

Ti
(t) · n∂Ω(c(t)) =

√
3
2 as well

as sign
(
X±

Ti
(t) · nIv (c(t), t)

)
= ±1. Similarly, XΩ±

v
(t) represents the unique unit

vector with XΩ±
v
(t) · n∂Ω(c(t)) = 1

2 and sign
(
XΩ±

v
(t) · nIv (c(t), t)

)
= ±1. Fi-

nally, X±
∂Ω(t) denotes the unique unit vector with X±

Ω (t) · n∂Ω(c(t)) = − 1
2 and

sign
(
X±

Ω (t) · nIv (c(t), t)
)
= ±1. For an illustration, we refer again to Figure 1.

The wedges W c
Ti
(t), W c

Ω±
v
(t) and W±,c

∂Ω (t) may now be defined through the right

hand sides of (118), (119) and (120), respectively. The properties (122)–(127) are
then obviously valid for sufficiently small radii as a consequence of the regularity
of the domain boundary ∂Ω, the regularity of the interface Iv due to Definition 10
of a strong solution, as well as the 90◦ contact angle condition (32). □

A main step in the construction of a contact point extension of the interface unit
normal consists of perturbing the bulk construction of Section 4 by introducing
suitable tangential terms, cf. Subsection 5.2 below. (This in turn becomes necessary
due to the boundary constraint n∂Ω · ξc = 0 along ∂Ω.) To this end, the following
constructions and formulas will be of frequent use.

Lemma 19. Let the assumptions and notation of Definition 13 and Definition 17
be in place. Let rc be an admissible localization radius of a contact point Tc and
let i ∈ I such that i ∼ c. Define Nrc,c(Ω) :=

⋃
t∈[0,T ]

(
Brc(Tc(t))∩Ω

)
×{t}. We fix

unit-length tangential vector fields τ̃Iv resp. τ̃∂Ω along Nrc,c(Ω) ∩ Ti resp. ∂Ω with
orientation chosen such that τ̃Iv = −n∂Ω resp. τ̃∂Ω = nIv hold true at the contact
point Tc. We then define extensions

τIv : Nrc,c(Ω) ∩ im(ΨTi) → S1, (x, t) 7→ τ̃Iv (PTi(x, t), t),

τ∂Ω : im(Ψ∂Ω) → S1, x 7→ τ̃∂Ω(P∂Ω(x)),
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∂Ω

TiTc

τ∂Ω ≡ nIv

τIv n∂Ω

Figure 3. Orientation of normal and tangential vectors at Tc.

Then, it holds τIv ∈ C0
t C

2
x(Nrc,c(Ω) ∩ im(ΨTi)) ∩ C1

t C
0
x(Nrc,c(Ω) ∩ im(ΨTi)) as

well as τ∂Ω ∈ C2
x(im(Ψ∂Ω)). Moreover,

∇nIv = −HIvτIv ⊗ τIv +O(dist(·, Ti)) in Nrc,c(Ω) ∩ im(ΨTi), (128)

∇τIv = HIvnIv ⊗ τIv +O(dist(·, Ti)) in Nrc,c(Ω) ∩ im(ΨTi
). (129)

Analogous formulas hold on im(Ψ∂Ω) for the orthonormal frame (n∂Ω, τ∂Ω).

Proof. By the choice of the orientations, there exists a constant matrix R repre-
senting rotation by 90◦ so that nIv = RτIv and n∂Ω = Rτ∂Ω. The regularity of the
tangential fields τIv and τ∂Ω thus follows from Definition 13 and Definition 17, re-
spectively. Moreover, the formula (129) simply follows from (128) and the product
rule. For a proof of (128), note first that (nIv ·∇)nIv = ∇ 1

2 |nIv |
2 = 0 and, as a con-

sequence of ∇nIv = ∇2sTi being symmetric, that (∇nIv )TnIv = (nIv · ∇)nIv = 0.
The only surviving component of ∇nIv is thus the one in the direction of τIv ⊗ τIv ,
which on the interface in turn evaluates to −HIv , see (107). The regularity of the
map HIv from Definition 13 then entails (128). Of course, the exact same argument
works in terms of the orthonormal frame (n∂Ω, τ∂Ω). □

The values of a contact point extension in the sense of Proposition 16 are highly
constrained along the domain boundary ∂Ω (i.e., n∂Ω · ξc = 0) or along the inter-
face Ti (i.e., ξc = nIv ), respectively. This will be reflected in the construction by
stitching together certain local building blocks (i.e., ξc∂Ω and ξcTi

, see Subsection 5.2
below) which in turn take care of these restrictions on an individual basis (i.e.,
n∂Ω · ξc∂Ω = 0 along ∂Ω, or ξcTi

= nIv along Ti, in the vicinity of the contact point).
These local building blocks will be unified into a single vector field by interpolation
(see Subsection 5.3 below). With this in mind, it is of no surprise that compati-
bility conditions (including a higher-order one) at the contact point are needed to
implement this procedure. Indeed, recall from Proposition 16 that a contact point
extension requires a certain amount of regularity in combination with a control
on its time evolution. We therefore collect for reference purposes the necessary
compatibility conditions in the following result.

Lemma 20. Let the assumptions and notation of Definition 13, Definition 17 and
Lemma 19 be in place. Then it holds

nIv (·, t) = τ∂Ω(·), τIv (·, t) = −n∂Ω(·) at Tc(t), t ∈ [0, T ], (130)(
τIv (·, t) · ∇

)
(nIv · v)(·, t) = H∂Ω(·)(nIv · v)(·, t) at Tc(t), t ∈ [0, T ]. (131)
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Proof. The relations (130) are immediate from the choices made in the statement of
Lemma 19. Let {c(t)} = Tc(t) for all t ∈ [0, T ]. The compatibility condition (131)
follows from differentiating in time the condition nIv (c(t), t) = τ∂Ω(c(t)). Indeed,
one one side we may compute by means of the chain rule, the analogue of (129)
for τ∂Ω, (130), and

d
dtc(t) =

(
nIv (c(t), t) · v(c(t), t)

)
nIv (c(t), t) that

d

dt
τ∂Ω(c(t)) = H∂Ω(c(t))

(
nIv (c(t), t) · v(c(t), t)

)
n∂Ω(c(t)).

On the other side, it follows from an application of the chain rule, the formula (128),
the previous expression of d

dtc(t), ∂tsTi
(·, t) = −nIv (·, t) · v(PTi

(·, t), t), as well as
nIv = ∇sTi

that

d

dt
nIv (c(t), t) = −

(
τIv (c(t), t) · ∇

)(
nIv · v

)
(c(t), t)τIv (c(t), t).

The second condition of (130) together with the previous two displays thus implies
the compatibility condition (131) as asserted. □

5.2. Construction and properties of local building blocks. We have ev-
erything in place to proceed on with the first major step in the construction of
a contact point extension in the sense of Proposition 16. We define auxiliary
extensions ξcTi

resp. ξc∂Ω of the unit normal vector field in the space-time do-
mains Nrc,c(Ω) ∩ im(ΨTi

) resp. Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]). In other words, we
construct the extensions separately in the regions close to the interface or close to
the boundary (but always near to the contact point).

5.2.1. Definition and regularity properties of local building blocks for the extension
of the unit normal. A suitable ansatz for the two vector fields ξcTi

and ξc∂Ω may be
provided as follows.

Construction 21. Let the assumptions and notation of Definition 13, Defini-
tion 17 and Lemma 19 be in place. Expressing {c(t)} = Tc(t) for all t ∈ [0, T ], we
define coefficients

αTi : Nrc,c(Ω) ∩ im(ΨTi) → R, (x, t) 7→ −H∂Ω(c(t), t), (132)

α∂Ω : Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]) → R, (x, t) 7→ −HIv (c(t), t). (133)

Based on these coefficient functions, we then define extensions

ξcTi
: Nrc,c(Ω) ∩ im(ΨTi) → R2, ξc∂Ω : Nrc,c(Ω) ∩

(
im(Ψ∂Ω)×[0, T ]

)
→ R2

of the normal vector field nIv by means of an expansion ansatz

ξcTi
:= nIv + αTisTiτIv − 1

2
α2
Ti
s2Ti
nIv , (134)

ξc∂Ω := τ∂Ω + α∂Ωs∂Ωn∂Ω − 1

2
α2
∂Ωs

2
∂Ωτ∂Ω. (135)

Regularity properties of ξcTi
and ξc∂Ω, in particular compatibility up to first order

at the contact point, are the content of the following result.

Lemma 22. Let the assumptions and notation of Construction 21 be in place. Then
the auxiliary vector fields satisfy ξcTi

∈ (C0
t C

2
x ∩ C1

t C
0
x)(Nrc,c(Ω) ∩ im(ΨTi)) and

ξc∂Ω ∈ (C0
t C

2
x ∩ C1

t C
0
x)(Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ])), with corresponding estimates

for k ∈ {0, 1, 2}

|∇kξcTi
|+ |∂tξcTi

| ≤ C, on Nrc,c(Ω) ∩ im(ΨTi
), (136)
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|∇kξc∂Ω|+ |∂tξc∂Ω| ≤ C, on Nrc,c(Ω) ∩ (im(Ψ∂Ω)×[0, T ]). (137)

Moreover, the constructions are compatible to first order at the contact point in the
sense that

ξcTi
(·, t) = ξc∂Ω(·, t), ∇ξcTi

(·, t) = ∇ξc∂Ω(·, t) at Tc(t), t ∈ [0, T ]. (138)

Proof. Step 1 (Regularity estimates): Note first that αTi , α∂Ω ∈ C1
t ([0, T ]) due to

the regularity of the maps HIv resp. H∂Ω from (107) resp. (117). The asserted
bounds (136) and (137) for the derivatives of the vector fields ξcTi

and ξc∂Ω can thus
be inferred from the definitions (134) and (135) in combination with the regularity
of sTi , nIv from Definition 13, the regularity of s∂Ω, n∂Ω from Definition 17, as well
as the regularity of τIv , τ∂Ω from Lemma 19.

Step 2 (First order compatibility at the contact point): The zeroth order condition
of (138) is a direct consequence of the definitions (134) and (135) in combination
with the compatibility condition (130). In order to prove the first order condition,
it directly follows from (128)–(129) and their analogues for the frame (n∂Ω, τ∂Ω),
as well as the definitions (134) and (135) that

∇ξcTi
= −HIvτIv ⊗ τIv + αTiτIv ⊗ nIv +O(dist(·, Ti)), (139)

∇ξc∂Ω = H∂Ωn∂Ω ⊗ τ∂Ω + α∂Ωn∂Ω ⊗ n∂Ω +O(dist(·, ∂Ω)). (140)

Finally, since we have (130) due to the conventions adopted, using (132) and (133)
we can deduce the first order compatibility condition of (138). □

5.2.2. Evolution equations for local building blocks. The following lemma provides
the approximate evolution equations for our local constructions ξcTi

and ξc∂Ω, which
will eventually lead us to (112)–(113).

Lemma 23. Let the assumptions and notation of Construction 21 be in place.
Then it holds

∂tξ
c
Ti

+ (v · ∇)ξcTi
+ (Id−ξcTi

⊗ ξcTi
)(∇v)TξcTi

= O(dist(·, Ti)), (141)

∂t|ξcTi
|2 + (v · ∇)|ξcTi

|2 = O(dist3(·, Ti)), (142)

|1− |ξcTi
|2| = O(dist4(·, Ti)) (143)

throughout the space-time domain Nrc,c(Ω) ∩ im(ΨTi). Moreover, we have

∂tξ
c
∂Ω+(v · ∇)ξc∂Ω+(Id−ξc∂Ω ⊗ ξc∂Ω)(∇v)Tξc∂Ω = O(dist(·, ∂Ω) ∨ dist(·, Tc)), (144)

∂t|ξc∂Ω|2 + (v · ∇)|ξc∂Ω|2 = O(dist3(·, ∂Ω)), (145)

|1− |ξc∂Ω|2| = O(dist4(·, ∂Ω)) (146)

throughout the space-time domain Nrc,c(Ω) ∩
(
im(Ψ∂Ω)×[0, T ]

)
.

Proof. Step 1 (Proof of (141)): Note that because of the definitions (108) and (134),
it holds ξcTi

= ξi + αTisTiτIv − 1
2α

2
Ti
s2Ti
nIv . Since we already proved (110), we only

need to show that

αIv (∂tsTi
)τIv + αIv (v · ∇sTi

)τIv = O(dist(·, Ti)).

However, the above relation is an immediate consequence of the identity ∂tsTi(x, t) =
−
(
v(PTi(x, t), t) · ∇

)
sTi(x, t) and the regularity of v, see Definition 10 of a strong

solution, through a Lipschitz estimate. This proves (141).
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Step 2 (Proof of (144)): From the definition (135) and α∂Ω ∈ C1
t ([0, T ]) it

directly follows

∂tξ
c
∂Ω = (∂tα∂Ω)s∂Ωn∂Ω = O(dist(·, ∂Ω)).

Having ξc∂Ω = τ∂Ω+α∂Ωs∂Ωn∂Ω− 1
2α

2
∂Ωs

2
∂Ωτ∂Ω, cf. the definition (135), it follows

from ∇s∂Ω = n∂Ω, the analogues of (128)–(129) for the frame (n∂Ω, τ∂Ω), as well
as the boundary condition v · n∂Ω = 0 along ∂Ω that

(v · ∇)ξc∂Ω = (v · ∇)(τ∂Ω + α∂Ωs∂Ωn∂Ω) +O(dist(·, ∂Ω))
= (v · τ∂Ω)τ∂Ω · (H∂Ωτ∂Ω ⊗ n∂Ω + α∂Ωn∂Ω ⊗ n∂Ω) +O(dist(·, ∂Ω))
= (v · τ∂Ω)H∂Ωn∂Ω +O(dist(·, ∂Ω)).

Moreover, based on ξc∂Ω = τ∂Ω+O(dist(·, ∂Ω)) due to (135), v(c(t), t) =
(
v(c(t), t) ·

nIv (c(t), t)
)
nIv (c(t), t) along the moving contact point {c(t)} = Tc(t), the for-

mula (128), and the compatibility conditions (130)–(131) we infer that

(Id−ξc∂Ω ⊗ ξc∂Ω)(∇v)Tξc∂Ω
= (Id−τ∂Ω ⊗ τ∂Ω)(∇v)Tτ∂Ω +O(dist(·, ∂Ω))
= (τ∂Ω · (n∂Ω · ∇)v)n∂Ω +O(dist(·, ∂Ω))
= −

(
nIv (c(t), t) ·

(
τIv (c(t), t) · ∇

)
v(c(t), t)

)
n∂Ω +O(dist(·, ∂Ω) ∨ dist(·, Tc))

= −
((
τIv (c(t), t) · ∇

)
(v · nIv )(c(t), t)

)
n∂Ω +O(dist(·, ∂Ω) ∨ dist(·, Tc))

= −(v · τ∂Ω)H∂Ωn∂Ω +O(dist(·, ∂Ω) ∨ dist(·, Tc)).
Hence, the estimate (144) follows as a consequence of the previous three displays.

Step 3 (Proof of (142)–(143) and (145)–(146)): Simply note that (142)–(143)
as well as (145)–(146) directly follow from the definitions (134) resp. (135) of the
vector field ξcTi

resp. the vector field ξc∂Ω in form of

|ξcTi
|2 =

(
1−1

2
α2
Ti
s2Ti

)2

+ α2
Ti
s2Ti

= 1 +
1

4
α4
Ti
s4Ti
, (147)

|ξc∂Ω|2 =
(
1−1

2
α2
∂Ωs

2
∂Ω

)2

+ α2
∂Ωs

2
∂Ω = 1 +

1

4
α4
∂Ωs

4
∂Ω. (148)

This concludes the proof of Lemma 23. □

5.3. From building blocks to contact point extensions by interpolation.
As we discussed in the previous subsections, the auxiliary vector fields ξcTi

and
ξc∂Ω provide main building block for a contact point extension of the interface
unit normal near the connected interface Ti or near the domain boundary ∂Ω,
respectively. More precisely, we will make use of the auxiliary vector field ξcTi

on the wedges W c
Ti

∪ W c
Ω+

v
∪ W c

Ω−
v
, and of the auxiliary vector field ξc∂Ω on the

wedges W+,c
∂Ω ∪W−,c

∂Ω ∪W c
Ω+

v
∪W c

Ω−
v
. Note that this is indeed admissible thanks to

the inclusions (123), (125) and (126). As the domains of definition for the auxil-
iary vector fields overlap, we adopt an interpolation procedure on the interpolation
wedges W c

Ω±
v
. To this end, we first define suitable interpolation functions.

Lemma 24. Let the assumptions and notation of Definition 17 be in place. Then
there exists a pair of interpolation functions

λ±c :
⋃

t∈[0,T ]

(
W c

Ω±
v
(t) \ Tc(t)

)
×{t} → [0, 1]
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which satisfies the following list of properties:

i) On the boundary of the interpolation wedges W c
Ω±

v
intersected with Brc(Tc), the

values of λ±c and its derivatives up to second order are given by

λ±c (·, t) = 0 on
(
∂W c

Ω±
v
(t) ∩ ∂W±,c

∂Ω (t)
)
\ Tc(t), (149)

λ±c (·, t) = 1 on
(
∂W c

Ω±
v
(t) ∩ ∂W c

Ti
(t)

)
\ Tc(t), (150)

∇λ±c (·, t) = 0, on
(
∂W c

Ω±
v
(t) ∩Brc(Tc(t))

)
\ Tc(t), (151)

∇2λ±c (·, t) = 0, ∂tλ
±
c (·, t) = 0 on

(
∂W c

Ω±
v
(t) ∩Brc(Tc(t))

)
\ Tc(t) (152)

for all t ∈ [0, T ].
ii) There exists a constant C such that the estimates

|∂tλ±c (·, t)|+ |∇λ±c (·, t)| ≤ C|dist(·, Tc(t))|−1, (153)

|∇∂tλ±c (·, t)|+ |∇2λ±c (·, t)| ≤ C|dist(·, Tc(t))|−2 (154)

hold true on W c
Ω±

v
(t) \ Tc(t) for all t ∈ [0, T ].

iii) We have an improved estimate on the advective derivative in form of∣∣∂tλ±c (·, t) + (
v · ∇

)
λ±c (·, t)

∣∣ ≤ C (155)

on W c
Ω±

v
(t) \ Tc(t) for all t ∈ [0, T ].

Proof. We fix a smooth function λ̃ : R → [0, 1] such that λ̃ ≡ 0 on [ 23 ,∞) and λ̃ ≡ 1

on (−∞, 13 ]. Recall the representation (119) of the interpolation wedges WΩ±
v
, and

that their opening angle is determined via X±
Ti
·XΩ±

v
= cos(π/6) along Tc, see (121).

We then define a function λ : [−1, 1] → [0, 1] by λ(u) := λ̃( 1−u
1− cos(π/6) ), and set

λ±c (x, t) := λ

(
X±

Ti
(t) · x−c(t)

|x−c(t)|

)
, t ∈ [0, T ], x ∈WΩ±

v
(t) \ Tc(t).

The assertions of the first two items of Lemma 24 are now immediate consequences
of the definitions due to d

dtX
±
Ti

∈ C0([0, T ]), cf. Definition 17.
It remains to prove the estimate (155) on the advective derivative. To this end,

abbreviating u± := X±
Ti
(t) · x−c(t)

|x−c(t)| we compute

∂tλ
±
c (x, t) = λ′(u±)X±

Ti
(t) · ∂t

x−c(t)
|x−c(t)|

+ λ′(u±)
x−c(t)
|x−c(t)|

· d

dt
X±

Ti
(t)

= λ′(u±)X±
Ti
(t) · 1

|x−c(t)|

(
Id− x−c(t)

|x−c(t)|
⊗ x−c(t)

|x−c(t)|

) d

dt
c(t)

+ λ′(u±)
x−c(t)
|x−c(t)|

· d

dt
X±

Ti
(t)

= −
( d

dt
c(t) · ∇

)
λ±c (x, t) + λ′(u±)

x−c(t)
|x−c(t)|

· d

dt
X±

Ti
(t).

This in turn yields the asserted estimate (155) due to d
dtX

±
Ti

∈ C0([0, T ]), cf. Defi-

nition 17, d
dtc(t) = v(c(t), t), and a Lipschitz estimate based on the regularity of the

fluid velocity v from Definition 10 (which counteracts the blow-up (153) of ∇λ±c ).
This concludes the proof. □
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We have by now everything in place to state the definition of a vector field which
in the end will give rise to a contact point extension of the interface unit normal in
the precise sense of Proposition 16.

Construction 25. Let the assumptions and notation of Definition 17, Construc-
tion 21 and Lemma 24 be in place. In particular, let rc ∈ (0, 1] be an admissible
localization radius for the contact point Tc. We define a vector field

ξ̂c : Nrc,c(Ω) → R2

on the space-time domain Nrc,c(Ω) :=
⋃

t∈[0,T ]

(
Brc(Tc(t)) ∩ Ω

)
×{t} as follows

(recall the decomposition (122) of the neighborhood Br(Tc(t)) ∩ Ω):

ξ̂c(·, t) :=


ξcTi

(·, t) on W c
Ti
(t) ∩ Ω,

ξc∂Ω(·, t) on W±,c
∂Ω (t) ∩ Ω,

λ±c (·, t)ξcTi
(·, t) +

(
1−λ±c (·, t)

)
ξc∂Ω(·, t) on WΩ±

v
(t) \ Tc(t) ∩ Ω,

(156)

for all t ∈ [0, T ]. Note that the vector field ξ̂c is not yet normalized to unit length,

which is the reason for denoting it by ξ̂c instead of ξc. Observe also that (156) is
well-defined in view of the inclusions (123), (125) and (126).

5.4. Proof of Proposition 16. The proof proceeds in several steps. We first

establish the required properties in terms of the vector field ξ̂c. The penultimate

step is devoted to fixing r̂c ∈ (0, rc] such that
∣∣ξ̂c∣∣ ≥ 1

2 on Nr̂c,c(Ω), so that one

may define ξ :=
∣∣ξ̂c∣∣−1

ξ̂c ∈ S1 throughout Nr̂c,c(Ω) and transfer the properties

of ξ̂c to ξc. Finally, in the last step we verify the asserted compatibility conditions
between a contact point extension and a bulk extension of the interface unit normal.

Step 1: Regularity of ξ̂c and properties i)–iii). Because of the inclusion (123)

as well as the definitions (134) and (156), it follows that ξ̂c(·, t) = nIv (·, t) along
Ti(t) ∩ Brc(Tc(t)) for all t ∈ [0, T ]. By the same reasons, relying also on ξcTi

=

ξi+αTisTiτIv− 1
2α

2
Ti
s2Ti
nIv , cf. the definitions (108) and (134),∇sTi = nIv and (109),

we deduce that ∇ · ξ̂c(·, t) = −HIv (·, t) along Ti(t) ∩ Brc(Tc(t)) for all t ∈ [0, T ].
Moreover, in view of the inclusion (124) as well as the definitions (135) and (156),

we obtain ξ̃c(·, t) · n∂Ω = τ∂Ω · n∂Ω = 0 along Brc(Tc(t)) ∩ ∂Ω. This yields the

asserted properties i)–iii) of a contact point extension in terms of ξ̂c on scale rc.

The vector fields ξ̂c, ∂tξ̂
c, ∇ξ̂c and ∇2ξ̂c exist in a pointwise sense and are

continuous throughout Nrc,c(Ω)\Tc due to the definition (156) of ξ̂c, the regularity
of the local building blocks ξcTi

and ξc∂Ω as provided by Lemma 22, as well as

the regularity of the interpolation parameter λ±c from Lemma 24. Note in this
context that no jumps occur across the boundaries of the interpolation wedges as
a consequence of the conditions (149)–(152). It remains to prove the bounds

|∂tξ̂c(·, t)|+ |∇k ξ̂c(·, t)| ≤ C on
(
Brc(Tc(t)) \ Tc

)
∩ Ω (157)

for k ∈ {0, 1, 2}, for all t ∈ [0, T ] and some constant C > 0.

In the wedges W c
Ti

and W±,c
∂Ω containing the interface or the boundary of the

domain, respectively, the estimate follows directly from the estimates (136)–(137)
and the definition (156). On interpolation wedgesW c

Ω±
v
, we compute recalling (156)

∂tξ̂
c = λ±c ∂tξ

c
Ti

+ (1−λ±c )∂tξc∂Ω + (ξcTi
−ξc∂Ω)∂tλ±c
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∇ξ̂c = λ±c ∇ξcTi
+ (1−λ±c )∇ξc∂Ω + (ξcTi

−ξc∂Ω)⊗∇λ±c ,

∇2ξ̂c = λ±c ∇2ξcTi
+ (1−λ±c )∇2ξc∂Ω + (∇λ±c ⊗∇sym)(ξcTi

−ξc∂Ω) + (ξcTi
−ξc∂Ω)⊗∇2λ±c .

Then we recall the bounds (153) and (154) for the derivatives of the interpolation
functions, the estimates (136) and (137) as well as the compatibility conditions (138)
for the auxiliary vector fields ξcTi

and ξc∂Ω. Feeding these into the previous display
establishes (157) on the interpolation wedges.

Step 2: Evolution equation in terms of ξ̂c. We claim that

∂tξ̂
c + (v · ∇)ξ̂c + (∇v)Tξ̂c = O(dist(·, Ti)) in Nrc,c(Ω). (158)

The validity of (158) on the wedges W c
Ti

and W±,c
∂Ω follows directly from the

estimates (141) resp. (144), the definition (156) and the bound (127). Hence, we
only need to prove the bound (158) on the interpolation wedges W c

Ω±
v
.

To this end, recall first that on the interpolation wedges W c
Ω±

v
the distance with

respect to the contact point Tc or the distance with respect to the domain bound-
ary ∂Ω is dominated by the distance to the connected interface Ti, see (127). Writ-

ing ξ̂c = ξcTi
+ (1−λ±c )(ξc∂Ω−ξcTi

), and resp. ξ̂c = ξc∂Ω + λ±c (ξ
c
Iv
−ξc∂Ω), we then

immediately see that

ξ̂c ⊗ ξ̂c = ξcTi
⊗ ξcTi

+O(dist2(·, Ti)), (159)

ξ̂c ⊗ ξ̂c = ξc∂Ω ⊗ ξc∂Ω +O(dist2(·, Ti)), (160)

due to compatibility (138) up to first order at the contact point Tc, and the regu-

larity estimates (136)–(137). Using the product rule and the definition (156) of ξ̂c

on W c
Ω±

v
, we thus obtain

∂tξ̂
c + (v · ∇)ξ̂c + (Id−ξ̂c ⊗ ξ̂c)(∇v)Tξ̂c

= λ±c
(
∂t + (v · ∇) + (Id−ξcTi

⊗ ξcTi
)(∇v)T

)
ξcTi

(161)

+ (1− λ±c )
(
∂t + (v · ∇) + (Id−ξc∂Ω ⊗ ξc∂Ω)(∇v)T

)
ξc∂Ω

+ (∂tλ
±
c + (v · ∇)λ±c )(ξ

c
Ti

− ξc∂Ω) +O(dist2(·, Ti)).

Hence, we obtain (158) on interpolation wedges as a consequence of the esti-
mates (141) resp. (144), the bound (155) on the advective derivative of the in-
terpolation parameter, as well as the compatibility condition (138).

Step 3: We next claim that

∂t
∣∣ξ̂c ∣∣2 + (v · ∇)

∣∣ξ̂c ∣∣2 = O(dist(·, Ti)) in Nrc,c(Ω), (162)∣∣∣∇|ξ̂c
∣∣2∣∣∣ = O(dist(·, Ti)) in Nrc,c(Ω). (163)

Outside of interpolation wedges, both claims are already established in view
of the estimates (142)–(143) resp. (145)–(146), the estimate (127) as well as the
definition (156). Using the latter, we may compute on interpolation wedges W c

Ω±
v

|ξ̂c|2 − 1 = λ± 2
c (|ξcTi

|2 − 1) + (1− λ±c )
2(|ξc∂Ω|2 − 1) (164)

+ 2λ±c (1− λ±c )(ξ
c
Ti

· ξc∂Ω − 1),

and thus(
∂t+(v · ∇)

)∣∣ξ̂c ∣∣2 =
(
∂t+(v · ∇)

)(
(λ±c )

2|ξcTi
|2+(1−λ±c )2|ξc∂Ω|2 + 2λ±c (1−λ±c )

)
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+ (ξcTi
· ξc∂Ω−1)

(
∂t+(v · ∇)

)(
2λ±c (1−λ±c )

)
(165)

+ 2λ±c (1−λ±c )
(
∂t+(v · ∇)

)
(ξcTi

· ξc∂Ω−1).

Because of (142)–(143) and (145)–(146), the first right hand side term of (165)
is of required order. For an estimate of the second and third right hand side
term of (165), observe that it suffices to prove ξcTi

· ξc∂Ω−1 = O(dist2(·, Ti)) on
interpolation wedges as the advective derivative of the interpolation parameter is
bounded, see (155). However, it follows immediately from the definitions (134)
and (135), the formulas (139) and (140), as well as the compatibility condition (138),
that at the contact point Tc it holds ξcTi

·ξc∂Ω = 1, (∇ξcTi
)Tξc∂Ω = 0 and (∇ξc∂Ω)TξcTi

=

0. Hence, ξcTi
· ξc∂Ω−1 = O(dist2(·, Ti)) is a consequence of a Lipschitz estimate

making use of the estimates (136)–(137) and the bound (127).
In summary, the above arguments upgrade (165) to (162), and analogous con-

siderations based on (164) also entail (163) on interpolation wedges.
Step 4: Choice of r̂c and definition of the normalized vector field ξc. By the

definition (156) of the vector field ξ̂c we have |ξ̂c(·, t)| = 1 on Brc(Tc(t))∩(∂Ω∪Ti(t))
for all t ∈ [0, T ]. Due to its Lipschitz continuity, see Step 1 of the proof, we

may choose a radius r̂c ≤ rc such that |ξ̂c| ≥ 1
2 holds true in the space-time

domain Nr̂c,c(Ω). We then define ξc :=
∣∣ξ̂c ∣∣−1

ξ̂c ∈ S1 throughout Nr̂c,c(Ω), so that

it remains to argue that the properties of ξ̂c are inherited by ξc.

Since ξc(·, t) = ξ̂c(·, t) on Brc(Tc(t))∩(∂Ω∪Ti(t)) for all t ∈ [0, T ], it immediately
follows that ξc(·, t) = nIv (·, t) along Ti(t)∩Br̂c(Tc(t)) as well as ξc(·, t) · n∂Ω(·) = 0

along ∂Ω ∩Br̂c(Tc(t)) for all t ∈ [0, T ]. Moreover, ∇ · ξc = |ξ̂c|−1∇ · ξ̂c − (ξ̂c·∇)|ξ̂c|2

2|ξ̂c|3

so that ∇ · ξc = −HIv (·, t) holds true on Ti(t)∩Br̂c(Tc(t)) for all t ∈ [0, T ] because

of (163), the validity of this equation in terms of ξ̂c, and the fact that |ξ̂c(·, t)| = 1
on Ti(t) ∩Br̂c(Tc(t)) for all t ∈ [0, T ]. In summary, properties ii)–iii) are satisfied.

The required regularity is obtained by the choice of the radius r̂c, the defini-

tion ξc :=
∣∣ξ̂c ∣∣−1

ξ̂c, and the fact that the vector field ξ̂c already satisfies it as

argued in Step 1 of this proof. Since ξc ∈ S1 throughout Nr̂c,c(Ω), (113) holds
true for trivial reasons. For a proof of (112), one may argue as follows. Recalling

that |ξ̂c| ≥ 1
2 holds true in Nr̂c,c(Ω), adding zero and using the product rule yields

∂tξ
c + (v · ∇)ξc + (Id−ξc ⊗ ξc)(∇v)Tξc

= ∂tξ
c + (v · ∇)ξc + (Id−ξ̂c ⊗ ξ̂c)(∇v)Tξc − (1− |ξ̂c|2)(ξc ⊗ ξc)(∇v)Tξc

=
1

|ξ̂c|
(
∂tξ̂

c + (v · ∇)ξ̂c + (Id−ξ̂c ⊗ ξ̂c)(∇v)Tξ̂c
)
− ξ̂c

2|ξ̂c|3
(∂t|ξ̂c|2 + (v · ∇)|ξ̂c|2)

− (1− |ξ̂c|2)(ξc ⊗ ξc)(∇v)Tξc

throughout Nr̂c,c(Ω). Observe that the first right hand side term is estimated
by (158), the second by (162), and the third by a Lipschitz estimate based on the

fact |ξ̂c(·, t)| = 1 along Ti(t) ∩Br̂c(Tc(t)) for all t ∈ [0, T ]. Hence, (112) holds true.
Step 5: Contact point extensions as perturbations of bulk extensions. As a prepa-

ration for the proof of the compatability estimates, we claim that

|ξc−ξ̂ c| ≤ C dist2(·, Ti). (166)
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Note that because of the definition (156), the compatibility conditions (138) at the
contact point, the regularity estimates (136)–(137) for the local building blocks, the
controlled blow-up (153), the coercivity estimate (143), and the estimate (127), it
holds

∇ 1

|ξ̂ c|
= − (ξ̂ c · ∇)ξ̂ c

|ξ̂ c|3
= −

(ξcTi
· ∇)ξ̂ c

|ξ̂ c|3
+O(dist(·, Ti))

= −
(ξcTi

· ∇)ξ c
Ti

|ξ̂ c|3
+O(dist(·, Ti)) = O(dist(·, Ti)).

Hence, the asserted estimate (166) follows from ξc−ξ̂ c = (|ξ̂ c|−1−1)ξ̂ c, the fact

that ξc(·, t) = ξ̂ c(·, t) ≡ nIv (·, t) along the local interface patch Ti(t) ∩ Br̂ c(Tc(t))
for all t ∈ [0, T ], and the previous display.

We exploit (166) as follows. Within the interface wedgeW c
Ti
, it now follows from

the definitions (108), (134) and (156) that

ξc − ξi = ξcTi
− ξi +O(dist2(·, Ti)) = αTisTiτIv − 1

2
α2
Ti
s2Ti
nIv +O(dist2(·, Ti)).

Within interpolation wedges, we have the same representation thanks to the first-
order compatibility (138) in form of

ξc − ξi = ξ̂c − ξi +O(dist2(·, Ti))

= (ξcTi
− ξi) + (1−λ±c )(ξc∂Ω − ξcTi

) +O(dist2(·, Ti))

= αTisTiτIv − 1

2
α2
Ti
s2Ti
nIv +O(dist2(·, Ti)).

In particular, the compatibility bounds (114) and (115) are satisfied within interface
and interpolation wedges, respectively. □

6. Existence of boundary adapted extensions of the unit normal

6.1. From local to global extensions. The idea for proving Proposition 7 con-
sists of stitching together the local extensions from the previous two sections by
means of a suitable partition of unity on the interface Iv. For a construction of the
latter, recall first the decomposition of the interface Iv into its topological features,
namely, the connected components of Iv ∩ Ω and the connected components of
Iv ∩ ∂Ω. Denoting by N ∈ N the total number of such topological features present
in the interface Iv we split {1, . . . , N} =: I ·∪ C by means of two disjoint subsets.
Here, the subset I enumerates the space-time connected components of Iv ∩ Ω
(being time-evolving connected interfaces), whereas the subset C enumerates the
space-time connected components of Iv ∩ ∂Ω (being time-evolving contact points).
If i ∈ I, we let Ti ⊂ Iv denote the space-time trajectory in Ω of the correspond-
ing connected interface. Furthermore, for every c ∈ C we write Tc representing the
space-time trajectory in ∂Ω of the corresponding contact point. Finally, let us write
i ∼ c for i ∈ I and c ∈ C if and only if Ti ends at Tc; otherwise i ̸∼ c.

Lemma 26 (Construction of a partition of unity). Let d = 2, and let Ω ⊂ R2 be
a bounded domain with orientable and smooth boundary. Let (χv, v) be a strong
solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 10 on a time interval [0, T ]. For each i ∈ I let ri be the localization
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radius of Definition 13, and for each c ∈ C denote by r̂c the localization radius of
Proposition 16. There then exists a family (η1, . . . , ηN ) of cutoff functions

ηn : R2 × [0, T ] → [0, 1], n ∈ {1, . . . , N},

with the regularity ηn ∈ (C0
t C

2
x ∩ C1

t C
0
x)
(
R2×[0, T ] \

⋃
c∈C

Tc
)
, (167)

and a localization radius r̂ ∈ (0,mini∈I ri ∧minc∈C r̂c), which together are subject
to the following list of conditions:

• The family (η1, . . . , ηN ) is a partition of unity along the interface Iv. Defining

a bulk cutoff by means of ηbulk := 1−
∑N

n=1 ηn, it holds ηbulk ∈ [0, 1]. On top
we have coercivity estimates in form of

1

C
(dist2(·, Iv) ∧ 1) ≤ ηbulk ≤ C(dist2(·, Iv) ∧ 1) in R2 × [0, T ], (168)

|∇ηbulk| ≤ C(dist(·, Iv) ∧ 1) in R2 × [0, T ], (169)

• For all two-phase interfaces i ∈ I it holds

supp ηi(·, t) ⊂ ΨTi
(Ti(t)×{t}×[−r̂, r̂]) for all t ∈ [0, T ], (170)

with ΨTi
denoting the change of variables from Definition 13. For contact

points c ∈ C, it is required that

supp ηc(·, t) ⊂ Br̂

(
Tc(t)

)
for all t ∈ [0, T ]. (171)

• For all distinct two-phase interfaces i, i′ ∈ I it holds

supp ηi(·, t) ∩ supp ηi′(·, t) = ∅ for all t ∈ [0, T ]. (172)

The same is required for all distinct contact points c, c′ ∈ I

supp ηc(·, t) ∩ supp ηc′(·, t) = ∅ for all t ∈ [0, T ]. (173)

• Let a two-phase interface i ∈ I and a contact point c ∈ C be fixed. Then
supp ηi ∩ supp ηc ̸= ∅ if and only if i ∼ c, and in that case it holds

supp ηi(·, t) ∩ supp ηc(·, t) ⊂ Br̂(Tc(t)) ∩
(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
(174)

for all t ∈ [0, T ], with the wedges W c
Ti

and W c
Ω±

v
introduced in Definition 17.

Proof. The proof proceeds in several steps.
Step 1: (Definition of auxiliary cutoff functions) Fix a smooth cutoff function

θ : R → [0, 1] with the properties that θ(r) = 1 for |r| ≤ 1
2 and θ(r) = 0 for |r| ≥ 1.

Define

ζ(r) := (1− r2)θ(r2), r ∈ R. (175)

Based on this quadratic profile, we may introduce two classes of cutoff functions
associated to the two different natures of topological features present in the inter-
face Iv. To this end, let r̂ ∈ (0,mini∈I ri ∧minc∈C r̂c). Moreover, let δ ∈ (0, 1] be a
constant. Both constants r̂ and δ will be determined in the course of the proof.

For two-phase interfaces Ti ⊂ Iv, i ∈ I, we may then define

ζi(x, t) := ζ
( sdist(x, Ti(t))

δr̂

)
, (x, t) ∈ im(ΨTi

) := ΨTi

(
Ti×(−2ri, 2ri)

)
(176)
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where the change of variables ΨTi
and the associated signed distance sdist(·, Ti) are

from Definition 13 of the admissible localization radius ri. Furthermore, for contact
points Tc, c ∈ C, we define

ζc(x, t) := ζ
(dist(x, Tc(t))

δr̂

)
, (x, t) ∈ R2 × [0, T ]. (177)

Step 2: (Choice of the constant r̂ ∈ (0,mini∈I ri∧minc∈C r̂c)) It is a consequence
of the uniform regularity of the interface Iv in space-time that one may choose
r̂ ∈ (0,mini∈I ri ∧ minc∈C r̂c) small enough such that the following localization
properties hold true

ΨTi(Ti(t)×{t}×[−r̂, r̂]) ∩ΨTi′ (Ti′(t)×{t}×[−r̂, r̂]) = ∅ ∀i′ ∈ I, i′ ̸= i, (178)

ΨTi
(Ti(t)×{t}×[−r̂, r̂]) ∩Br̂(Tc(t)) ̸= ∅ ⇔ ∃c ∈ C : i ∼ c, (179)

Br̂(Tc(t)) ∩Br̂(Tc′(t)) = ∅ ∀c, c′ ∈ C, c′ ̸= c. (180)

for all t ∈ [0, T ] and all i ∈ I.
Step 3: (Construction of the partition of unity, part I) We start with the con-

struction of the cutoffs ηi for two-phase interfaces i ∈ I. Away from contact points,
we set

ηi(x, t) := ζi(x, t), (x, t) ∈ im(ΨTi) \
⋃
c∈C

⋃
t′∈[0,T ]

Br̂

(
Tc(t′)

)
×{t′}, (181)

which is well-defined due to the choice of r̂.
Assume now there exists c ∈ C such that i ∼ c. Recall from Definition 17 of the

admissible localization radius rc that for all t ∈ [0, T ] we decomposed Ω∩Brc(Tc(t))
by means of five pairwise disjoint open wedges W±,c

∂Ω (t),W c
Ti
(t),W c

Ω±
v
(t) ⊂ R2. In

the wedge W c
Ti

containing the two-phase interface Ti ⊂ Iv, we define

ηi(x, t) := (1− ζc(x, t))ζi(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩W c

Ti
(t′)

)
×{t′}. (182)

This is indeed well-defined by the choice of r̂ and having

Brc(Tc(t)) ∩W c
Ti
(t) ⊂ ΨTi

(Ti(t)×{t}×(−2rc, 2rc))

for all t ∈ [0, T ]; the latter in turn being a consequence of Definition 17 of the
admissible localization radius rc.

Within the ball Br̂(Tc(t)), we aim to restrict the support of ηi(·, t) to the region
Br̂(Tc(t)) ∩

(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
for all t ∈ [0, T ]. This will be done by means of the

interpolation functions λ±c of Lemma 24. Recall in this context the convention that
λ±c (·, t) was set equal to one on

(
∂W c

Ω±
v
(t) ∩ ∂W c

Ti
(t)

)
\ Tc(t) and set equal to zero

on
(
∂W c

Ω±
v
(t) ∩ ∂W±,c

∂Ω (t)
)
\ Tc(t) for all t ∈ [0, T ]. In particular, we may define in

the interpolation wedges W c
Ω±

v

ηi(x, t) := λ±c (x, t)(1− ζc(x, t))ζi(x, t), (183)

(x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩W c

Ω±
v
(t)

)
×{t′}.

Again, this is well-defined because of the choice of r̂ and the fact that

Brc(Tc(t)) ∩W c
Ω±

v
(t) ⊂ ΨTi(t)(Ti(t)×{t}×(−2rc, 2rc))

for all t ∈ [0, T ] due to Definition 17 of the admissible localization radius rc.
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Outside of the space-time domains appearing in the definitions (181)–(183), we
simply set ηi equal to zero.

In view of the definitions (175)–(177) and the definitions (181)–(183), it now
suffices to choose δ ∈ (0, 1] sufficiently small such that (170) holds true, and in case
there exists c ∈ C such that i ∼ c one may on top achieve

supp ηi(·, t) ∩Br̂(Tc(t)) ⊂ Br̂(Tc(t)) ∩
(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
(184)

for all t ∈ [0, T ]. Moreover, in light of (170) and (178) we also obtain (172).
Step 4: (Construction of the partition of unity, part II) We proceed with the

construction of the cutoffs ηc for contact points c ∈ C. To this end, let i ∈ I be
the unique two-phase interface such that i ∼ c. In the wedge W c

Ti
containing the

two-phase interface Ti ⊂ Iv we set

ηc(x, t) := ζc(x, t)ζi(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩W c

Ti
(t′)

)
×{t′}, (185)

which is well-defined based on the same reason as for (182).
Moreover, in the interpolation wedges W c

Ω±
v
we define

ηc(x, t) := λ±c (x, t)ζc(x, t)ζi(x, t) + (1− λ±c (x, t))ζc(x, t), (186)

(x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
∩W c

Ω±
v
(t)

)
×{t′}.

By the same argument as for (183), this is again well-defined.
Outside of the space-time domains appearing in the previous two definitions we

simply set ηc := ζc. In particular, we register for reference purposes that

ηc(x, t) := ζc(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Br̂

(
Tc(t′)

)
\
(
W c

Ti
(t′) ∪W c

Ω±
v
(t)

))
×{t′}. (187)

It now immediately follows from the definition (177) that (171) is satisfied. In
particular, for pairs i ∈ I and c ∈ C such that i ∼ c, supp ηi ∩ supp ηc ̸= ∅ and we
obtain (174) as an update of (184). Moreover, by (171) and (180) we deduce the
validity of (173). In the case of pairs i ∈ I and c ∈ C with i ̸∼ c, due to (179),
(170) and (171), we can conclude that supp ηi ∩ supp ηc = ∅.

Step 5: (Partition of unity property along the interface) Fix t ∈ [0, T ], and
consider first the case of x ∈ Iv(t)\

⋃
c∈C Br̂(Tc(t)). The combination of the support

properties (170) and (171) with the localization property (178) implies there exists

a unique two-phase interface i∗ = i∗(x) ∈ I such that
∑N

n=1 ηn(x, t) = ηi∗(x, t).

Hence, we may deduce from (181) that
∑N

n=1 ηn(x, t) = 1 for all t ∈ [0, T ] and all
x ∈ Iv(t) \

⋃
c∈C Br̂(Tc(t)).

Fix a contact point c ∈ C and a point x ∈ Iv(t) ∩ Br̂(Tc(t)). Let i ∈ I be
the unique two-phase interface such that i ∼ c. By the support properties (170)
and (171) in combination with the localization properties (178)–(180) it follows

that
∑N

n=1 ηn(x, t) = ηc(x, t) + ηi(x, t). In particular
∑N

n=1 ηn(x, t) = 1 due to the
definitions (182) and (185). The two discussed cases thus imply that

N∑
n=1

ηn(x, t) = 1, (x, t) ∈
⋃

t′∈[0,T ]

Iv(t
′)× {t′}. (188)
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Step 6: (Regularity) Outside of interpolation wedges, the required regularity is
an immediate consequence of the uniform regularity of the interface Iv and the
definitions (181), (182), (185) and (186).

In interpolation wedges, one has to argue based on the definitions (183) and (186).
In terms of regularity, the critical cases originating from an application of the prod-
uct rule consist of those when derivatives hit the interpolation parameter. However,
the by (153)–(154) controlled blow-up of the derivatives of the interpolation param-
eter is always counteracted by the presence of the term 1− ζc (cf. (183) and (186))
which is of second order in the distance to the contact point due to (175) and (177).
In other words, the required regularity also holds true within interpolation wedges.

The two considered cases taken together entail the asserted regularity.
Step 7: (Estimate for the bulk cutoff) In the course of establishing the desired

coercivity estimates (168) and (169), we also convince ourselves of the fact that

ηbulk = 1−
N∑

n=1

ηn ∈ [0, 1] (189)

throughout R2 × [0, T ]. By the support properties (170) and (171), in both cases
it suffices to argue for points contained in ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃

c∈C Br̂

(
Tc(t)

)
or Br̂(Tc(t)) for all i ∈ I, all c ∈ C and all t ∈ [0, T ].

We start with the latter and fix i ∈ I as well as t ∈ [0, T ]. Due to the localization
property (178) and subsequently plugging in (181), we get

ηbulk(·, t) = 1−ηi(·, t) = 1−ζi(·, t) in ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃
c∈C

Br̂

(
Tc(t)

)
. (190)

The validity of (168), (169) and (189) in ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃

c∈C Br̂

(
Tc(t)

)
thus follows immediately from definition (176).

Fix c ∈ C, and let i ∈ I be the unique two-phase interface with i ∼ c. Due
to (170), (171) as well as (178)–(180) we have

ηbulk(·, t) = 1− ηc(·, t)− ηi(·, t) in Br̂

(
Tc(t)

)
∩
(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
. (191)

Plugging in (182) and (185) or (183) and (186), respectively, yields

ηbulk(·, t) = 1− ζi(·, t) in Br̂

(
Tc(t)

)
∩W c

Ti
(t), (192)

as well as

ηbulk(·, t) = λ±c (·, t)(1−ζi(·, t)) + (1−λ±c (·, t))(1−ζc(·, t)) in Br̂

(
Tc(t)

)
∩W c

Ω±
v
(t).

(193)

Hence, we can infer by means of (176) and (177) that (168), (169) and (189) hold
true in the domain Br̂

(
Tc(t)

)
∩
(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
. Finally, we have

ηbulk(·, t) = 1− ηc(·, t) = 1− ζc(·, t) in Br̂

(
Tc(t)

)
\
(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
(194)

as a consequence of (170), (171), (178)–(180) and (187). The previous display
in turn implies (168), (169) and (189) in Br̂

(
Tc(t)

)
\
(
W c

Ti
(t) ∪W c

Ω±
v
(t)

)
because

of (177). This eventually concludes the proof of Lemma 26. □

Construction 27 (From local to global extensions). Let d = 2, and let Ω ⊂ R2

be a bounded domain with orientable and smooth boundary. Let (χv, v) be a strong
solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 10 on a time interval [0, T ]. Let (η1, . . . , ηN ) be a partition of unity
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along the interface Iv as given by the proof of Lemma 26. For each two-phase
interface i ∈ I denote by ξi the bulk extension of Proposition 15, and for each
contact point c ∈ C let ξc be the contact point extension of Proposition 16.

We then define a vector field ξ : Ω× [0, T ] → R2 with regularity

ξ ∈
(
C0

t C
2
x ∩ C1

t C
0
x

)(
Ω×[0, T ] \ (Iv ∩ (∂Ω×[0, T ]))

)
(195)

by means of the formula

ξ :=

N∑
n=1

ηnξ
n. (196)

Before we proceed on with a proof of Proposition 7, we first deduce that the bulk
cutoff ηbulk of Lemma 26 is transported by the fluid velocity v up to an admissible
error in the distance to the interface of the strong solution.

Lemma 28 (Transport equation for bulk cutoff). Let d = 2, and let Ω ⊂ R2 be
a bounded domain with orientable and smooth boundary. Let (χv, v) be a strong
solution to the incompressible Navier–Stokes equation for two fluids in the sense
of Definition 10 on a time interval [0, T ]. Let (η1, . . . , ηN ) be a partition of unity
along the interface Iv as given by the proof of Lemma 26.

The bulk cutoff ηbulk = 1−
∑N

n=1 ηn is then transported by the fluid velocity v to
second order in form of

|∂tηbulk + (v · ∇)ηbulk| ≤ C(1 ∧ dist2(·, Iv)) in Ω× [0, T ]. (197)

Proof. Let r̂ ∈ (0, 12 ] be the localization radius of Lemma 26. In view of the
regularity estimate (167) and the fact that

Ω \
( ⋃

c∈C
Br̂(Tc(t)) ∪

⋃
i∈I

im(ΨTi
)

)
⊂ Ω ∩

{
x ∈ R2 : dist(x, Iv(t)) > r̂

}
for all t ∈ [0, T ], it suffices to establish (197) within Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\⋃

c∈C Br̂

(
Tc(t)

)
or Ω ∩Br̂(Tc(t)) for all i ∈ I, all c ∈ C and all t ∈ [0, T ].

Step 1: (Estimate near the interface but away from contact points) Fix a two-
phase interface i ∈ I. As a consequence of the two identities in (190), we may
compute

∂tηbulk + (v · ∇)ηbulk = −
(
∂tζi + (v · ∇)ζi

)
+ ηbulk(v · ∇)ζi (198)

in Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃

c∈C Br̂

(
Tc(t)

)
for all t ∈ [0, T ]. Recall that the

signed distance to the two-phase interface Ti ⊂ Iv is transported to first order by
the fluid velocity v, and that the profile ζ from (175) is quadratic around the origin.
Hence, by the chain rule and the definition (176) we obtain∣∣∂tζi + (v · ∇)ζi

∣∣ ≤ C dist2(·, Iv) in Ω ∩ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
(199)

for all t ∈ [0, T ]. Since we also have the coercivity estimate (168) for the bulk cutoff
at our disposal, we may thus upgrade (198) to (197) in Ω∩ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\⋃

c∈C Br̂

(
Tc(t)

)
for all t ∈ [0, T ].

Step 2: (Estimate near contact points, part I) Fix c ∈ C, and denote by i ∈ I
the unique two-phase interface such that i ∼ c. This step is devoted to the proof
of (197) in the wedge Ω∩Br̂(Tc(t))∩W c

Ti
(t) containing the interface Ti(t) ⊂ Iv(t),

t ∈ [0, T ]. Because of (191), (192) and (196) we have

∂tηbulk + (v · ∇)ηbulk = −
(
∂tζi + (v · ∇)ζi

)
+ ηbulk(v · ∇)ζi (200)
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in Ω ∩ Br̂(Tc(t)) ∩W c
Ti
(t) for all t ∈ [0, T ]. Due to Definition 17 of the admissi-

ble localization radius rc and r̂ ≤ rc by Lemma 26, it holds Br̂(Tc(t)) ∩W c
Ti
(t) ⊂

ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
for all t ∈ [0, T ]. In particular, the estimate (199) is ap-

plicable in Ω ∩ Br̂(Tc(t)) ∩ W c
Ti
(t) for all t ∈ [0, T ]. Hence, the estimate (199)

in combination with the coercivity estimate (168) for the bulk cutoff allow to de-
duce (197) from (200) in Ω ∩Br̂(Tc(t)) ∩W c

Ti
(t) for all t ∈ [0, T ].

Step 3: (Estimate near contact points, part II) Fix a contact point c ∈ C. The

goal of this step is to prove (197) in the wedges Ω∩Br̂(Tc(t))∩W±,c
∂Ω (t) containing

the boundary ∂Ω for all t ∈ [0, T ]. To this end, it follows from (194) and (196) that

∂tηbulk + (v · ∇)ηbulk = −
(
∂tζc + (v · ∇)ζc

)
+ ηbulk(v · ∇)ζc (201)

in Ω ∩ Br̂(Tc(t)) ∩ W±,c
∂Ω (t) for all t ∈ [0, T ]. Note that because of (175) one

can view the profile ζc from (177) as a smooth function of the contact point Tc.
Performing a slight yet convenient abuse of notation Tc(t) = {c(t)}, we obtain
as a consequence of d

dtc(t) = v(c(t), t) and an application of the chain rule that

∂tζc(·, t)+
(
v(c(t), t)·∇

)
ζc(·, t) = 0 at c(t) for all t ∈ [0, T ]. Furthermore, proceeding

similarly as done in the proof of [12, Lemma 11], we can also deduce that ∂tζc(·, t)+(
v(c(t), t) · ∇

)
ζc(·, t) = 0 in Ω∩Br̂(Tc(t)) for all t ∈ [0, T ]. By the regularity of the

fluid velocity v, this in turn implies by adding zero (and exploiting the quadratic
behaviour of the profile ζ from (175) around the origin) that∣∣∂tζc + (v · ∇)ζc

∣∣ ≤ C dist2(·, Tc) in Ω ∩Br̂(Tc(t)) (202)

for all t ∈ [0, T ]. Since r̂ ≤ rc by Lemma 26, we can infer from Definition 17 of
the admissible localization radius rc that dist(·, Tc) is dominated by dist(·, Iv) in

Br̂(Tc(t))∩
(
W±,c

∂Ω (t)∪W c
Ω±

v
(t)

)
for all t ∈ [0, T ]. Hence, we deduce from (202) that∣∣∂tζc + (v · ∇)ζc

∣∣ ≤ C dist2(·, Iv) in Ω ∩Br̂(Tc(t)) ∩
(
W±,c

∂Ω (t) ∪W c
Ω±

v
(t)

)
(203)

for all t ∈ [0, T ]. Inserting the estimate (203) and the coercivity estimate (168)

for the bulk cutoff into (201) thus yields (197) in Ω ∩ Br̂(Tc(t)) ∩W±,c
∂Ω (t) for all

t ∈ [0, T ].
Step 4: (Estimate near contact points, part III) Fix c ∈ C, and denote by i ∈ I

the unique two-phase interface such that i ∼ c. We aim to verify (197) in the
interpolation wedges Ω∩Br̂(Tc(t))∩W c

Ω±
v
(t) for all t ∈ [0, T ]. To this end, we may

employ (191), (193) and (196) to argue that

∂tηbulk + (v · ∇)ηbulk

= −λ±c
{(
∂tζi + (v · ∇)ζi

)
− ηbulk(v · ∇)ζi

}
− (1−λ±c )

{(
∂tζc + (v · ∇)ζc

)
− ηbulk(v · ∇)ζc

}
+
(
∂tλ

±
c + (v · ∇)λ±c

)
(ζc − ζi)

(204)

in Ω ∩Br̂(Tc(t)) ∩W c
Ω±

v
(t) for all t ∈ [0, T ]. Due to Definition 17 of the admissible

localization radius rc and r̂ ≤ rc by Lemma 26, it holds Br̂(Tc(t)) ∩ W c
Ω±

v
(t) ⊂

ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
for all t ∈ [0, T ]. The estimates (199) and (168) therefore

imply that the first term on the right hand side of (204) is of required order.
For the second term on the right hand side of (204), we may instead rely on the
estimates (203) and (168).
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Note that in view of the definitions (175)–(177), the auxiliary cutoffs ζi and
ζc are compatible to second order in the sense that |ζi − ζc| ≤ C dist2(·, Tc) in
Ω∩Br̂(Tc(t))∩W c

Ω±
v
(t) for all t ∈ [0, T ]. Recall from the previous step that dist(·, Tc)

is dominated by dist(·, Iv) in Br̂(Tc(t))∩
(
W±,c

∂Ω (t)∪W c
Ω±

v
(t)

)
for all t ∈ [0, T ]. Hence,

|ζi − ζc| ≤ C dist2(·, Iv) (205)

in Ω ∩ Br̂(Tc(t)) ∩W c
Ω±

v
(t) for all t ∈ [0, T ]. In particular, together with (155) the

bound (205) allows to upgrade (204) to the desired estimate (197) in Ω∩Br̂(Tc(t))∩
W c

Ω±
v
(t) for all t ∈ [0, T ].

Step 5: (Conclusion) Recall from Definition 17 of the admissible localization
radius rc that for all t ∈ [0, T ] the set Ω ∩ Brc(Tc(t)) is decomposed by means of

the five pairwise disjoint open wedges W±,c
∂Ω (t),W c

Ti
(t),W c

Ω±
v
(t) ⊂ R2. Hence, the

previous three steps entail the validity of (197) in Ω∩Brc(Tc(t)) for all t ∈ [0, T ]. In
particular, based on the discussion at the beginning of this proof and the argument
in the vicinity of the interface but away from contact points (see Step 1 ), we may
conclude the proof of Lemma 26. □

6.2. Proof of Proposition 7. All ingredients are in place to proceed with the
proof of the main result of this section, i.e., that the vector field ξ of Construction 27
gives rise to a boundary adapted extension of the interface unit normal for two-
phase fluid flow in the sense of Definition 2 with respect to (χv, v).

Proof of (15a). This is an easy consequence of the lower bound in the coercivity
estimate (168) for the bulk cutoff, the definition (196) of the global vector field ξ,
the fact that the local vector fields (ξn)n∈{1,...,N} as provided by Proposition 15
and Proposition 16 are of unit length, and the triangle inequality in form of |ξ| =
|
∑N

n=1 ηnξn| ≤
∑N

n=1 ηn|ξn| =
∑N

n=1 ηn = 1− ηbulk in Ω× [0, T ]. □

Proof of (15b). By definition (196) of the candidate extension ξ and the localiza-
tion properties (170)–(174) of the partition of unity (η1, . . . , ηN ) from Lemma 26, it
suffices to verify (15b) in terms of ξ = ηcξ

c in the associated region Br̂(Tc(t))∩ ∂Ω
for all contact points c ∈ C and all t ∈ [0, T ]. However, this in turn is an immediate
consequence of Proposition 16. □

Proof of (15c). For a proof of (15c), we start computing based on the defini-

tion (196) of the global vector field ξ that ∇· ξ =
∑N

n=1 ηn∇· ξn+
∑N

n=1(ξ
n ·∇)ηn.

As a consequence of the corresponding local versions of (15c) from Proposition 15
and Proposition 16, and the fact that (η1, . . . , ηn) is a partition of unity along the in-

terface Iv by Lemma 26 we obtain
∑N

n=1 ηn∇·ξn = −HIv along Iv∩Ω. Moreover,
by adding zero and subsequently relying on the definition (196) of the global vector
field ξ, the localization properties (170)–(174) of the partition of unity (η1, . . . , ηN )
from Lemma 26, the compatibility estimate (114) and the estimates (168) and (169)
for the bulk cutoff we may infer that

N∑
n=1

(ξn · ∇)ηn = −(ξ · ∇)ηbulk −
N∑

n=1

((ξ − ξn) · ∇)ηn

= −(ξ · ∇)ηbulk + ηbulk

N∑
n=1

(ξn · ∇)ηn
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+
∑
i∈I

∑
c∈C,i∼c

ηc
(
(ξi−ξc) · ∇ηi) +

∑
c∈C

∑
i∈I,i∼c

ηi
(
(ξc−ξi) · ∇ηc)

= O(1 ∧ dist(·, Iv)) in Ω× [0, T ].

In summary, we thus obtain (15c). □

Proof of (15d). For a proof of (15d), we start estimating based on the defini-
tion (196) of the global vector field ξ as well as the corresponding local versions
of (15d) from Proposition 15 and Proposition 16

∂tξ =

N∑
n=1

ηn∂tξ
n +

N∑
n=1

ξn∂tηn

= −
N∑

n=1

ηn(v · ∇)ξn +

N∑
n=1

ξn∂tηn (206)

−
N∑

n=1

ηn(Id−ξn ⊗ ξn)(∇v)Tξn +O(1 ∧ dist(·, Iv)) in Ω× [0, T ].

Adding zero twice and applying the product rule, we may further rewrite based
on the definition (196) of the candidate extension ξ and the localization proper-
ties (170)–(174) of the partition of unity (η1, . . . , ηN ) from Lemma 26

−
N∑

n=1

ηn(v · ∇)ξn +

N∑
n=1

ξn∂tηn

= −(v · ∇)ξ +

N∑
n=1

ξn
(
∂tηn + (v · ∇)ηn

)
= −(v · ∇)ξ − ξ

(
∂tηbulk + (v · ∇)ηbulk

)
+

N∑
n=1

(ξn−ξ)
(
∂tηn + (v · ∇)ηn

)
= −(v · ∇)ξ − ξ

(
∂tηbulk + (v · ∇)ηbulk

)
+ ηbulk

N∑
n=1

ξn
(
∂tηn + (v · ∇)ηn

)
+
∑
i∈I

∑
c∈C,i∼c

ηc(ξ
i−ξc)

(
∂tηi+(v · ∇)ηi

)
+

∑
c∈C

∑
i∈I,i∼c

ηi(ξ
c−ξi)

(
∂tηc+(v · ∇)ηc

)
in Ω × [0, T ]. Hence, estimating based on the compatibility estimate (114) as well
as the estimates (168) and (197) for the bulk cutoff yields the bound

−
N∑

n=1

ηn(v · ∇)ξn +

N∑
n=1

ξn∂tηn = −(v · ∇)ξ +O(1 ∧ dist(·, Iv)) in Ω× [0, T ].

(207)
Adding zero twice and making use of the definition (196) of the candidate exten-
sion ξ together with the localization properties (170)–(174) of the partition of unity
(η1, . . . , ηN ) from Lemma 26, we next compute

1supp ηn
ξn ⊗ ξn (208)

= 1supp ηn
ξ ⊗ ξ + 1supp ηn

(ξn−ξ)⊗ ξn + 1supp ηn
ξ ⊗ (ξn−ξ)

= 1supp ηnξ ⊗ ξ

+ 1supp ηn
ηbulkξ

n ⊗ ξn + 1supp ηn
ηbulkξ ⊗ ξn
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+ 1n=i∈I1supp ηi

∑
c∈C,i∼c

ηc(ξ
i−ξc)⊗ ξi + 1n=c∈C1supp ηc

∑
i∈I,i∼c

ηi(ξ
c−ξi)⊗ ξc

+ 1n=i∈I1supp ηi

∑
c∈C,i∼c

ηcξ ⊗ (ξi−ξc) + 1n=c∈C1supp ηc

∑
i∈I,i∼c

ηiξ ⊗ (ξc−ξi)

in Ω× [0, T ]. Relying on the same ingredients as for the previous computation we
also have

−
N∑

n=1

ηn(∇v)Tξn = −(∇v)Tξ −
N∑

n=1

ηn(∇v)T(ξn−ξ) + ηbulk(∇v)Tξ

= −(∇v)Tξ + ηbulk(∇v)Tξ − ηbulk

N∑
n=1

ηn(∇v)Tξn

−
∑
i∈I

∑
c∈C,i∼c

ηiηc(∇v)T(ξi−ξc)−
∑
c∈C

∑
i∈I,i∼c

ηcηi(∇v)T(ξc−ξi)

in Ω × [0, T ]. The compatibility estimate (114) as well as the estimates (168)
and (197) therefore imply in view of the previous two displays that

−
N∑

n=1

ηn(Id−ξn ⊗ ξn)(∇v)Tξn

= −(Id−ξ ⊗ ξ)(∇v)Tξ +O(1 ∧ dist(·, Iv)) in Ω× [0, T ].

(209)

The combination of the bounds (206)–(209) now immediately entails the desired
estimate (15d) on the time evolution of the global vector field ξ. □

Proof of (15e). We get as a consequence of the product rule and inserting the local
versions of (15e) from Proposition 15 and Proposition 16

ξ · ∂tξ =
N∑

n=1

ηnξ · ∂tξn +

N∑
n=1

(ξ · ξn)∂tηn

= −
N∑

n=1

ηnξ
n · (v · ∇)ξn +

N∑
n=1

ηn(ξ−ξn) · ∂tξn

+

N∑
n=1

(ξ · ξn)∂tηn +O(dist(·, Iv)2 ∧ 1) in Ω× [0, T ].

Adding zero to produce the left hand sides of the local versions of (15d) from
Proposition 15 and Proposition 16 further updates the previous display to

ξ · ∂tξ = −
N∑

n=1

ηnξ · (v · ∇)ξn +

N∑
n=1

(ξ · ξn)∂tηn

−
N∑

n=1

ηn(ξ−ξn) · (Id−ξn ⊗ ξn)(∇v)Tξn

+

N∑
n=1

ηn(ξ−ξn) ·
(
∂tξ

n+(v · ∇)ξn+(Id−ξn ⊗ ξn)(∇v)Tξn
)

+O(dist(·, Iv)2 ∧ 1) in Ω× [0, T ].
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We then continue with adding zeros to obtain

ξ · ∂tξ = −ξ · (v · ∇)ξ

+

N∑
n=1

(
ξ · (ξn−ξ)

)(
∂tηn+(v · ∇)ηn

)
− |ξ|2

(
∂tηbulk+(v · ∇)ηbulk

)
−

N∑
n=1

ηn(ξ−ξn) · (ξ ⊗ ξ − ξn ⊗ ξn)(∇v)Tξn

−
N∑

n=1

ηn(ξ−ξn) · (Id−ξ ⊗ ξ)(∇v)T(ξn − ξ)

+

N∑
n=1

ηn(ξ−ξn) ·
(
∂tξ

n+(v · ∇)ξn+(Id−ξn ⊗ ξn)(∇v)Tξn
)

+O(dist(·, Iv)2 ∧ 1) in Ω× [0, T ].

(210)

As it is by now routine, we may employ the localization properties (170)–(174) of the
partition of unity (η1, . . . , ηN ) from Lemma 26 and the estimates (168) and (197) for
the bulk cutoff to reduce the task of estimating the right hand side terms of (210)
to an application of the compatibility estimates (114)–(115). More precisely, we
obtain by straightforward applications of these two ingredients that

N∑
n=1

(
ξ · (ξ−ξn)

)(
∂tηn+(v · ∇)ηn

)
=

∑
i∈I

∑
c∈C,i∼c

η2c
(
(ξc−ξi) · (ξc−ξi)

)(
∂tηi+(v · ∇)ηi

)
(211)

+
∑
c∈C

∑
i∈I,i∼c

ηcηi
(
(ξc − ξi) · (ξi−ξc)

)(
∂tηc+(v · ∇)ηc

)
+
∑
i∈I

∑
c∈C,i∼c

η2c
(
ξi · (ξc−ξi)

)(
∂tηi+(v · ∇)ηi

)
+
∑
c∈C

∑
i∈I,i∼c

ηcηi
(
ξi · (ξi−ξc)

)(
∂tηc+(v · ∇)ηc

)
+
∑
i∈I

∑
c∈C,i∼c

ηiηc
(
ξi · (ξc−ξi)

)(
∂tηi+(v · ∇)ηi

)
+
∑
c∈C

∑
i∈I,i∼c

η2i
(
ξi · (ξi−ξc)

)(
∂tηc+(v · ∇)ηc

)
+O(dist(·, Iv)2 ∧ 1) in Ω× [0, T ],

N∑
n=1

ηn(ξ−ξn) · (Id−ξ ⊗ ξ)(∇v)T(ξ−ξn)

=
∑
i∈I

∑
c∈C,i∼c

ηiη
2
c (ξ

c−ξi) · (Id−ξ ⊗ ξ)(∇v)T(ξc−ξi) (212)

+
∑
c∈C

∑
i∈I,i∼c

ηcη
2
i (ξ

i−ξc) · (Id−ξ ⊗ ξ)(∇v)T(ξi−ξc)

+O(dist(·, Iv)2 ∧ 1) in Ω× [0, T ],
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N∑
n=1

ηn(ξ−ξn) ·
(
∂tξ

n+(v · ∇)ξn+(Id−ξn ⊗ ξn)(∇v)Tξn
)

=
∑
i∈I

∑
c∈C

ηiηc(ξ
c−ξi) ·

(
∂tξ

i+(v · ∇)ξi+(Id−ξi ⊗ ξi)(∇v)Tξi
)

(213)

+
∑
c∈C

∑
i∈I,i∼c

ηcηi(ξ
i−ξc) ·

(
∂tξ

c+(v · ∇)ξc+(Id−ξc ⊗ ξc)(∇v)Tξc
)

+O(dist(·, Iv)2 ∧ 1) in Ω× [0, T ],

and finally

N∑
n=1

ηn(ξ−ξn) · (ξ ⊗ ξ − ξn ⊗ ξn)(∇v)Tξn

=
∑
i∈I

∑
c∈C,i∼c

ηc(ξ
c−ξi) · (ξ ⊗ ξ − ξi ⊗ ξi)(∇v)Tξi (214)

+
∑
c∈C

∑
i∈I,i∼c

ηi(ξ
i−ξc) · (ξ ⊗ ξ − ξc ⊗ ξc)(∇v)Tξc

+O(dist(·, Iv)2 ∧ 1) in Ω× [0, T ].

We then exploit the compatibility estimates (114) and (115) for an estimate of (211),
the compatibility estimate (114) for an estimate of (212), the local versions of (15d)
from Proposition 15 and Proposition 16 in combination with the compatibility
estimate (114) for an estimate of (213), and finally (208) together with the estimate
for the bulk cutoff (168) and the compatibility estimate (114) to estimate (214).
In summary, using also the bound on the advection derivative (197) as well as the
coercivity estimate (168), we may upgrade (210) to the desired estimate (15e). □

7. Existence of transported weights: Proof of Lemma 8

We decompose the argument for the construction of a transported weight ϑ in
the sense of Definition 3 in several steps.

Step 1: (Choice of suitable profiles) Let ϑ̄ : R → R be chosen such that it rep-
resents a smooth truncation of the identity in the sense that ϑ̄(r) = r for |r| ≤ 1

2 ,

ϑ̄(r) = −1 for r ≤ −1, ϑ̄(r) = 1 for r ≥ 1, 0 ≤ ϑ̄′ ≤ 2 as well as |ϑ̄′′| ≤ C.
For each two-phase interface i ∈ I present in the interface Iv of the strong

solution, we then define an auxiliary weight

ϑ̄i(x, t) := −ϑ̄
( sdist(x, Ti(t))

δr̂

)
, (x, t) ∈ im(ΨTi) (215)

where the change of variables ΨTi
and the associated signed distance sdist(·, Ti) are

the ones from Definition 13 of the admissible localization radius ri. Moreover, r̂
represents the localization scale of Lemma 26 and δ ∈ (0, 1] denotes a constant to
be chosen in the course of the proof.

Recalling also from Definition 17 of the admissible localization radii (rc)c∈C the
definition of the change of variables Ψ∂Ω with associated signed distance sdist(·, ∂Ω)
we define another two auxiliary weights by means of

ϑ̄±∂Ω(x, t) := ∓ϑ̄
( sdist(x, ∂Ω)

δr̂

)
, (216)
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(x, t) ∈
⋃

t′∈[0,T ]

(
Ω±

v (t
′) ∩Ψ∂Ω

(
∂Ω×(−2r̂, 2r̂)

))
×{t′}.

Step 2: (Construction of the transported weight) Away from contact points and
the interface but in the vicinity of the domain boundary, we introduce the following
notational shorthand

Ur̂(t) :=
⋃
i∈I

ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
∪

⋃
c∈C

Br̂

(
Tc(t)

)
, t ∈ [0, T ], (217)

and then define

ϑ(x, t) := ϑ̄±∂Ω(x, t), (218)

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω±

v (t
′) ∩Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\ Ur̂(t

′)
)
×{t′}.

Fix next a two-phase interface i ∈ I. Away from contact points but in the
vicinity of the interface, we then define

ϑ(x, t) := ϑ̄i(x, t), (219)

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω ∩ΨTi

(
Ti(t′)×{t′}×[−r̂, r̂]

)
\
⋃
c∈C

Br̂

(
Tc(t′)

))
×{t′}.

Let now a contact point c ∈ C be fixed, and denote by i ∈ I the unique two-
phase interface with i ∼ c. Recall from Definition 17 of the admissible localization
radius rc that for all t ∈ [0, T ] we decomposed Ω ∩ Brc(Tc(t)) by means of five

pairwise disjoint open wedges W±,c
∂Ω (t),W c

Ti
(t),W c

Ω±
v
(t) ⊂ R2. In the wedge W c

Ti

containing the two-phase interface Ti ⊂ Iv, we still define

ϑ(x, t) := ϑ̄i(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Ω ∩Br̂

(
Tc(t′)

)
∩W c

Ti
(t′)

)
×{t′}. (220)

In the wedges W±,c
∂Ω containing the domain boundary ∂Ω, we instead set

ϑ(x, t) := ϑ̄±∂Ω(x, t), (x, t) ∈
⋃

t′∈[0,T ]

(
Ω ∩Br̂

(
Tc(t′)

)
∩W±,c

∂Ω (t′)
)
×{t′}. (221)

In the interpolation wedges W c
Ω±

v
, we make use of the interpolation parameter λ±c

of Lemma 24 to interpolate between the two constructions near the interface (220)
and near the domain boundary (221). Recall in this context the convention that
λ±c (·, t) was set equal to one on

(
∂W c

Ω±
v
(t) ∩ ∂W c

Ti
(t)

)
\ Tc(t) and set equal to zero

on
(
∂W c

Ω±
v
(t) ∩ ∂W±,c

∂Ω (t)
)
\ Tc(t) for all t ∈ [0, T ]. With this notation in place, we

define on the interpolation wedges

ϑ(x, t) := λ±c (x, t)ϑ̄i(x, t) + (1−λ±c (x, t))ϑ̄±∂Ω(x, t), (222)

(x, t) ∈
⋃

t′∈[0,T ]

(
Ω ∩Br̂

(
Tc(t′)

)
∩W c

Ω±
v
(t′)

)
×{t′}.

Finally, choosing δ small enough in the definition (215) of the auxiliary weights
(ϑi)i∈I and recalling the localization properties (178)–(180) of the scale r̂, it is safe
to define in the space-time domain not captured by the definitions (218)–(222)

ϑ(x, t) := ∓1, (223)
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(x, t) ∈
⋃

t′∈[0,T ]

(
Ω±

v (t
′) \

(
Ur̂(t

′) ∪Ψ∂Ω(∂Ω×[−r̂, r̂])
))
×{t′}.

Recall for this definition also the notation (217).
Step 3: (Regularity and coercivity) The validity of the asserted sign conditions

in Definition 3 are immediate from (218)–(223). Since the first-order derivatives of
the interpolation parameter λ±c feature controlled blow-up (153), it is also a direct

consequence of the definitions (218)–(223) that ϑ ∈W 1,∞
x,t (Ω× [0, T ]) as asserted.

In view of the definition (223) of the weight in the bulk it suffices to estab-
lish (26) in the regions Ω ∩Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\ Ur̂(t), Ω ∩ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\⋃

c∈C Br̂

(
Tc(t)

)
and Ω∩Br̂(Tc(t)) for all i ∈ I, all c ∈ C and all t ∈ [0, T ]. However,

in these regions the asserted estimate (26) is immediately implied by the properties
of the truncation of unity ϑ̄ from Step 1 of this proof and the definitions (218)–
(222).

Step 4: (Advection equation) Because of the definition (223) of the weight ϑ in
the bulk, it suffices to establish (27) in the regions Ω ∩ Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\ Ur̂(t),

Ω ∩ ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃

c∈C Br̂

(
Tc(t)

)
and Ω ∩ Br̂(Tc(t)) for all i ∈ I, all

c ∈ C and all t ∈ [0, T ].
Observe first that it follows from the definitions (216), (218) and (221) as well

as the boundary condition for the fluid velocity (v · n∂Ω)|∂Ω = 0 that

∂tϑ+ (v · ∇)ϑ = 0 along ∂Ω \
⋃
c∈C

Tc(t) (224)

for all t ∈ [0, T ]. By a Lipschitz estimate together with the coercivity estimate (26),
the desired estimate (27) follows in Ω ∩Ψ∂Ω

(
∂Ω×[−r̂, r̂]

)
\ Ur̂(t) for all t ∈ [0, T ].

Fix next a two-phase interface i ∈ I. We then claim that∣∣∂tϑ̄i + (v · ∇)ϑ̄i
∣∣ ≤ C dist(·, Iv) in Ω ∩ΨTi(t)

(
Ti(t)×[−r̂, r̂]

)
(225)

for all t ∈ [0, T ]. Indeed, one only needs to recall that the signed distance to the two-
phase interface Ti ⊂ Iv is transported by the fluid velocity v to first order in the dis-
tance to the interface. In particular, combining (225) with the definition (219) and
the coercivity estimate (26) entails (27) in Ω∩ΨTi

(
Ti(t)×{t}×[−r̂, r̂]

)
\
⋃

c∈C Br̂

(
Tc(t)

)
for all t ∈ [0, T ].

Let now a contact point c ∈ C be given, and let i ∈ I be the unique two-phase
interface such that i ∼ c. The desired estimate (27) follows immediately from (225)
and (220) in the wedge Ω ∩ Br̂

(
Tc(t)

)
∩W c

Ti
(t) for all t ∈ [0, T ]. For the wedges

containing the domain boundary ∂Ω, the estimate (27) in form of∣∣∂tϑ̄±∂Ω + (v · ∇)ϑ̄±∂Ω
∣∣ ≤ C dist(·, ∂Ω) in Ω ∩Br̂

(
Tc(t)

)
∩
(
W c

Ω±
v
(t) ∪W±,c

∂Ω (t)
)

(226)

for all t ∈ [0, T ], is satisfied because of the analogue of (224) and a Lipschitz
estimate. Finally, in the interpolation wedges one may estimate

|∂tϑ+(v · ∇)ϑ| ≤ |ϑ̄i − ϑ̄±∂Ω||∂tλ
±
c +(v · ∇)λ±c |

+ λ±c |∂tϑ̄i+(v · ∇)ϑ̄i|+ (1−λ±c )|∂tϑ̄±∂Ω+(v · ∇)ϑ̄±∂Ω|.

The desired bound thus follows from the estimate (155) for the advective derivative
of the interpolation parameter λ±c , the estimates (225) and (226), and the fact that
the auxiliary weights from (215) and (216) are compatible in the sense

|ϑ̄i − ϑ̄±∂Ω| ≤ C(dist(·, ∂Ω) ∧ dist(·, Iv))
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in Ω∩Br̂

(
Tc(t))∩W c

Ω±
v
(t) for all t ∈ [0, T ]. This concludes the proof of Lemma 8. □

Appendix A. Existence of varifold solutions to two-phase fluid flow
with surface tension

The aim of this Appendix is to give a sketch of a proof regarding existence of
varifold solutions to two-phase fluid flow with surface tension and with ninety de-
gree contact angle (see Definition 11). Note that this is not treated by the work
of Abels [1] in which the existence of a varifold solution in the presence of surface
tension is only established in a full space setting. However, in principle it still sug-
gests itself to follow, where possible, the structure of the proof for the case of an
unbounded domain by Abels [1]. In this regard, we first discuss two tools which
are needed due to the different setting of the present work, i.e., geometric evolution
with a ninety degree contact angle condition and the associated boundary condi-
tions for the solenoidal fluid velocity. These tools concern an existence result for
weak solutions to the required transport equation (for sufficiently regular transport
velocities) and elliptic regularity estimates for the Helmholtz decomposition asso-
ciated with the bounded and smooth domain Ω. In a second step, we present the
corresponding approximate problem, focusing again on the key steps of the proof
which differ with respect to the case of an unbounded domain studied by Abels [1].
Note that analogous to the existence theory of [1], we will assume some regularity
for the geometry of the initial data and, for simplicity, that the densities of the two
fluids coincide and are normalized to 1.

Transport equation. In order to construct approximate solutions of the two-phase
flow with surface tension and with ninety degree contact angle, one first needs an
existence result for weak solutions to the transport equation in a bounded domain.
In particular, it suffices to motivate the validity of [1, Lemma 2.3, Ω ≡ Rd] in case
of a smooth and bounded domain Ω ⊂ Rd, d ∈ {2, 3}.

To this aim, let the open subset Ω+
0 ⊂ Ω be subject to the regularity condi-

tions in Definition 9, let χ0 := χΩ+
0
∈ BV(Ω; {0, 1}), let T ∈ (0,∞), and consider

a sufficiently regular fluid velocity v ∈ C([0, T ];C2
b (Ω)) ∩ C(Ω×[0, T ]) such that

div v = 0 in Ω and (n∂Ω · v)|∂Ω = 0. Consider any C([0, T ];C2
b (Rd)) extension of v

which we denote by ṽ. Then, a solution χ̃ to the transport equation associated
with ṽ can be constructed on Rd by the usual method of characteristics (see, e.g.,
[1, Proof of Lemma 2.3]). The associated flow map is a C1-diffeomorphism at any
time t ∈ [0, T ]. However, note that it maps ∂Ω onto itself, due to v|∂Ω = ṽ|∂Ω being
tangential along ∂Ω. Moreover, since the flow map is a global diffeomorphism (and
since continuous images of connected sets are connected), it also maps Ω onto itself.
Then, one can conclude by means of the same computations as in the proof of [1,
Lemma 2.3] — using in the process the fact that div v = 0 in Ω — that the restric-
tion χ := χ̃|Ω×[0,T ] ∈ L∞(0, T ; BV(Ω; {0, 1})) is a weak solution of the transport
equation associated with v in the sense of

ˆ T

0

ˆ
Ω

χ (∂tφ+ v · ∇φ) dxdt+
ˆ
Ω

χ0φ(x, 0)dx = 0 (227)

for any φ ∈ C1
c ([0, T );C(Ω)) ∩ Cc([0, T );C

1(Ω)). Moreover, we have

∥χ∥L∞(0,T ;BV (Ω)) ⩽M
(
∥v∥C([0,T ];C2

b (Ω))

)
∥χ0∥BV (Ω) , (228)
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d

dt
|∇χ(·, t)| (Ω) = −

〈
Hχ(·,t), v(·, t)

〉
for all t ∈ (0, T ) (229)

for some continuous function M . Note that the latter holds because the 90 degree
contact angle condition is preserved by sufficiently regular transport velocities (see,
e.g., the remark after Definition 10).

Helmholtz decomposition associated with bounded domains. We recall properties
of the Helmholtz projection PΩ associated with the smooth bounded domain Ω,
referring the reader to [20, Corollaries 7.4.4-5] (see also [25]).

Define Wp(Ω) := {g ∈ W 1,p(Ω;Rd) : div g = 0, (g · n∂Ω)|∂Ω = 0}. Given f ∈
W 1,p(Ω;Rd), 2 ≤ p < ∞, there are unique functions ϕ ∈ W 2,p(Ω) and w ∈ Wp(Ω)
such that f = ∇ϕ+ w. The bounded linear operator PΩ ∈ B(W 1,p(Ω;Rd),Wp(Ω))
defined by PΩf := w is a projection, which is the Helmholtz projection associated
with the smooth bounded domain Ω. Moreover, if f ∈ W 2,p(Ω;Rd) it holds ϕ ∈
W 3,p(Ω) and

∥PΩf∥W 2,p(Ω;Rd) ≤ C∥f∥W 2,p(Ω;Rd), (230)

and if f ∈W k,2(Ω;Rd), k ≥ 2, then ϕ ∈W k,2(Ω) and

∥PΩf∥Wk,2(Ω;Rd) ≤ C∥f∥Wk,2(Ω;Rd). (231)

This follows from existence and regularity theory of the associated Neumann prob-
lem (see for the case p > 2 the result of [20, Corollary 7.4.5])

∆ϕ = div f in Ω,

(n∂Ω · ∇)ϕ = f · n∂Ω on ∂Ω.

Solutions to approximate two-phase fluid flow. In order to formulate the ap-
proximate equations, let ψ be a standard mollifier, for every k ∈ N we denote
by ψk := kdψ(k·) its usual rescaling, and by PΩ the Helmholtz projection asso-
ciated with the smooth domain Ω. Moreover, let Ψk· = PΩ(Ψk ∗ ·). Consider
the initial data v0 ∈ L2(Ω) with div v0 = 0 and (n∂Ω · v0)|∂Ω = 0, and let
χ0 := χΩ+

0
∈ BV(Ω; {0, 1}), where Ω+

0 ⊂ Ω is subject to the regularity condi-

tions in Definition 9. Let µ, σ > 0. Then, we consider an approximate two-phase
flow on (0, Tw), Tw ∈ (0,∞). This is a pair (vk, χk) consisting on one side of a fluid
velocity field vk ∈ L∞([0, Tw];L

2(Ω)) ∩ L2([0, Tw];W2(Ω)) solvingˆ
Ω

vk(·, T ) · η(·, T ) dx−
ˆ
Ω

v0 · η(·, 0) dx−
ˆ T

0

ˆ
Ω

vk · ∂tη dx dt

−
ˆ T

0

ˆ
Ω

Ψkvk ⊗ ψk ∗ vk : ∇(ψk ∗ η) dxdt+
ˆ T

0

ˆ
Ω

µ(∇vk +∇vTk ) : ∇η dx dt

= σ

ˆ T

0

ˆ
∂∗{χk=1}∩Ω

Hχk
·Ψkη dS dt (232)

for a.e. T ∈ [0, Tw) and every η ∈ C∞([0, Tw);C
1(Ω;Rd) ∩

⋂
p≥2W

2,p(Ω;Rd)) with

div η = 0 and (n∂Ω · η)∂Ω = 0, and on the other side an evolving phase indicator
χk ∈ L∞([0, Tw]; BV(Ω; {0, 1})) which is the unique weak solution — in the sense
of (227) — to the transport equation

∂tχk + (Ψkvk) · ∇χk = 0 in (0, Tw)× Ω,

χk|t=0 = χ0 in Ω.
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The existence of approximate solutions (vk, χk) satisfying the energy equality

1

2
∥vk(·, T )∥2L2(Ω) + σ|∇χk(·, T )|(Ω) +

µ

2
∥∇vk∥2L2(Ω×(0,T ))

=
1

2
∥v0∥2L2(Ω) + σ|∇χ0|(Ω), T ∈ (0, Tw), (233)

and satisfying

the map (0, Tw) ∋ t 7→ |∇χk(·, t)|(Ω) is absolutely continuous, (234)

can then be proved by means of a fixed-point argument as done in [1, Proof of
Theorem 4.2], relying in the process on the above two ingredients corresponding to
the different setting of the present work: the existence result for weak solutions to
the transport equation (227) with sufficiently regular transport velocity, and the
elliptic regularity estimates (231) for the Helmholtz projection associated with Ω.
In particular, one obtains uniform bounds

sup
k∈N

sup
t∈(0,Tw)

∥vk(·, t)∥2L2(Ω) + sup
k∈N

∥∇vk∥2L2(Ω×(0,Tw)) <∞, (235)

sup
k∈N

sup
t∈(0,Tw)

|∇χk(·, t)|(Ω) <∞. (236)

Limit passage in the approximation scheme to a varifold solution. As for the pas-
sage to the limit, we only discuss the surface tension term on the right hand side of
the approximate problem (232) as well as the validity of the energy inequality (40).
The other terms as well as the passage to the limit in the transport equation can
be treated as in [1]. First, we define a varifold Vk ∈ M((0, Tw)× Ω× Sd−1) by

Vk := L1⌞(0, Tw)⊗ (Vk(t))t∈(0,Tw) , (237)

where

Vk(t) := |∇χk(·, t)|⌞Ω⊗
(
δ ∇χk(·,t)

|∇χk(·,t)|

)
x∈Ω

∈ M(Ω×Sd−1) for any t ∈ (0, Tw).

Since χk ∈ L∞([0, Tw]; BV(Ω; {0, 1})) is uniformly bounded in the sense of (236),
there then exists χ ∈ L∞([0, Tw]; BV(Ω; {0, 1})) such that, up to taking a subse-
quence,

χk ⇀
∗ χ in L∞(Ω×(0, Tw)), (238)

∇χk ⇀
∗ ∇χ in L∞([0, Tw];M(Ω)). (239)

Moreover, we have supk ∥Vk∥M < ∞ due to (236) and the definition of Vk. In
particular, there exists V ∈ M((0, Tw) × Ω × Sd−1) such that, up to taking a
subsequence,

Vk ⇀
∗ V in M((0, Tw)× Ω× Sd−1). (240)

Note that the compatibility condition (41) then simply follows from exploiting (239)
and (240). As a preparation for the remaining arguments, note also that thanks to
the condition (234) a careful inspection of the argument of [15, Lemma 2] reveals
that one may disintegrate the limit varifold V in form of

V = L1⌞(0, Tw)⊗ (Vt)t∈(0,Tw) , Vt ∈ M(Ω×Sd−1), t ∈ (0, Tw), (241)

and that the limit interface energy satisfies

|Vt|Sd−1(Ω) ≤ lim inf
k

|∇χk(·, t)|(Ω) for a.e. t ∈ [0, Tw). (242)
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For any η ∈ C∞([0, Tw);C
1(Ω;Rd)∩

⋂
p≥2W

2,p(Ω;Rd)) such that div η = 0 and

(η · n∂Ω)|∂Ω = 0, we discuss the limit of

ˆ T

0

ˆ
Ω

(
Id− ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)
: ∇(Ψkη) d|∇χk|dt for k → ∞,

for almost every T ∈ [0, Tw). By adding a zero, we obtain

ˆ T

0

ˆ
Ω

(
Id− ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)
: ∇(Ψkη − η) d|∇χk|dt

+

ˆ T

0

ˆ
Ω×Sd−1

(Id−s⊗ s) : ∇η dVk(t, x, s) ,

where the second term converges to
´ T
0

´
Ω×Sd−1 (Id−s⊗ s) : ∇η dVt(x, s) for k → ∞

for any η ∈ C∞
0 ([0, Tw);C

1(Ω;Rd)∩
⋂

p≥2W
2,p(Ω;Rd)). Indeed, the latter guaran-

tees (Id−s⊗ s) : ∇η ∈ C0((0, Tw)×Ω×Sd−1) so that one may use (240) for such η.
However, the additional support assumption on the time variable can be removed
by means of a standard truncation argument relying on the disintegration formu-
las (237) and (241), respectively, and the uniform bound supk ∥Vk∥M < ∞. As
for the first term, we exploit the regularity properties of the Helmholtz projection.
More precisely, we may estimate for any p > 3 based on (230) and the Sobolev
embedding W 1,p(Ω) ↪→ C(Ω), d ∈ {2, 3},∣∣∣∣∣

ˆ T

0

ˆ
Ω

(
Id− ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)
: ∇(Ψkη − η) d|∇χk|dt

∣∣∣∣∣
≤ C

ˆ T

0

∥∇(Ψkη − η)∥C(Ω;Rd×d) dt

≤ C

ˆ T

0

∥∇PΩ(ψk ∗ η − η)∥C(Ω;Rd×d) dt

≤ C

ˆ T

0

∥ψk ∗ η − η∥W 2,p(Ω;Rd) dt.

The right hand side obviously goes to zero by letting k → ∞. In summary, we
obtain as desired

ˆ T

0

ˆ
Ω

(
Id− ∇χk

|∇χk|
⊗ ∇χk

|∇χk|

)
: ∇(Ψkη) d|∇χk|dt

→
ˆ T

0

ˆ
Ω×Sd−1

(Id−s⊗ s) : ∇η dVt(x, s) for k → ∞,

for almost every T ∈ [0, Tw) and all η ∈ C∞([0, Tw);C
1(Ω;Rd)∩

⋂
p≥2W

2,p(Ω;Rd))

such that div η = 0 and (η · n∂Ω)|∂Ω = 0.
At last, we comment how to recover the energy inequality (40). This can be

obtained from combining the energy equality (233) with the lower-semicontinuity
property (242) and the convergence properties of vk to its limit v (i.e., up to a
subsequence, vk ⇀ v in L2(0, Tw;H

1(Ω)) and vk ⇀
∗ v in L∞(0, Tw;L

2(Ω)) due to
the uniform bound (235)).
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[2] D. Albritton, E. Brué, and M. Colombo. Non-uniqueness of Leray solutions of the forced
Navier–Stokes equations. arXiv preprint, 2021.

[3] S. Angenent, T. Ilmanen, and D. L. Chopp. A computed example of nonuniqueness of mean

curvature flow in R3. Comm. Partial Differential Equations, 20(11-12):1937–1958, 1995.
[4] K. A. Brakke. The motion of a surface by its mean curvature, volume 20 of Mathematical

Notes. Princeton University Press, Princeton, N.J., 1978.

[5] Buckmaster and Vicol. Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann.
of Math. (2), 189(1):101–144, 2019.

[6] T. Buckmaster, M. Colombo, and V. Vicol. Wild solutions of the Navier–Stokes equations

whose singular sets in time have Hausdorff dimension strictly less than 1. J. Eur. Math. Soc.,
2021.
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